| //===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // MachineScheduler schedules machine instructions after phi elimination. It |
| // preserves LiveIntervals so it can be invoked before register allocation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "misched" |
| |
| #include "HexagonMachineScheduler.h" |
| #include <queue> |
| |
| using namespace llvm; |
| |
| /// Platform specific modifications to DAG. |
| void VLIWMachineScheduler::postprocessDAG() { |
| SUnit* LastSequentialCall = NULL; |
| // Currently we only catch the situation when compare gets scheduled |
| // before preceding call. |
| for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { |
| // Remember the call. |
| if (SUnits[su].getInstr()->isCall()) |
| LastSequentialCall = &(SUnits[su]); |
| // Look for a compare that defines a predicate. |
| else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall) |
| SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier)); |
| } |
| } |
| |
| /// Check if scheduling of this SU is possible |
| /// in the current packet. |
| /// It is _not_ precise (statefull), it is more like |
| /// another heuristic. Many corner cases are figured |
| /// empirically. |
| bool VLIWResourceModel::isResourceAvailable(SUnit *SU) { |
| if (!SU || !SU->getInstr()) |
| return false; |
| |
| // First see if the pipeline could receive this instruction |
| // in the current cycle. |
| switch (SU->getInstr()->getOpcode()) { |
| default: |
| if (!ResourcesModel->canReserveResources(SU->getInstr())) |
| return false; |
| case TargetOpcode::EXTRACT_SUBREG: |
| case TargetOpcode::INSERT_SUBREG: |
| case TargetOpcode::SUBREG_TO_REG: |
| case TargetOpcode::REG_SEQUENCE: |
| case TargetOpcode::IMPLICIT_DEF: |
| case TargetOpcode::COPY: |
| case TargetOpcode::INLINEASM: |
| break; |
| } |
| |
| // Now see if there are no other dependencies to instructions already |
| // in the packet. |
| for (unsigned i = 0, e = Packet.size(); i != e; ++i) { |
| if (Packet[i]->Succs.size() == 0) |
| continue; |
| for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(), |
| E = Packet[i]->Succs.end(); I != E; ++I) { |
| // Since we do not add pseudos to packets, might as well |
| // ignore order dependencies. |
| if (I->isCtrl()) |
| continue; |
| |
| if (I->getSUnit() == SU) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// Keep track of available resources. |
| bool VLIWResourceModel::reserveResources(SUnit *SU) { |
| bool startNewCycle = false; |
| // Artificially reset state. |
| if (!SU) { |
| ResourcesModel->clearResources(); |
| Packet.clear(); |
| TotalPackets++; |
| return false; |
| } |
| // If this SU does not fit in the packet |
| // start a new one. |
| if (!isResourceAvailable(SU)) { |
| ResourcesModel->clearResources(); |
| Packet.clear(); |
| TotalPackets++; |
| startNewCycle = true; |
| } |
| |
| switch (SU->getInstr()->getOpcode()) { |
| default: |
| ResourcesModel->reserveResources(SU->getInstr()); |
| break; |
| case TargetOpcode::EXTRACT_SUBREG: |
| case TargetOpcode::INSERT_SUBREG: |
| case TargetOpcode::SUBREG_TO_REG: |
| case TargetOpcode::REG_SEQUENCE: |
| case TargetOpcode::IMPLICIT_DEF: |
| case TargetOpcode::KILL: |
| case TargetOpcode::PROLOG_LABEL: |
| case TargetOpcode::EH_LABEL: |
| case TargetOpcode::COPY: |
| case TargetOpcode::INLINEASM: |
| break; |
| } |
| Packet.push_back(SU); |
| |
| #ifndef NDEBUG |
| DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n"); |
| for (unsigned i = 0, e = Packet.size(); i != e; ++i) { |
| DEBUG(dbgs() << "\t[" << i << "] SU("); |
| DEBUG(dbgs() << Packet[i]->NodeNum << ")\t"); |
| DEBUG(Packet[i]->getInstr()->dump()); |
| } |
| #endif |
| |
| // If packet is now full, reset the state so in the next cycle |
| // we start fresh. |
