| //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Collect the sequence of machine instructions for a basic block. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/LeakDetector.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) |
| : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), |
| AddressTaken(false) { |
| Insts.Parent = this; |
| } |
| |
| MachineBasicBlock::~MachineBasicBlock() { |
| LeakDetector::removeGarbageObject(this); |
| } |
| |
| /// getSymbol - Return the MCSymbol for this basic block. |
| /// |
| MCSymbol *MachineBasicBlock::getSymbol() const { |
| const MachineFunction *MF = getParent(); |
| MCContext &Ctx = MF->getContext(); |
| const char *Prefix = Ctx.getAsmInfo().getPrivateGlobalPrefix(); |
| return Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" + |
| Twine(MF->getFunctionNumber()) + "_" + |
| Twine(getNumber())); |
| } |
| |
| |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { |
| MBB.print(OS); |
| return OS; |
| } |
| |
| /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the |
| /// parent pointer of the MBB, the MBB numbering, and any instructions in the |
| /// MBB to be on the right operand list for registers. |
| /// |
| /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it |
| /// gets the next available unique MBB number. If it is removed from a |
| /// MachineFunction, it goes back to being #-1. |
| void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { |
| MachineFunction &MF = *N->getParent(); |
| N->Number = MF.addToMBBNumbering(N); |
| |
| // Make sure the instructions have their operands in the reginfo lists. |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| for (MachineBasicBlock::instr_iterator |
| I = N->instr_begin(), E = N->instr_end(); I != E; ++I) |
| I->AddRegOperandsToUseLists(RegInfo); |
| |
| LeakDetector::removeGarbageObject(N); |
| } |
| |
| void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { |
| N->getParent()->removeFromMBBNumbering(N->Number); |
| N->Number = -1; |
| LeakDetector::addGarbageObject(N); |
| } |
| |
| |
| /// addNodeToList (MI) - When we add an instruction to a basic block |
| /// list, we update its parent pointer and add its operands from reg use/def |
| /// lists if appropriate. |
| void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { |
| assert(N->getParent() == 0 && "machine instruction already in a basic block"); |
| N->setParent(Parent); |
| |
| // Add the instruction's register operands to their corresponding |
| // use/def lists. |
| MachineFunction *MF = Parent->getParent(); |
| N->AddRegOperandsToUseLists(MF->getRegInfo()); |
| |
| LeakDetector::removeGarbageObject(N); |
| } |
| |
| /// removeNodeFromList (MI) - When we remove an instruction from a basic block |
| /// list, we update its parent pointer and remove its operands from reg use/def |
| /// lists if appropriate. |
| void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { |
| assert(N->getParent() != 0 && "machine instruction not in a basic block"); |
| |
| // Remove from the use/def lists. |
| if (MachineFunction *MF = N->getParent()->getParent()) |
| N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); |
| |
| N->setParent(0); |
| |
| LeakDetector::addGarbageObject(N); |
| } |
| |
| /// transferNodesFromList (MI) - When moving a range of instructions from one |
| /// MBB list to another, we need to update the parent pointers and the use/def |
| /// lists. |
| void ilist_traits<MachineInstr>:: |
| transferNodesFromList(ilist_traits<MachineInstr> &fromList, |
| ilist_iterator<MachineInstr> first, |
| ilist_iterator<MachineInstr> last) { |
| assert(Parent->getParent() == fromList.Parent->getParent() && |
| "MachineInstr parent mismatch!"); |
| |
| // Splice within the same MBB -> no change. |
| if (Parent == fromList.Parent) return; |
| |
| // If splicing between two blocks within the same function, just update the |
| // parent pointers. |
| for (; first != last; ++first) |
| first->setParent(Parent); |
| } |
| |
| void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { |
| assert(!MI->getParent() && "MI is still in a block!"); |
| Parent->getParent()->DeleteMachineInstr(MI); |
| } |
| |
| MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { |
| instr_iterator I = instr_begin(), E = instr_end(); |
| while (I != E && I->isPHI()) |
| ++I; |
| assert((I == E || !I->isInsideBundle()) && |
| "First non-phi MI cannot be inside a bundle!"); |
| return I; |
| } |
| |
| MachineBasicBlock::iterator |
| MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { |
| iterator E = end(); |
| while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue())) |
| ++I; |
| // FIXME: This needs to change if we wish to bundle labels / dbg_values |
| // inside the bundle. |
| assert((I == E || !I->isInsideBundle()) && |
| "First non-phi / non-label instruction is inside a bundle!"); |
| return I; |
| } |
| |
| MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { |
