| //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based |
| // register allocator for LLVM. This allocator works by constructing a PBQP |
| // problem representing the register allocation problem under consideration, |
| // solving this using a PBQP solver, and mapping the solution back to a |
| // register assignment. If any variables are selected for spilling then spill |
| // code is inserted and the process repeated. |
| // |
| // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned |
| // for register allocation. For more information on PBQP for register |
| // allocation, see the following papers: |
| // |
| // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with |
| // PBQP. In Proceedings of the 7th Joint Modular Languages Conference |
| // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. |
| // |
| // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular |
| // architectures. In Proceedings of the Joint Conference on Languages, |
| // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, |
| // NY, USA, 139-148. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| |
| #include "llvm/CodeGen/RegAllocPBQP.h" |
| #include "RegisterCoalescer.h" |
| #include "Spiller.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveRangeEdit.h" |
| #include "llvm/CodeGen/LiveStackAnalysis.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PBQP/Graph.h" |
| #include "llvm/CodeGen/PBQP/HeuristicSolver.h" |
| #include "llvm/CodeGen/PBQP/Heuristics/Briggs.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <limits> |
| #include <memory> |
| #include <set> |
| #include <sstream> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| static RegisterRegAlloc |
| registerPBQPRepAlloc("pbqp", "PBQP register allocator", |
| createDefaultPBQPRegisterAllocator); |
| |
| static cl::opt<bool> |
| pbqpCoalescing("pbqp-coalescing", |
| cl::desc("Attempt coalescing during PBQP register allocation."), |
| cl::init(false), cl::Hidden); |
| |
| #ifndef NDEBUG |
| static cl::opt<bool> |
| pbqpDumpGraphs("pbqp-dump-graphs", |
| cl::desc("Dump graphs for each function/round in the compilation unit."), |
| cl::init(false), cl::Hidden); |
| #endif |
| |
| namespace { |
| |
| /// |
| /// PBQP based allocators solve the register allocation problem by mapping |
| /// register allocation problems to Partitioned Boolean Quadratic |
| /// Programming problems. |
| class RegAllocPBQP : public MachineFunctionPass { |
| public: |
| |
| static char ID; |
| |
| /// Construct a PBQP register allocator. |
| RegAllocPBQP(std::auto_ptr<PBQPBuilder> b, char *cPassID=0) |
| : MachineFunctionPass(ID), builder(b), customPassID(cPassID) { |
| initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); |
| initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); |
| initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); |
| initializeLiveStacksPass(*PassRegistry::getPassRegistry()); |
| initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); |
| initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| /// Return the pass name. |
| virtual const char* getPassName() const { |
| return "PBQP Register Allocator"; |
| } |
| |
| /// PBQP analysis usage. |
| virtual void getAnalysisUsage(AnalysisUsage &au) const; |
| |
| /// Perform register allocation |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| private: |
| |
| typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; |
| typedef std::vector<const LiveInterval*> Node2LIMap; |
| typedef std::vector<unsigned> AllowedSet; |
| typedef std::vector<AllowedSet> AllowedSetMap; |
| typedef std::pair<unsigned, unsigned> RegPair; |
| typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; |
| typedef std::set<unsigned> RegSet; |
| |
| |
| std::auto_ptr<PBQPBuilder> builder; |
| |
| char *customPassID; |
| |
| MachineFunction *mf; |
| const TargetMachine *tm; |
| const TargetRegisterInfo *tri; |
| const TargetInstrInfo *tii; |
| const MachineLoopInfo *loopInfo; |