| if (Packet.size() >= SchedModel->getIssueWidth()) { |
| ResourcesModel->clearResources(); |
| Packet.clear(); |
| TotalPackets++; |
| startNewCycle = true; |
| } |
| |
| return startNewCycle; |
| } |
| |
| /// schedule - Called back from MachineScheduler::runOnMachineFunction |
| /// after setting up the current scheduling region. [RegionBegin, RegionEnd) |
| /// only includes instructions that have DAG nodes, not scheduling boundaries. |
| void VLIWMachineScheduler::schedule() { |
| DEBUG(dbgs() |
| << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber() |
| << " " << BB->getName() |
| << " in_func " << BB->getParent()->getFunction()->getName() |
| << " at loop depth " << MLI.getLoopDepth(BB) |
| << " \n"); |
| |
| buildDAGWithRegPressure(); |
| |
| // Postprocess the DAG to add platform specific artificial dependencies. |
| postprocessDAG(); |
| |
| SmallVector<SUnit*, 8> TopRoots, BotRoots; |
| findRootsAndBiasEdges(TopRoots, BotRoots); |
| |
| // Initialize the strategy before modifying the DAG. |
| SchedImpl->initialize(this); |
| |
| // To view Height/Depth correctly, they should be accessed at least once. |
| // |
| // FIXME: SUnit::dumpAll always recompute depth and height now. The max |
| // depth/height could be computed directly from the roots and leaves. |
| DEBUG(unsigned maxH = 0; |
| for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| if (SUnits[su].getHeight() > maxH) |
| maxH = SUnits[su].getHeight(); |
| dbgs() << "Max Height " << maxH << "\n";); |
| DEBUG(unsigned maxD = 0; |
| for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| if (SUnits[su].getDepth() > maxD) |
| maxD = SUnits[su].getDepth(); |
| dbgs() << "Max Depth " << maxD << "\n";); |
| DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| SUnits[su].dumpAll(this)); |
| |
| initQueues(TopRoots, BotRoots); |
| |
| bool IsTopNode = false; |
| while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { |
| if (!checkSchedLimit()) |
| break; |
| |
| scheduleMI(SU, IsTopNode); |
| |
| updateQueues(SU, IsTopNode); |
| } |
| assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); |
| |
| placeDebugValues(); |
| } |
| |
| void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) { |
| DAG = static_cast<VLIWMachineScheduler*>(dag); |
| SchedModel = DAG->getSchedModel(); |
| TRI = DAG->TRI; |
| |
| Top.init(DAG, SchedModel); |
| Bot.init(DAG, SchedModel); |
| |
| // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or |
| // are disabled, then these HazardRecs will be disabled. |
| const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries(); |
| const TargetMachine &TM = DAG->MF.getTarget(); |
| delete Top.HazardRec; |
| delete Bot.HazardRec; |
| Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); |
| Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); |
| |
| Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel()); |
| Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel()); |
| |
| assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) && |
| "-misched-topdown incompatible with -misched-bottomup"); |
| } |
| |
| void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) { |
| if (SU->isScheduled) |
| return; |
| |
| for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; |
| unsigned MinLatency = I->getMinLatency(); |
| #ifndef NDEBUG |
| Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); |
| #endif |
| if (SU->TopReadyCycle < PredReadyCycle + MinLatency) |
| SU->TopReadyCycle = PredReadyCycle + MinLatency; |
| } |
| Top.releaseNode(SU, SU->TopReadyCycle); |
| } |
| |
| void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) { |
| if (SU->isScheduled) |
| return; |
| |
| assert(SU->getInstr() && "Scheduled SUnit must have instr"); |
| |
| for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; |