| iterator B = begin(), E = end(), I = E; |
| while (I != B && ((--I)->isTerminator() || I->isDebugValue())) |
| ; /*noop */ |
| while (I != E && !I->isTerminator()) |
| ++I; |
| return I; |
| } |
| |
| MachineBasicBlock::const_iterator |
| MachineBasicBlock::getFirstTerminator() const { |
| const_iterator B = begin(), E = end(), I = E; |
| while (I != B && ((--I)->isTerminator() || I->isDebugValue())) |
| ; /*noop */ |
| while (I != E && !I->isTerminator()) |
| ++I; |
| return I; |
| } |
| |
| MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { |
| instr_iterator B = instr_begin(), E = instr_end(), I = E; |
| while (I != B && ((--I)->isTerminator() || I->isDebugValue())) |
| ; /*noop */ |
| while (I != E && !I->isTerminator()) |
| ++I; |
| return I; |
| } |
| |
| MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { |
| // Skip over end-of-block dbg_value instructions. |
| instr_iterator B = instr_begin(), I = instr_end(); |
| while (I != B) { |
| --I; |
| // Return instruction that starts a bundle. |
| if (I->isDebugValue() || I->isInsideBundle()) |
| continue; |
| return I; |
| } |
| // The block is all debug values. |
| return end(); |
| } |
| |
| MachineBasicBlock::const_iterator |
| MachineBasicBlock::getLastNonDebugInstr() const { |
| // Skip over end-of-block dbg_value instructions. |
| const_instr_iterator B = instr_begin(), I = instr_end(); |
| while (I != B) { |
| --I; |
| // Return instruction that starts a bundle. |
| if (I->isDebugValue() || I->isInsideBundle()) |
| continue; |
| return I; |
| } |
| // The block is all debug values. |
| return end(); |
| } |
| |
| const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { |
| // A block with a landing pad successor only has one other successor. |
| if (succ_size() > 2) |
| return 0; |
| for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) |
| if ((*I)->isLandingPad()) |
| return *I; |
| return 0; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void MachineBasicBlock::dump() const { |
| print(dbgs()); |
| } |
| #endif |
| |
| StringRef MachineBasicBlock::getName() const { |
| if (const BasicBlock *LBB = getBasicBlock()) |
| return LBB->getName(); |
| else |
| return "(null)"; |
| } |
| |
| /// Return a hopefully unique identifier for this block. |
| std::string MachineBasicBlock::getFullName() const { |
| std::string Name; |
| if (getParent()) |
| Name = (getParent()->getName() + ":").str(); |
| if (getBasicBlock()) |
| Name += getBasicBlock()->getName(); |
| else |
| Name += (Twine("BB") + Twine(getNumber())).str(); |
| return Name; |
| } |
| |
| void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { |
| const MachineFunction *MF = getParent(); |
| if (!MF) { |
| OS << "Can't print out MachineBasicBlock because parent MachineFunction" |
| << " is null\n"; |
| return; |
| } |
| |
| if (Indexes) |
| OS << Indexes->getMBBStartIdx(this) << '\t'; |
| |
| OS << "BB#" << getNumber() << ": "; |
| |
| const char *Comma = ""; |
| if (const BasicBlock *LBB = getBasicBlock()) { |
| OS << Comma << "derived from LLVM BB "; |
| WriteAsOperand(OS, LBB, /*PrintType=*/false); |
| Comma = ", "; |
| } |
| if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } |
| if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } |
| if (Alignment) |
| OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) |
| << " bytes)"; |
| |
| OS << '\n'; |
| |
| const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); |
| if (!livein_empty()) { |
| if (Indexes) OS << '\t'; |
| OS << " Live Ins:"; |
| for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I) |
| OS << ' ' << PrintReg(*I, TRI); |
| OS << '\n'; |
| } |
| // Print the preds of this block according to the CFG. |
| if (!pred_empty()) { |
| if (Indexes) OS << '\t'; |
| OS << " Predecessors according to CFG:"; |
| for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) |
| OS << " BB#" << (*PI)->getNumber(); |
| OS << '\n'; |
| } |
| |
| for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { |
| if (Indexes) { |
| if (Indexes->hasIndex(I)) |
| OS << Indexes->getInstructionIndex(I); |
| OS << '\t'; |
| } |
| OS << '\t'; |
| if (I->isInsideBundle()) |
| OS << " * "; |
| I->print(OS, &getParent()->getTarget()); |
| } |
| |
| // Print the successors of this block according to the CFG. |
| if (!succ_empty()) { |
| if (Indexes) OS << '\t'; |
| OS << " Successors according to CFG:"; |
| for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { |
| OS << " BB#" << (*SI)->getNumber(); |
| if (!Weights.empty()) |
| OS << '(' << *getWeightIterator(SI) << ')'; |
| } |
| OS << '\n'; |
| } |
| } |
| |
| void MachineBasicBlock::removeLiveIn(unsigned Reg) { |
| std::vector<unsigned>::iterator I = |
| std::find(LiveIns.begin(), LiveIns.end(), Reg); |
| if (I != LiveIns.end()) |
| LiveIns.erase(I); |
| } |
| |
| bool MachineBasicBlock::isLiveIn(unsigned Reg) const { |
| livein_iterator I = std::find(livein_begin(), livein_end(), Reg); |
| return I != livein_end(); |
| } |