| MachineRegisterInfo *mri; |
| |
| std::auto_ptr<Spiller> spiller; |
| LiveIntervals *lis; |
| LiveStacks *lss; |
| VirtRegMap *vrm; |
| |
| RegSet vregsToAlloc, emptyIntervalVRegs; |
| |
| /// \brief Finds the initial set of vreg intervals to allocate. |
| void findVRegIntervalsToAlloc(); |
| |
| /// \brief Given a solved PBQP problem maps this solution back to a register |
| /// assignment. |
| bool mapPBQPToRegAlloc(const PBQPRAProblem &problem, |
| const PBQP::Solution &solution); |
| |
| /// \brief Postprocessing before final spilling. Sets basic block "live in" |
| /// variables. |
| void finalizeAlloc() const; |
| |
| }; |
| |
| char RegAllocPBQP::ID = 0; |
| |
| } // End anonymous namespace. |
| |
| unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const { |
| Node2VReg::const_iterator vregItr = node2VReg.find(node); |
| assert(vregItr != node2VReg.end() && "No vreg for node."); |
| return vregItr->second; |
| } |
| |
| PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const { |
| VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg); |
| assert(nodeItr != vreg2Node.end() && "No node for vreg."); |
| return nodeItr->second; |
| |
| } |
| |
| const PBQPRAProblem::AllowedSet& |
| PBQPRAProblem::getAllowedSet(unsigned vreg) const { |
| AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg); |
| assert(allowedSetItr != allowedSets.end() && "No pregs for vreg."); |
| const AllowedSet &allowedSet = allowedSetItr->second; |
| return allowedSet; |
| } |
| |
| unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const { |
| assert(isPRegOption(vreg, option) && "Not a preg option."); |
| |
| const AllowedSet& allowedSet = getAllowedSet(vreg); |
| assert(option <= allowedSet.size() && "Option outside allowed set."); |
| return allowedSet[option - 1]; |
| } |
| |
| std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf, |
| const LiveIntervals *lis, |
| const MachineLoopInfo *loopInfo, |
| const RegSet &vregs) { |
| |
| LiveIntervals *LIS = const_cast<LiveIntervals*>(lis); |
| MachineRegisterInfo *mri = &mf->getRegInfo(); |
| const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo(); |
| |
| std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem()); |
| PBQP::Graph &g = p->getGraph(); |
| RegSet pregs; |
| |
| // Collect the set of preg intervals, record that they're used in the MF. |
| for (unsigned Reg = 1, e = tri->getNumRegs(); Reg != e; ++Reg) { |
| if (mri->def_empty(Reg)) |
| continue; |
| pregs.insert(Reg); |
| mri->setPhysRegUsed(Reg); |
| } |
| |
| // Iterate over vregs. |
| for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end(); |
| vregItr != vregEnd; ++vregItr) { |
| unsigned vreg = *vregItr; |
| const TargetRegisterClass *trc = mri->getRegClass(vreg); |
| LiveInterval *vregLI = &LIS->getInterval(vreg); |
| |
| // Record any overlaps with regmask operands. |
| BitVector regMaskOverlaps; |
| LIS->checkRegMaskInterference(*vregLI, regMaskOverlaps); |
| |
| // Compute an initial allowed set for the current vreg. |
| typedef std::vector<unsigned> VRAllowed; |
| VRAllowed vrAllowed; |
| ArrayRef<uint16_t> rawOrder = trc->getRawAllocationOrder(*mf); |
| for (unsigned i = 0; i != rawOrder.size(); ++i) { |
| unsigned preg = rawOrder[i]; |
| if (mri->isReserved(preg)) |
| continue; |
| |
| // vregLI crosses a regmask operand that clobbers preg. |
| if (!regMaskOverlaps.empty() && !regMaskOverlaps.test(preg)) |
| continue; |
| |
| // vregLI overlaps fixed regunit interference. |
| bool Interference = false; |
| for (MCRegUnitIterator Units(preg, tri); Units.isValid(); ++Units) { |
| if (vregLI->overlaps(LIS->getRegUnit(*Units))) { |
| Interference = true; |
| break; |
| } |
| } |
| if (Interference) |
| continue; |
| |
| // preg is usable for this virtual register. |
| vrAllowed.push_back(preg); |
| } |
| |
| // Construct the node. |
| PBQP::Graph::NodeItr node = |
| g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0)); |
| |
| // Record the mapping and allowed set in the problem. |