| unsigned MinLatency = I->getMinLatency(); |
| #ifndef NDEBUG |
| Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); |
| #endif |
| if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) |
| SU->BotReadyCycle = SuccReadyCycle + MinLatency; |
| } |
| Bot.releaseNode(SU, SU->BotReadyCycle); |
| } |
| |
| /// Does this SU have a hazard within the current instruction group. |
| /// |
| /// The scheduler supports two modes of hazard recognition. The first is the |
| /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that |
| /// supports highly complicated in-order reservation tables |
| /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. |
| /// |
| /// The second is a streamlined mechanism that checks for hazards based on |
| /// simple counters that the scheduler itself maintains. It explicitly checks |
| /// for instruction dispatch limitations, including the number of micro-ops that |
| /// can dispatch per cycle. |
| /// |
| /// TODO: Also check whether the SU must start a new group. |
| bool ConvergingVLIWScheduler::SchedBoundary::checkHazard(SUnit *SU) { |
| if (HazardRec->isEnabled()) |
| return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; |
| |
| unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); |
| if (IssueCount + uops > SchedModel->getIssueWidth()) |
| return true; |
| |
| return false; |
| } |
| |
| void ConvergingVLIWScheduler::SchedBoundary::releaseNode(SUnit *SU, |
| unsigned ReadyCycle) { |
| if (ReadyCycle < MinReadyCycle) |
| MinReadyCycle = ReadyCycle; |
| |
| // Check for interlocks first. For the purpose of other heuristics, an |
| // instruction that cannot issue appears as if it's not in the ReadyQueue. |
| if (ReadyCycle > CurrCycle || checkHazard(SU)) |
| |
| Pending.push(SU); |
| else |
| Available.push(SU); |
| } |
| |
| /// Move the boundary of scheduled code by one cycle. |
| void ConvergingVLIWScheduler::SchedBoundary::bumpCycle() { |
| unsigned Width = SchedModel->getIssueWidth(); |
| IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; |
| |
| assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); |
| unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle); |
| |
| if (!HazardRec->isEnabled()) { |
| // Bypass HazardRec virtual calls. |
| CurrCycle = NextCycle; |
| } else { |
| // Bypass getHazardType calls in case of long latency. |
| for (; CurrCycle != NextCycle; ++CurrCycle) { |
| if (isTop()) |
| HazardRec->AdvanceCycle(); |
| else |
| HazardRec->RecedeCycle(); |
| } |
| } |
| CheckPending = true; |
| |
| DEBUG(dbgs() << "*** " << Available.getName() << " cycle " |
| << CurrCycle << '\n'); |
| } |
| |
| /// Move the boundary of scheduled code by one SUnit. |
| void ConvergingVLIWScheduler::SchedBoundary::bumpNode(SUnit *SU) { |
| bool startNewCycle = false; |
| |
| // Update the reservation table. |
| if (HazardRec->isEnabled()) { |
| if (!isTop() && SU->isCall) { |
| // Calls are scheduled with their preceding instructions. For bottom-up |
| // scheduling, clear the pipeline state before emitting. |
| HazardRec->Reset(); |
| } |
| HazardRec->EmitInstruction(SU); |
| } |
| |
| // Update DFA model. |
| startNewCycle = ResourceModel->reserveResources(SU); |
| |
| // Check the instruction group dispatch limit. |
| // TODO: Check if this SU must end a dispatch group. |
| IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); |
| if (startNewCycle) { |
| DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n'); |
| bumpCycle(); |
| } |
| else |
| DEBUG(dbgs() << "*** IssueCount " << IssueCount |
| << " at cycle " << CurrCycle << '\n'); |
| } |
| |
| /// Release pending ready nodes in to the available queue. This makes them |
| /// visible to heuristics. |
| void ConvergingVLIWScheduler::SchedBoundary::releasePending() { |