| |
| void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { |
| getParent()->splice(NewAfter, this); |
| } |
| |
| void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { |
| MachineFunction::iterator BBI = NewBefore; |
| getParent()->splice(++BBI, this); |
| } |
| |
| void MachineBasicBlock::updateTerminator() { |
| const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo(); |
| // A block with no successors has no concerns with fall-through edges. |
| if (this->succ_empty()) return; |
| |
| MachineBasicBlock *TBB = 0, *FBB = 0; |
| SmallVector<MachineOperand, 4> Cond; |
| DebugLoc dl; // FIXME: this is nowhere |
| bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); |
| (void) B; |
| assert(!B && "UpdateTerminators requires analyzable predecessors!"); |
| if (Cond.empty()) { |
| if (TBB) { |
| // The block has an unconditional branch. If its successor is now |
| // its layout successor, delete the branch. |
| if (isLayoutSuccessor(TBB)) |
| TII->RemoveBranch(*this); |
| } else { |
| // The block has an unconditional fallthrough. If its successor is not |
| // its layout successor, insert a branch. First we have to locate the |
| // only non-landing-pad successor, as that is the fallthrough block. |
| for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { |
| if ((*SI)->isLandingPad()) |
| continue; |
| assert(!TBB && "Found more than one non-landing-pad successor!"); |
| TBB = *SI; |
| } |
| |
| // If there is no non-landing-pad successor, the block has no |
| // fall-through edges to be concerned with. |
| if (!TBB) |
| return; |
| |
| // Finally update the unconditional successor to be reached via a branch |
| // if it would not be reached by fallthrough. |
| if (!isLayoutSuccessor(TBB)) |
| TII->InsertBranch(*this, TBB, 0, Cond, dl); |
| } |
| } else { |
| if (FBB) { |
| // The block has a non-fallthrough conditional branch. If one of its |
| // successors is its layout successor, rewrite it to a fallthrough |
| // conditional branch. |
| if (isLayoutSuccessor(TBB)) { |
| if (TII->ReverseBranchCondition(Cond)) |
| return; |
| TII->RemoveBranch(*this); |
| TII->InsertBranch(*this, FBB, 0, Cond, dl); |
| } else if (isLayoutSuccessor(FBB)) { |
| TII->RemoveBranch(*this); |
| TII->InsertBranch(*this, TBB, 0, Cond, dl); |
| } |
| } else { |
| // Walk through the successors and find the successor which is not |
| // a landing pad and is not the conditional branch destination (in TBB) |
| // as the fallthrough successor. |
| MachineBasicBlock *FallthroughBB = 0; |
| for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { |
| if ((*SI)->isLandingPad() || *SI == TBB) |
| continue; |
| assert(!FallthroughBB && "Found more than one fallthrough successor."); |
| FallthroughBB = *SI; |
| } |
| if (!FallthroughBB && canFallThrough()) { |
| // We fallthrough to the same basic block as the conditional jump |
| // targets. Remove the conditional jump, leaving unconditional |
| // fallthrough. |
| // FIXME: This does not seem like a reasonable pattern to support, but it |
| // has been seen in the wild coming out of degenerate ARM test cases. |
| TII->RemoveBranch(*this); |
| |
| // Finally update the unconditional successor to be reached via a branch |
| // if it would not be reached by fallthrough. |
| if (!isLayoutSuccessor(TBB)) |
| TII->InsertBranch(*this, TBB, 0, Cond, dl); |
| return; |
| } |
| |
| // The block has a fallthrough conditional branch. |
| if (isLayoutSuccessor(TBB)) { |
| if (TII->ReverseBranchCondition(Cond)) { |
| // We can't reverse the condition, add an unconditional branch. |
| Cond.clear(); |
| TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl); |
| return; |
| } |
| TII->RemoveBranch(*this); |
| TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl); |
| } else if (!isLayoutSuccessor(FallthroughBB)) { |
| TII->RemoveBranch(*this); |
| TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); |
| } |
| } |
| } |
| } |
| |
| void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { |
| |
| // If we see non-zero value for the first time it means we actually use Weight |
| // list, so we fill all Weights with 0's. |
| if (weight != 0 && Weights.empty()) |
| Weights.resize(Successors.size()); |
| |
| if (weight != 0 || !Weights.empty()) |
| Weights.push_back(weight); |
| |
| Successors.push_back(succ); |
| succ->addPredecessor(this); |
| } |
| |
| void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { |
| succ->removePredecessor(this); |
| succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); |
| assert(I != Successors.end() && "Not a current successor!"); |
| |
| // If Weight list is empty it means we don't use it (disabled optimization). |
| if (!Weights.empty()) { |
| weight_iterator WI = getWeightIterator(I); |
| Weights.erase(WI); |
| } |
| |
| Successors.erase(I); |
| } |
| |
| MachineBasicBlock::succ_iterator |
| MachineBasicBlock::removeSuccessor(succ_iterator I) { |
| assert(I != Successors.end() && "Not a current successor!"); |