| p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end()); |
| |
| PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ? |
| vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min(); |
| |
| addSpillCosts(g.getNodeCosts(node), spillCost); |
| } |
| |
| for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end(); |
| vr1Itr != vrEnd; ++vr1Itr) { |
| unsigned vr1 = *vr1Itr; |
| const LiveInterval &l1 = lis->getInterval(vr1); |
| const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1); |
| |
| for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr); |
| vr2Itr != vrEnd; ++vr2Itr) { |
| unsigned vr2 = *vr2Itr; |
| const LiveInterval &l2 = lis->getInterval(vr2); |
| const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2); |
| |
| assert(!l2.empty() && "Empty interval in vreg set?"); |
| if (l1.overlaps(l2)) { |
| PBQP::Graph::EdgeItr edge = |
| g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2), |
| PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0)); |
| |
| addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri); |
| } |
| } |
| } |
| |
| return p; |
| } |
| |
| void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec, |
| PBQP::PBQPNum spillCost) { |
| costVec[0] = spillCost; |
| } |
| |
| void PBQPBuilder::addInterferenceCosts( |
| PBQP::Matrix &costMat, |
| const PBQPRAProblem::AllowedSet &vr1Allowed, |
| const PBQPRAProblem::AllowedSet &vr2Allowed, |
| const TargetRegisterInfo *tri) { |
| assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch."); |
| assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch."); |
| |
| for (unsigned i = 0; i != vr1Allowed.size(); ++i) { |
| unsigned preg1 = vr1Allowed[i]; |
| |
| for (unsigned j = 0; j != vr2Allowed.size(); ++j) { |
| unsigned preg2 = vr2Allowed[j]; |
| |
| if (tri->regsOverlap(preg1, preg2)) { |
| costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); |
| } |
| } |
| } |
| } |
| |
| std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build( |
| MachineFunction *mf, |
| const LiveIntervals *lis, |
| const MachineLoopInfo *loopInfo, |
| const RegSet &vregs) { |
| |
| std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs); |
| PBQP::Graph &g = p->getGraph(); |
| |
| const TargetMachine &tm = mf->getTarget(); |
| CoalescerPair cp(*tm.getRegisterInfo()); |
| |
| // Scan the machine function and add a coalescing cost whenever CoalescerPair |
| // gives the Ok. |
| for (MachineFunction::const_iterator mbbItr = mf->begin(), |
| mbbEnd = mf->end(); |
| mbbItr != mbbEnd; ++mbbItr) { |
| const MachineBasicBlock *mbb = &*mbbItr; |
| |
| for (MachineBasicBlock::const_iterator miItr = mbb->begin(), |
| miEnd = mbb->end(); |
| miItr != miEnd; ++miItr) { |
| const MachineInstr *mi = &*miItr; |
| |
| if (!cp.setRegisters(mi)) { |
| continue; // Not coalescable. |
| } |
| |
| if (cp.getSrcReg() == cp.getDstReg()) { |
| continue; // Already coalesced. |
| } |
| |
| unsigned dst = cp.getDstReg(), |
| src = cp.getSrcReg(); |
| |
| const float copyFactor = 0.5; // Cost of copy relative to load. Current |
| // value plucked randomly out of the air. |
| |
| PBQP::PBQPNum cBenefit = |
| copyFactor * LiveIntervals::getSpillWeight(false, true, |
| loopInfo->getLoopDepth(mbb)); |
| |
| if (cp.isPhys()) { |
| if (!mf->getRegInfo().isAllocatable(dst)) { |
| continue; |
| } |
| |
| const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src); |
| unsigned pregOpt = 0; |
| while (pregOpt < allowed.size() && allowed[pregOpt] != dst) { |
| ++pregOpt; |
| } |
| if (pregOpt < allowed.size()) { |
| ++pregOpt; // +1 to account for spill option. |
| PBQP::Graph::NodeItr node = p->getNodeForVReg(src); |
| addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit); |
| } |
| } else { |
| const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst); |
| const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src); |
| PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst); |
| PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src); |
| PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2); |
| if (edge == g.edgesEnd()) { |
| edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1, |
| allowed2->size() + 1, |
| 0)); |
| } else { |
| if (g.getEdgeNode1(edge) == node2) { |
| std::swap(node1, node2); |
| std::swap(allowed1, allowed2); |
| } |
| } |
| |
| addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2, |
| cBenefit); |
| } |
| } |
| } |
| |
| return p; |
| } |
| |
| void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec, |
| unsigned pregOption, |
| PBQP::PBQPNum benefit) { |
| costVec[pregOption] += -benefit; |
| } |
| |
| void PBQPBuilderWithCoalescing::addVirtRegCoalesce( |
| PBQP::Matrix &costMat, |
| const PBQPRAProblem::AllowedSet &vr1Allowed, |
| const PBQPRAProblem::AllowedSet &vr2Allowed, |
| PBQP::PBQPNum benefit) { |
| |
| assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch."); |
| assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch."); |
| |
| for (unsigned i = 0; i != vr1Allowed.size(); ++i) { |
| unsigned preg1 = vr1Allowed[i]; |
| for (unsigned j = 0; j != vr2Allowed.size(); ++j) { |
| unsigned preg2 = vr2Allowed[j]; |
| |
| if (preg1 == preg2) { |
| costMat[i + 1][j + 1] += -benefit; |
| } |
| } |
| } |
| } |
| |
| |
| void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { |
| au.setPreservesCFG(); |
| au.addRequired<AliasAnalysis>(); |
| au.addPreserved<AliasAnalysis>(); |
| au.addRequired<SlotIndexes>(); |
| au.addPreserved<SlotIndexes>(); |
| au.addRequired<LiveIntervals>(); |
| au.addPreserved<LiveIntervals>(); |
| //au.addRequiredID(SplitCriticalEdgesID); |
| if (customPassID) |
| au.addRequiredID(*customPassID); |
| au.addRequired<CalculateSpillWeights>(); |
| au.addRequired<LiveStacks>(); |
| au.addPreserved<LiveStacks>(); |
| au.addRequired<MachineDominatorTree>(); |
| au.addPreserved<MachineDominatorTree>(); |
| au.addRequired<MachineLoopInfo>(); |
| au.addPreserved<MachineLoopInfo>(); |
| au.addRequired<VirtRegMap>(); |
| au.addPreserved<VirtRegMap>(); |
| MachineFunctionPass::getAnalysisUsage(au); |
| } |
| |
| void RegAllocPBQP::findVRegIntervalsToAlloc() { |
| |
| // Iterate over all live ranges. |
| for (unsigned i = 0, e = mri->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = TargetRegisterInfo::index2VirtReg(i); |
| if (mri->reg_nodbg_empty(Reg)) |
| continue; |
| LiveInterval *li = &lis->getInterval(Reg); |
| |
| // If this live interval is non-empty we will use pbqp to allocate it. |
| // Empty intervals we allocate in a simple post-processing stage in |
| // finalizeAlloc. |
| if (!li->empty()) { |
| vregsToAlloc.insert(li->reg); |
| } else { |
| emptyIntervalVRegs.insert(li->reg); |
| } |
| } |
| } |
| |
| bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem, |
| const PBQP::Solution &solution) { |
| // Set to true if we have any spills |
| bool anotherRoundNeeded = false; |
| |
| // Clear the existing allocation. |
| vrm->clearAllVirt(); |
| |
| const PBQP::Graph &g = problem.getGraph(); |
| // Iterate over the nodes mapping the PBQP solution to a register |
| // assignment. |
| for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(), |
| nodeEnd = g.nodesEnd(); |
| node != nodeEnd; ++node) { |
| unsigned vreg = problem.getVRegForNode(node); |
| unsigned alloc = solution.getSelection(node); |
| |
| if (problem.isPRegOption(vreg, alloc)) { |
| unsigned preg = problem.getPRegForOption(vreg, alloc); |
| DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> " |
| << tri->getName(preg) << "\n"); |
| assert(preg != 0 && "Invalid preg selected."); |
| vrm->assignVirt2Phys(vreg, preg); |
| } else if (problem.isSpillOption(vreg, alloc)) { |
| vregsToAlloc.erase(vreg); |
| SmallVector<LiveInterval*, 8> newSpills; |
| LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm); |
| spiller->spill(LRE); |
| |
| DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> SPILLED (Cost: " |
| << LRE.getParent().weight << ", New vregs: "); |