| // If the available queue is empty, it is safe to reset MinReadyCycle. |
| if (Available.empty()) |
| MinReadyCycle = UINT_MAX; |
| |
| // Check to see if any of the pending instructions are ready to issue. If |
| // so, add them to the available queue. |
| for (unsigned i = 0, e = Pending.size(); i != e; ++i) { |
| SUnit *SU = *(Pending.begin()+i); |
| unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; |
| |
| if (ReadyCycle < MinReadyCycle) |
| MinReadyCycle = ReadyCycle; |
| |
| if (ReadyCycle > CurrCycle) |
| continue; |
| |
| if (checkHazard(SU)) |
| continue; |
| |
| Available.push(SU); |
| Pending.remove(Pending.begin()+i); |
| --i; --e; |
| } |
| CheckPending = false; |
| } |
| |
| /// Remove SU from the ready set for this boundary. |
| void ConvergingVLIWScheduler::SchedBoundary::removeReady(SUnit *SU) { |
| if (Available.isInQueue(SU)) |
| Available.remove(Available.find(SU)); |
| else { |
| assert(Pending.isInQueue(SU) && "bad ready count"); |
| Pending.remove(Pending.find(SU)); |
| } |
| } |
| |
| /// If this queue only has one ready candidate, return it. As a side effect, |
| /// advance the cycle until at least one node is ready. If multiple instructions |
| /// are ready, return NULL. |
| SUnit *ConvergingVLIWScheduler::SchedBoundary::pickOnlyChoice() { |
| if (CheckPending) |
| releasePending(); |
| |
| for (unsigned i = 0; Available.empty(); ++i) { |
| assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && |
| "permanent hazard"); (void)i; |
| ResourceModel->reserveResources(0); |
| bumpCycle(); |
| releasePending(); |
| } |
| if (Available.size() == 1) |
| return *Available.begin(); |
| return NULL; |
| } |
| |
| #ifndef NDEBUG |
| void ConvergingVLIWScheduler::traceCandidate(const char *Label, |
| const ReadyQueue &Q, |
| SUnit *SU, PressureElement P) { |
| dbgs() << Label << " " << Q.getName() << " "; |
| if (P.isValid()) |
| dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease |
| << " "; |
| else |
| dbgs() << " "; |
| SU->dump(DAG); |
| } |
| #endif |
| |
| /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor |
| /// of SU, return it, otherwise return null. |
| static SUnit *getSingleUnscheduledPred(SUnit *SU) { |
| SUnit *OnlyAvailablePred = 0; |
| for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| SUnit &Pred = *I->getSUnit(); |
| if (!Pred.isScheduled) { |
| // We found an available, but not scheduled, predecessor. If it's the |
| // only one we have found, keep track of it... otherwise give up. |
| if (OnlyAvailablePred && OnlyAvailablePred != &Pred) |
| return 0; |
| OnlyAvailablePred = &Pred; |
| } |
| } |
| return OnlyAvailablePred; |
| } |
| |
| /// getSingleUnscheduledSucc - If there is exactly one unscheduled successor |
| /// of SU, return it, otherwise return null. |
| static SUnit *getSingleUnscheduledSucc(SUnit *SU) { |
| SUnit *OnlyAvailableSucc = 0; |
| for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| SUnit &Succ = *I->getSUnit(); |
| if (!Succ.isScheduled) { |
| // We found an available, but not scheduled, successor. If it's the |
| // only one we have found, keep track of it... otherwise give up. |
| if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ) |
| return 0; |
| OnlyAvailableSucc = &Succ; |
| } |
| } |
| return OnlyAvailableSucc; |
| } |
| |
| // Constants used to denote relative importance of |
| // heuristic components for cost computation. |
| static const unsigned PriorityOne = 200; |
| static const unsigned PriorityTwo = 100; |
| static const unsigned PriorityThree = 50; |
| static const unsigned PriorityFour = 20; |
| static const unsigned ScaleTwo = 10; |
| static const unsigned FactorOne = 2; |
| |
| /// Single point to compute overall scheduling cost. |
| /// TODO: More heuristics will be used soon. |
| int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU, |