| |
| // If Weight list is empty it means we don't use it (disabled optimization). |
| if (!Weights.empty()) { |
| weight_iterator WI = getWeightIterator(I); |
| Weights.erase(WI); |
| } |
| |
| (*I)->removePredecessor(this); |
| return Successors.erase(I); |
| } |
| |
| void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, |
| MachineBasicBlock *New) { |
| if (Old == New) |
| return; |
| |
| succ_iterator E = succ_end(); |
| succ_iterator NewI = E; |
| succ_iterator OldI = E; |
| for (succ_iterator I = succ_begin(); I != E; ++I) { |
| if (*I == Old) { |
| OldI = I; |
| if (NewI != E) |
| break; |
| } |
| if (*I == New) { |
| NewI = I; |
| if (OldI != E) |
| break; |
| } |
| } |
| assert(OldI != E && "Old is not a successor of this block"); |
| Old->removePredecessor(this); |
| |
| // If New isn't already a successor, let it take Old's place. |
| if (NewI == E) { |
| New->addPredecessor(this); |
| *OldI = New; |
| return; |
| } |
| |
| // New is already a successor. |
| // Update its weight instead of adding a duplicate edge. |
| if (!Weights.empty()) { |
| weight_iterator OldWI = getWeightIterator(OldI); |
| *getWeightIterator(NewI) += *OldWI; |
| Weights.erase(OldWI); |
| } |
| Successors.erase(OldI); |
| } |
| |
| void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { |
| Predecessors.push_back(pred); |
| } |
| |
| void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { |
| pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); |
| assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); |
| Predecessors.erase(I); |
| } |
| |
| void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { |
| if (this == fromMBB) |
| return; |
| |
| while (!fromMBB->succ_empty()) { |
| MachineBasicBlock *Succ = *fromMBB->succ_begin(); |
| uint32_t Weight = 0; |
| |
| // If Weight list is empty it means we don't use it (disabled optimization). |
| if (!fromMBB->Weights.empty()) |
| Weight = *fromMBB->Weights.begin(); |
| |
| addSuccessor(Succ, Weight); |
| fromMBB->removeSuccessor(Succ); |
| } |
| } |
| |
| void |
| MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { |
| if (this == fromMBB) |
| return; |
| |
| while (!fromMBB->succ_empty()) { |
| MachineBasicBlock *Succ = *fromMBB->succ_begin(); |
| uint32_t Weight = 0; |
| if (!fromMBB->Weights.empty()) |
| Weight = *fromMBB->Weights.begin(); |
| addSuccessor(Succ, Weight); |
| fromMBB->removeSuccessor(Succ); |
| |
| // Fix up any PHI nodes in the successor. |
| for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), |
| ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) |
| for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.getMBB() == fromMBB) |
| MO.setMBB(this); |
| } |
| } |
| } |
| |
| bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { |
| return std::find(pred_begin(), pred_end(), MBB) != pred_end(); |
| } |
| |
| bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { |
| return std::find(succ_begin(), succ_end(), MBB) != succ_end(); |
| } |
| |
| bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { |
| MachineFunction::const_iterator I(this); |
| return llvm::next(I) == MachineFunction::const_iterator(MBB); |
| } |
| |
| bool MachineBasicBlock::canFallThrough() { |
| MachineFunction::iterator Fallthrough = this; |
| ++Fallthrough; |
| // If FallthroughBlock is off the end of the function, it can't fall through. |
| if (Fallthrough == getParent()->end()) |
| return false; |
| |
| // If FallthroughBlock isn't a successor, no fallthrough is possible. |
| if (!isSuccessor(Fallthrough)) |
| return false; |
| |
| // Analyze the branches, if any, at the end of the block. |
| MachineBasicBlock *TBB = 0, *FBB = 0; |
| SmallVector<MachineOperand, 4> Cond; |
| const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo(); |
| if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { |
| // If we couldn't analyze the branch, examine the last instruction. |
| // If the block doesn't end in a known control barrier, assume fallthrough |
| // is possible. The isPredicated check is needed because this code can be |
| // called during IfConversion, where an instruction which is normally a |
| // Barrier is predicated and thus no longer an actual control barrier. |
| return empty() || !back().isBarrier() || TII->isPredicated(&back()); |
| } |
| |
| // If there is no branch, control always falls through. |
| if (TBB == 0) return true; |
| |
| // If there is some explicit branch to the fallthrough block, it can obviously |
| // reach, even though the branch should get folded to fall through implicitly. |
| if (MachineFunction::iterator(TBB) == Fallthrough || |
| MachineFunction::iterator(FBB) == Fallthrough) |
| return true; |
| |
| // If it's an unconditional branch to some block not the fall through, it |
| // doesn't fall through. |
| if (Cond.empty()) return false; |
| |
| // Otherwise, if it is conditional and has no explicit false block, it falls |
| // through. |