| |
| // Copy any newly inserted live intervals into the list of regs to |
| // allocate. |
| for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end(); |
| itr != end; ++itr) { |
| assert(!(*itr)->empty() && "Empty spill range."); |
| DEBUG(dbgs() << PrintReg((*itr)->reg, tri) << " "); |
| vregsToAlloc.insert((*itr)->reg); |
| } |
| |
| DEBUG(dbgs() << ")\n"); |
| |
| // We need another round if spill intervals were added. |
| anotherRoundNeeded |= !LRE.empty(); |
| } else { |
| llvm_unreachable("Unknown allocation option."); |
| } |
| } |
| |
| return !anotherRoundNeeded; |
| } |
| |
| |
| void RegAllocPBQP::finalizeAlloc() const { |
| // First allocate registers for the empty intervals. |
| for (RegSet::const_iterator |
| itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end(); |
| itr != end; ++itr) { |
| LiveInterval *li = &lis->getInterval(*itr); |
| |
| unsigned physReg = mri->getSimpleHint(li->reg); |
| |
| if (physReg == 0) { |
| const TargetRegisterClass *liRC = mri->getRegClass(li->reg); |
| physReg = liRC->getRawAllocationOrder(*mf).front(); |
| } |
| |
| vrm->assignVirt2Phys(li->reg, physReg); |
| } |
| } |
| |
| bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { |
| |
| mf = &MF; |
| tm = &mf->getTarget(); |
| tri = tm->getRegisterInfo(); |
| tii = tm->getInstrInfo(); |
| mri = &mf->getRegInfo(); |
| |
| lis = &getAnalysis<LiveIntervals>(); |
| lss = &getAnalysis<LiveStacks>(); |
| loopInfo = &getAnalysis<MachineLoopInfo>(); |
| |
| vrm = &getAnalysis<VirtRegMap>(); |
| spiller.reset(createInlineSpiller(*this, MF, *vrm)); |
| |
| mri->freezeReservedRegs(MF); |
| |
| DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getName() << "\n"); |
| |
| // Allocator main loop: |
| // |
| // * Map current regalloc problem to a PBQP problem |
| // * Solve the PBQP problem |
| // * Map the solution back to a register allocation |
| // * Spill if necessary |
| // |
| // This process is continued till no more spills are generated. |
| |
| // Find the vreg intervals in need of allocation. |
| findVRegIntervalsToAlloc(); |
| |
| #ifndef NDEBUG |
| const Function* func = mf->getFunction(); |
| std::string fqn = |
| func->getParent()->getModuleIdentifier() + "." + |
| func->getName().str(); |
| #endif |
| |
| // If there are non-empty intervals allocate them using pbqp. |
| if (!vregsToAlloc.empty()) { |
| |
| bool pbqpAllocComplete = false; |
| unsigned round = 0; |
| |
| while (!pbqpAllocComplete) { |
| DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n"); |
| |
| std::auto_ptr<PBQPRAProblem> problem = |
| builder->build(mf, lis, loopInfo, vregsToAlloc); |
| |
| #ifndef NDEBUG |
| if (pbqpDumpGraphs) { |
| std::ostringstream rs; |
| rs << round; |
| std::string graphFileName(fqn + "." + rs.str() + ".pbqpgraph"); |
| std::string tmp; |
| raw_fd_ostream os(graphFileName.c_str(), tmp); |
| DEBUG(dbgs() << "Dumping graph for round " << round << " to \"" |
| << graphFileName << "\"\n"); |
| problem->getGraph().dump(os); |
| } |
| #endif |
| |
| PBQP::Solution solution = |
| PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve( |
| problem->getGraph()); |
| |
| pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution); |
| |
| ++round; |
| } |
| } |
| |
| // Finalise allocation, allocate empty ranges. |
| finalizeAlloc(); |
| vregsToAlloc.clear(); |
| emptyIntervalVRegs.clear(); |
| |
| DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n"); |
| |
| return true; |
| } |
| |
| FunctionPass* llvm::createPBQPRegisterAllocator( |
| std::auto_ptr<PBQPBuilder> builder, |
| char *customPassID) { |
| return new RegAllocPBQP(builder, customPassID); |
| } |
| |
| FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { |
| if (pbqpCoalescing) { |
| return createPBQPRegisterAllocator( |
| std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing())); |
| } // else |
| return createPBQPRegisterAllocator( |
| std::auto_ptr<PBQPBuilder>(new PBQPBuilder())); |
| } |
| |
| #undef DEBUG_TYPE |