| SchedCandidate &Candidate, |
| RegPressureDelta &Delta, |
| bool verbose) { |
| // Initial trivial priority. |
| int ResCount = 1; |
| |
| // Do not waste time on a node that is already scheduled. |
| if (!SU || SU->isScheduled) |
| return ResCount; |
| |
| // Forced priority is high. |
| if (SU->isScheduleHigh) |
| ResCount += PriorityOne; |
| |
| // Critical path first. |
| if (Q.getID() == TopQID) { |
| ResCount += (SU->getHeight() * ScaleTwo); |
| |
| // If resources are available for it, multiply the |
| // chance of scheduling. |
| if (Top.ResourceModel->isResourceAvailable(SU)) |
| ResCount <<= FactorOne; |
| } else { |
| ResCount += (SU->getDepth() * ScaleTwo); |
| |
| // If resources are available for it, multiply the |
| // chance of scheduling. |
| if (Bot.ResourceModel->isResourceAvailable(SU)) |
| ResCount <<= FactorOne; |
| } |
| |
| unsigned NumNodesBlocking = 0; |
| if (Q.getID() == TopQID) { |
| // How many SUs does it block from scheduling? |
| // Look at all of the successors of this node. |
| // Count the number of nodes that |
| // this node is the sole unscheduled node for. |
| for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) |
| if (getSingleUnscheduledPred(I->getSUnit()) == SU) |
| ++NumNodesBlocking; |
| } else { |
| // How many unscheduled predecessors block this node? |
| for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) |
| if (getSingleUnscheduledSucc(I->getSUnit()) == SU) |
| ++NumNodesBlocking; |
| } |
| ResCount += (NumNodesBlocking * ScaleTwo); |
| |
| // Factor in reg pressure as a heuristic. |
| ResCount -= (Delta.Excess.UnitIncrease*PriorityThree); |
| ResCount -= (Delta.CriticalMax.UnitIncrease*PriorityThree); |
| |
| DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")"); |
| |
| return ResCount; |
| } |
| |
| /// Pick the best candidate from the top queue. |
| /// |
| /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during |
| /// DAG building. To adjust for the current scheduling location we need to |
| /// maintain the number of vreg uses remaining to be top-scheduled. |
| ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler:: |
| pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker, |
| SchedCandidate &Candidate) { |
| DEBUG(Q.dump()); |
| |
| // getMaxPressureDelta temporarily modifies the tracker. |
| RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); |
| |
| // BestSU remains NULL if no top candidates beat the best existing candidate. |
| CandResult FoundCandidate = NoCand; |
| for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { |
| RegPressureDelta RPDelta; |
| TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta, |
| DAG->getRegionCriticalPSets(), |
| DAG->getRegPressure().MaxSetPressure); |
| |
| int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false); |
| |
| // Initialize the candidate if needed. |
| if (!Candidate.SU) { |
| Candidate.SU = *I; |
| Candidate.RPDelta = RPDelta; |
| Candidate.SCost = CurrentCost; |
| FoundCandidate = NodeOrder; |
| continue; |
| } |
| |
| // Best cost. |
| if (CurrentCost > Candidate.SCost) { |
| DEBUG(traceCandidate("CCAND", Q, *I)); |
| Candidate.SU = *I; |
| Candidate.RPDelta = RPDelta; |
| Candidate.SCost = CurrentCost; |
| FoundCandidate = BestCost; |
| continue; |
| } |
| |
| // Fall through to original instruction order. |
| // Only consider node order if Candidate was chosen from this Q. |
| if (FoundCandidate == NoCand) |
| continue; |
| } |
| return FoundCandidate; |
| } |
| |
| /// Pick the best candidate node from either the top or bottom queue. |
| SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) { |
| // Schedule as far as possible in the direction of no choice. This is most |
| // efficient, but also provides the best heuristics for CriticalPSets. |