| return FBB == 0; |
| } |
| |
| MachineBasicBlock * |
| MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { |
| // Splitting the critical edge to a landing pad block is non-trivial. Don't do |
| // it in this generic function. |
| if (Succ->isLandingPad()) |
| return NULL; |
| |
| MachineFunction *MF = getParent(); |
| DebugLoc dl; // FIXME: this is nowhere |
| |
| // We may need to update this's terminator, but we can't do that if |
| // AnalyzeBranch fails. If this uses a jump table, we won't touch it. |
| const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); |
| MachineBasicBlock *TBB = 0, *FBB = 0; |
| SmallVector<MachineOperand, 4> Cond; |
| if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) |
| return NULL; |
| |
| // Avoid bugpoint weirdness: A block may end with a conditional branch but |
| // jumps to the same MBB is either case. We have duplicate CFG edges in that |
| // case that we can't handle. Since this never happens in properly optimized |
| // code, just skip those edges. |
| if (TBB && TBB == FBB) { |
| DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" |
| << getNumber() << '\n'); |
| return NULL; |
| } |
| |
| MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); |
| MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB); |
| DEBUG(dbgs() << "Splitting critical edge:" |
| " BB#" << getNumber() |
| << " -- BB#" << NMBB->getNumber() |
| << " -- BB#" << Succ->getNumber() << '\n'); |
| |
| LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); |
| SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); |
| if (LIS) |
| LIS->insertMBBInMaps(NMBB); |
| else if (Indexes) |
| Indexes->insertMBBInMaps(NMBB); |
| |
| // On some targets like Mips, branches may kill virtual registers. Make sure |
| // that LiveVariables is properly updated after updateTerminator replaces the |
| // terminators. |
| LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); |
| |
| // Collect a list of virtual registers killed by the terminators. |
| SmallVector<unsigned, 4> KilledRegs; |
| if (LV) |
| for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); |
| I != E; ++I) { |
| MachineInstr *MI = I; |
| for (MachineInstr::mop_iterator OI = MI->operands_begin(), |
| OE = MI->operands_end(); OI != OE; ++OI) { |
| if (!OI->isReg() || OI->getReg() == 0 || |
| !OI->isUse() || !OI->isKill() || OI->isUndef()) |
| continue; |
| unsigned Reg = OI->getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg) || |
| LV->getVarInfo(Reg).removeKill(MI)) { |
| KilledRegs.push_back(Reg); |
| DEBUG(dbgs() << "Removing terminator kill: " << *MI); |
| OI->setIsKill(false); |
| } |
| } |
| } |
| |
| SmallVector<unsigned, 4> UsedRegs; |
| if (LIS) { |
| for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); |
| I != E; ++I) { |
| MachineInstr *MI = I; |
| |
| for (MachineInstr::mop_iterator OI = MI->operands_begin(), |
| OE = MI->operands_end(); OI != OE; ++OI) { |
| if (!OI->isReg() || OI->getReg() == 0) |
| continue; |
| |
| unsigned Reg = OI->getReg(); |
| if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) |
| UsedRegs.push_back(Reg); |
| } |
| } |
| } |
| |
| ReplaceUsesOfBlockWith(Succ, NMBB); |
| |
| // If updateTerminator() removes instructions, we need to remove them from |
| // SlotIndexes. |
| SmallVector<MachineInstr*, 4> Terminators; |
| if (Indexes) { |
| for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); |
| I != E; ++I) |
| Terminators.push_back(I); |
| } |
| |
| updateTerminator(); |
| |
| if (Indexes) { |
| SmallVector<MachineInstr*, 4> NewTerminators; |
| for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); |
| I != E; ++I) |
| NewTerminators.push_back(I); |
| |
| for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), |
| E = Terminators.end(); I != E; ++I) { |
| if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == |
| NewTerminators.end()) |
| Indexes->removeMachineInstrFromMaps(*I); |
| } |
| } |
| |
| // Insert unconditional "jump Succ" instruction in NMBB if necessary. |
| NMBB->addSuccessor(Succ); |
| if (!NMBB->isLayoutSuccessor(Succ)) { |
| Cond.clear(); |
| MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl); |
| |
| if (Indexes) { |
| for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); |
| I != E; ++I) { |
| // Some instructions may have been moved to NMBB by updateTerminator(), |
| // so we first remove any instruction that already has an index. |
| if (Indexes->hasIndex(I)) |
| Indexes->removeMachineInstrFromMaps(I); |
| Indexes->insertMachineInstrInMaps(I); |
| } |
| } |
| } |
| |
| // Fix PHI nodes in Succ so they refer to NMBB instead of this |
| for (MachineBasicBlock::instr_iterator |
| i = Succ->instr_begin(),e = Succ->instr_end(); |
| i != e && i->isPHI(); ++i) |
| for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) |
| if (i->getOperand(ni+1).getMBB() == this) |
| i->getOperand(ni+1).setMBB(NMBB); |
| |
| // Inherit live-ins from the successor |
| for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(), |
| E = Succ->livein_end(); I != E; ++I) |
| NMBB->addLiveIn(*I); |
| |
| // Update LiveVariables. |
| const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); |
| if (LV) { |
| // Restore kills of virtual registers that were killed by the terminators. |
| while (!KilledRegs.empty()) { |
| unsigned Reg = KilledRegs.pop_back_val(); |
| for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { |
| if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) |
| continue; |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| LV->getVarInfo(Reg).Kills.push_back(I); |
| DEBUG(dbgs() << "Restored terminator kill: " << *I); |
| break; |
| } |
| } |
| // Update relevant live-through information. |
| LV->addNewBlock(NMBB, this, Succ); |
| } |
| |
| if (LIS) { |
| // After splitting the edge and updating SlotIndexes, live intervals may be |
| // in one of two situations, depending on whether this block was the last in |
| // the function. If the original block was the last in the function, all live |
| // intervals will end prior to the beginning of the new split block. If the |
| // original block was not at the end of the function, all live intervals will |
| // extend to the end of the new split block. |
| |
| bool isLastMBB = |
| llvm::next(MachineFunction::iterator(NMBB)) == getParent()->end(); |
| |
| SlotIndex StartIndex = Indexes->getMBBEndIdx(this); |
| SlotIndex PrevIndex = StartIndex.getPrevSlot(); |
| SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); |
| |
| // Find the registers used from NMBB in PHIs in Succ. |
| SmallSet<unsigned, 8> PHISrcRegs; |
| for (MachineBasicBlock::instr_iterator |
| I = Succ->instr_begin(), E = Succ->instr_end(); |
| I != E && I->isPHI(); ++I) { |
| for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { |
| if (I->getOperand(ni+1).getMBB() == NMBB) { |
| MachineOperand &MO = I->getOperand(ni); |
| unsigned Reg = MO.getReg(); |
| PHISrcRegs.insert(Reg); |
| if (MO.isUndef()) |
| continue; |
| |
| LiveInterval &LI = LIS->getInterval(Reg); |
| VNInfo *VNI = LI.getVNInfoAt(PrevIndex); |
| assert(VNI && "PHI sources should be live out of their predecessors."); |
| LI.addRange(LiveRange(StartIndex, EndIndex, VNI)); |
| } |
| } |
| } |
| |
| MachineRegisterInfo *MRI = &getParent()->getRegInfo(); |
| for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = TargetRegisterInfo::index2VirtReg(i); |
| if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) |
| continue; |
| |
| LiveInterval &LI = LIS->getInterval(Reg); |
| if (!LI.liveAt(PrevIndex)) |
| continue; |
| |
| bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); |
| if (isLiveOut && isLastMBB) { |
| VNInfo *VNI = LI.getVNInfoAt(PrevIndex); |
| assert(VNI && "LiveInterval should have VNInfo where it is live."); |
| LI.addRange(LiveRange(StartIndex, EndIndex, VNI)); |
| } else if (!isLiveOut && !isLastMBB) { |
| LI.removeRange(StartIndex, EndIndex); |
| } |
| } |
| |
| // Update all intervals for registers whose uses may have been modified by |
| // updateTerminator(). |
| LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); |
| } |
| |
| if (MachineDominatorTree *MDT = |
| P->getAnalysisIfAvailable<MachineDominatorTree>()) { |
| // Update dominator information. |
| MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ); |
| |
| bool IsNewIDom = true; |
| for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end(); |
| PI != E; ++PI) { |
| MachineBasicBlock *PredBB = *PI; |
| if (PredBB == NMBB) |
| continue; |
| if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) { |
| IsNewIDom = false; |
| break; |
| } |
| } |
| |
| // We know "this" dominates the newly created basic block. |
| MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this); |
| |
| // If all the other predecessors of "Succ" are dominated by "Succ" itself |
| // then the new block is the new immediate dominator of "Succ". Otherwise, |
| // the new block doesn't dominate anything. |
| if (IsNewIDom) |
| MDT->changeImmediateDominator(SucccDTNode, NewDTNode); |
| } |
| |
| if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) |
| if (MachineLoop *TIL = MLI->getLoopFor(this)) { |
| // If one or the other blocks were not in a loop, the new block is not |
| // either, and thus LI doesn't need to be updated. |
| if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { |
| if (TIL == DestLoop) { |
| // Both in the same loop, the NMBB joins loop. |
| DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); |
| } else if (TIL->contains(DestLoop)) { |
| // Edge from an outer loop to an inner loop. Add to the outer loop. |
| TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); |
| } else if (DestLoop->contains(TIL)) { |
| // Edge from an inner loop to an outer loop. Add to the outer loop. |
| DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); |
| } else { |
| // Edge from two loops with no containment relation. Because these |