| if (SUnit *SU = Bot.pickOnlyChoice()) { |
| IsTopNode = false; |
| return SU; |
| } |
| if (SUnit *SU = Top.pickOnlyChoice()) { |
| IsTopNode = true; |
| return SU; |
| } |
| SchedCandidate BotCand; |
| // Prefer bottom scheduling when heuristics are silent. |
| CandResult BotResult = pickNodeFromQueue(Bot.Available, |
| DAG->getBotRPTracker(), BotCand); |
| assert(BotResult != NoCand && "failed to find the first candidate"); |
| |
| // If either Q has a single candidate that provides the least increase in |
| // Excess pressure, we can immediately schedule from that Q. |
| // |
| // RegionCriticalPSets summarizes the pressure within the scheduled region and |
| // affects picking from either Q. If scheduling in one direction must |
| // increase pressure for one of the excess PSets, then schedule in that |
| // direction first to provide more freedom in the other direction. |
| if (BotResult == SingleExcess || BotResult == SingleCritical) { |
| IsTopNode = false; |
| return BotCand.SU; |
| } |
| // Check if the top Q has a better candidate. |
| SchedCandidate TopCand; |
| CandResult TopResult = pickNodeFromQueue(Top.Available, |
| DAG->getTopRPTracker(), TopCand); |
| assert(TopResult != NoCand && "failed to find the first candidate"); |
| |
| if (TopResult == SingleExcess || TopResult == SingleCritical) { |
| IsTopNode = true; |
| return TopCand.SU; |
| } |
| // If either Q has a single candidate that minimizes pressure above the |
| // original region's pressure pick it. |
| if (BotResult == SingleMax) { |
| IsTopNode = false; |
| return BotCand.SU; |
| } |
| if (TopResult == SingleMax) { |
| IsTopNode = true; |
| return TopCand.SU; |
| } |
| if (TopCand.SCost > BotCand.SCost) { |
| IsTopNode = true; |
| return TopCand.SU; |
| } |
| // Otherwise prefer the bottom candidate in node order. |
| IsTopNode = false; |
| return BotCand.SU; |
| } |
| |
| /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. |
| SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) { |
| if (DAG->top() == DAG->bottom()) { |
| assert(Top.Available.empty() && Top.Pending.empty() && |
| Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); |
| return NULL; |
| } |
| SUnit *SU; |
| if (llvm::ForceTopDown) { |
| SU = Top.pickOnlyChoice(); |
| if (!SU) { |
| SchedCandidate TopCand; |
| CandResult TopResult = |
| pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand); |
| assert(TopResult != NoCand && "failed to find the first candidate"); |
| (void)TopResult; |
| SU = TopCand.SU; |
| } |
| IsTopNode = true; |
| } else if (llvm::ForceBottomUp) { |
| SU = Bot.pickOnlyChoice(); |
| if (!SU) { |
| SchedCandidate BotCand; |
| CandResult BotResult = |
| pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand); |
| assert(BotResult != NoCand && "failed to find the first candidate"); |
| (void)BotResult; |
| SU = BotCand.SU; |
| } |
| IsTopNode = false; |
| } else { |
| SU = pickNodeBidrectional(IsTopNode); |
| } |
| if (SU->isTopReady()) |
| Top.removeReady(SU); |
| if (SU->isBottomReady()) |
| Bot.removeReady(SU); |
| |
| DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") |
| << " Scheduling Instruction in cycle " |
| << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; |
| SU->dump(DAG)); |
| return SU; |
| } |
| |
| /// Update the scheduler's state after scheduling a node. This is the same node |
| /// that was just returned by pickNode(). However, VLIWMachineScheduler needs |
| /// to update it's state based on the current cycle before MachineSchedStrategy |
| /// does. |
| void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) { |
| if (IsTopNode) { |
| SU->TopReadyCycle = Top.CurrCycle; |
| Top.bumpNode(SU); |
| } else { |
| SU->BotReadyCycle = Bot.CurrCycle; |
| Bot.bumpNode(SU); |
| } |
| } |