| // are natural loops, we know that the destination block must be the |
| // header of its loop (adding a branch into a loop elsewhere would |
| // create an irreducible loop). |
| assert(DestLoop->getHeader() == Succ && |
| "Should not create irreducible loops!"); |
| if (MachineLoop *P = DestLoop->getParentLoop()) |
| P->addBasicBlockToLoop(NMBB, MLI->getBase()); |
| } |
| } |
| } |
| |
| return NMBB; |
| } |
| |
| /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's |
| /// neighboring instructions so the bundle won't be broken by removing MI. |
| static void unbundleSingleMI(MachineInstr *MI) { |
| // Removing the first instruction in a bundle. |
| if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) |
| MI->unbundleFromSucc(); |
| // Removing the last instruction in a bundle. |
| if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) |
| MI->unbundleFromPred(); |
| // If MI is not bundled, or if it is internal to a bundle, the neighbor flags |
| // are already fine. |
| } |
| |
| MachineBasicBlock::instr_iterator |
| MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { |
| unbundleSingleMI(I); |
| return Insts.erase(I); |
| } |
| |
| MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { |
| unbundleSingleMI(MI); |
| MI->clearFlag(MachineInstr::BundledPred); |
| MI->clearFlag(MachineInstr::BundledSucc); |
| return Insts.remove(MI); |
| } |
| |
| MachineBasicBlock::instr_iterator |
| MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { |
| assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && |
| "Cannot insert instruction with bundle flags"); |
| // Set the bundle flags when inserting inside a bundle. |
| if (I != instr_end() && I->isBundledWithPred()) { |
| MI->setFlag(MachineInstr::BundledPred); |
| MI->setFlag(MachineInstr::BundledSucc); |
| } |
| return Insts.insert(I, MI); |
| } |
| |
| /// removeFromParent - This method unlinks 'this' from the containing function, |
| /// and returns it, but does not delete it. |
| MachineBasicBlock *MachineBasicBlock::removeFromParent() { |
| assert(getParent() && "Not embedded in a function!"); |
| getParent()->remove(this); |
| return this; |
| } |
| |
| |
| /// eraseFromParent - This method unlinks 'this' from the containing function, |
| /// and deletes it. |
| void MachineBasicBlock::eraseFromParent() { |
| assert(getParent() && "Not embedded in a function!"); |
| getParent()->erase(this); |
| } |
| |
| |
| /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to |
| /// 'Old', change the code and CFG so that it branches to 'New' instead. |
| void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, |
| MachineBasicBlock *New) { |
| assert(Old != New && "Cannot replace self with self!"); |
| |
| MachineBasicBlock::instr_iterator I = instr_end(); |
| while (I != instr_begin()) { |
| --I; |
| if (!I->isTerminator()) break; |
| |
| // Scan the operands of this machine instruction, replacing any uses of Old |
| // with New. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (I->getOperand(i).isMBB() && |
| I->getOperand(i).getMBB() == Old) |
| I->getOperand(i).setMBB(New); |
| } |
| |
| // Update the successor information. |
| replaceSuccessor(Old, New); |
| } |
| |
| /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the |
| /// CFG to be inserted. If we have proven that MBB can only branch to DestA and |
| /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be |
| /// null. |
| /// |
| /// Besides DestA and DestB, retain other edges leading to LandingPads |
| /// (currently there can be only one; we don't check or require that here). |
| /// Note it is possible that DestA and/or DestB are LandingPads. |
| bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, |
| MachineBasicBlock *DestB, |
| bool isCond) { |
| // The values of DestA and DestB frequently come from a call to the |
| // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial |
| // values from there. |
| // |
| // 1. If both DestA and DestB are null, then the block ends with no branches |
| // (it falls through to its successor). |
| // 2. If DestA is set, DestB is null, and isCond is false, then the block ends |
| // with only an unconditional branch. |
| // 3. If DestA is set, DestB is null, and isCond is true, then the block ends |
| // with a conditional branch that falls through to a successor (DestB). |
| // 4. If DestA and DestB is set and isCond is true, then the block ends with a |
| // conditional branch followed by an unconditional branch. DestA is the |
| // 'true' destination and DestB is the 'false' destination. |
| |
| bool Changed = false; |
| |
| MachineFunction::iterator FallThru = |
| llvm::next(MachineFunction::iterator(this)); |
| |
| if (DestA == 0 && DestB == 0) { |
| // Block falls through to successor. |
| DestA = FallThru; |
| DestB = FallThru; |
| } else if (DestA != 0 && DestB == 0) { |
| if (isCond) |
| // Block ends in conditional jump that falls through to successor. |
| DestB = FallThru; |
| } else { |
| assert(DestA && DestB && isCond && |
| "CFG in a bad state. Cannot correct CFG edges"); |
| } |
| |
| // Remove superfluous edges. I.e., those which aren't destinations of this |
| // basic block, duplicate edges, or landing pads. |
| SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; |
| MachineBasicBlock::succ_iterator SI = succ_begin(); |
| while (SI != succ_end()) { |
| const MachineBasicBlock *MBB = *SI; |
| if (!SeenMBBs.insert(MBB) || |
| (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) { |
| // This is a superfluous edge, remove it. |
| SI = removeSuccessor(SI); |
| Changed = true; |
| } else { |
| ++SI; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping |
| /// any DBG_VALUE instructions. Return UnknownLoc if there is none. |
| DebugLoc |
| MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { |
| DebugLoc DL; |
| instr_iterator E = instr_end(); |
| if (MBBI == E) |
| return DL; |
| |
| // Skip debug declarations, we don't want a DebugLoc from them. |
| while (MBBI != E && MBBI->isDebugValue()) |
| MBBI++; |
| if (MBBI != E) |
| DL = MBBI->getDebugLoc(); |
| return DL; |
| } |
| |
| /// getSuccWeight - Return weight of the edge from this block to MBB. |
| /// |
| uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { |
| if (Weights.empty()) |
| return 0; |
| |
| return *getWeightIterator(Succ); |
| } |
| |
| /// getWeightIterator - Return wight iterator corresonding to the I successor |
| /// iterator |
| MachineBasicBlock::weight_iterator MachineBasicBlock:: |
| getWeightIterator(MachineBasicBlock::succ_iterator I) { |
| assert(Weights.size() == Successors.size() && "Async weight list!"); |
| size_t index = std::distance(Successors.begin(), I); |
| assert(index < Weights.size() && "Not a current successor!"); |
| return Weights.begin() + index; |
| } |
| |
| /// getWeightIterator - Return wight iterator corresonding to the I successor |
| /// iterator |
| MachineBasicBlock::const_weight_iterator MachineBasicBlock:: |
| getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { |
| assert(Weights.size() == Successors.size() && "Async weight list!"); |
| const size_t index = std::distance(Successors.begin(), I); |
| assert(index < Weights.size() && "Not a current successor!"); |
| return Weights.begin() + index; |
| } |
| |
| /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed |
| /// as of just before "MI". |
| /// |
| /// Search is localised to a neighborhood of |
| /// Neighborhood instructions before (searching for defs or kills) and N |
| /// instructions after (searching just for defs) MI. |
| MachineBasicBlock::LivenessQueryResult |
| MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, |
| unsigned Reg, MachineInstr *MI, |
| unsigned Neighborhood) { |
| unsigned N = Neighborhood; |
| MachineBasicBlock *MBB = MI->getParent(); |
| |
| // Start by searching backwards from MI, looking for kills, reads or defs. |
| |
| MachineBasicBlock::iterator I(MI); |
| // If this is the first insn in the block, don't search backwards. |
| if (I != MBB->begin()) { |
| do { |
| --I; |
| |
| MachineOperandIteratorBase::PhysRegInfo Analysis = |
| MIOperands(I).analyzePhysReg(Reg, TRI); |
| |
| if (Analysis.Defines) |
| // Outputs happen after inputs so they take precedence if both are |
| // present. |
| return Analysis.DefinesDead ? LQR_Dead : LQR_Live; |
| |
| if (Analysis.Kills || Analysis.Clobbers) |
| // Register killed, so isn't live. |
| return LQR_Dead; |
| |
| else if (Analysis.ReadsOverlap) |
| // Defined or read without a previous kill - live. |
| return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; |
| |
| } while (I != MBB->begin() && --N > 0); |
| } |
| |
| // Did we get to the start of the block? |
| if (I == MBB->begin()) { |
| // If so, the register's state is definitely defined by the live-in state. |
| for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); |
| RAI.isValid(); ++RAI) { |
| if (MBB->isLiveIn(*RAI)) |
| return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; |
| } |
| |
| return LQR_Dead; |
| } |
| |
| N = Neighborhood; |
| |
| // Try searching forwards from MI, looking for reads or defs. |
| I = MachineBasicBlock::iterator(MI); |
| // If this is the last insn in the block, don't search forwards. |
| if (I != MBB->end()) { |
| for (++I; I != MBB->end() && N > 0; ++I, --N) { |
| MachineOperandIteratorBase::PhysRegInfo Analysis = |
| MIOperands(I).analyzePhysReg(Reg, TRI); |
| |
| if (Analysis.ReadsOverlap) |
| // Used, therefore must have been live. |
| return (Analysis.Reads) ? |
| LQR_Live : LQR_OverlappingLive; |
| |
| else if (Analysis.Clobbers || Analysis.Defines) |
| // Defined (but not read) therefore cannot have been live. |
| return LQR_Dead; |
| } |
| } |
| |
| // At this point we have no idea of the liveness of the register. |
| return LQR_Unknown; |
| } |
| |
| void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB, |
| bool t) { |
| OS << "BB#" << MBB->getNumber(); |
| } |
| |