| //===- Dominators.cpp - Dominator Calculation -----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements simple dominator construction algorithms for finding |
| // forward dominators. Postdominators are available in libanalysis, but are not |
| // included in libvmcore, because it's not needed. Forward dominators are |
| // needed to support the Verifier pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/DominatorInternals.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| // Always verify dominfo if expensive checking is enabled. |
| #ifdef XDEBUG |
| static bool VerifyDomInfo = true; |
| #else |
| static bool VerifyDomInfo = false; |
| #endif |
| static cl::opt<bool,true> |
| VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), |
| cl::desc("Verify dominator info (time consuming)")); |
| |
| bool BasicBlockEdge::isSingleEdge() const { |
| const TerminatorInst *TI = Start->getTerminator(); |
| unsigned NumEdgesToEnd = 0; |
| for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { |
| if (TI->getSuccessor(i) == End) |
| ++NumEdgesToEnd; |
| if (NumEdgesToEnd >= 2) |
| return false; |
| } |
| assert(NumEdgesToEnd == 1); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DominatorTree Implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // Provide public access to DominatorTree information. Implementation details |
| // can be found in DominatorInternals.h. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>); |
| TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>); |
| |
| char DominatorTree::ID = 0; |
| INITIALIZE_PASS(DominatorTree, "domtree", |
| "Dominator Tree Construction", true, true) |
| |
| bool DominatorTree::runOnFunction(Function &F) { |
| DT->recalculate(F); |
| return false; |
| } |
| |
| void DominatorTree::verifyAnalysis() const { |
| if (!VerifyDomInfo) return; |
| |
| Function &F = *getRoot()->getParent(); |
| |
| DominatorTree OtherDT; |
| OtherDT.getBase().recalculate(F); |
| if (compare(OtherDT)) { |
| errs() << "DominatorTree is not up to date!\nComputed:\n"; |
| print(errs()); |
| errs() << "\nActual:\n"; |
| OtherDT.print(errs()); |
| abort(); |
| } |
| } |
| |
| void DominatorTree::print(raw_ostream &OS, const Module *) const { |
| DT->print(OS); |
| } |
| |
| // dominates - Return true if Def dominates a use in User. This performs |
| // the special checks necessary if Def and User are in the same basic block. |
| // Note that Def doesn't dominate a use in Def itself! |
| bool DominatorTree::dominates(const Instruction *Def, |
| const Instruction *User) const { |
| const BasicBlock *UseBB = User->getParent(); |
| const BasicBlock *DefBB = Def->getParent(); |
| |
| // Any unreachable use is dominated, even if Def == User. |
| if (!isReachableFromEntry(UseBB)) |
| return true; |
| |
| // Unreachable definitions don't dominate anything. |
| if (!isReachableFromEntry(DefBB)) |
| return false; |
| |
| // An instruction doesn't dominate a use in itself. |
| if (Def == User) |
| return false; |
| |
| // The value defined by an invoke dominates an instruction only if |
| // it dominates every instruction in UseBB. |
| // A PHI is dominated only if the instruction dominates every possible use |
| // in the UseBB. |
| if (isa<InvokeInst>(Def) || isa<PHINode>(User)) |
| return dominates(Def, UseBB); |
| |
| if (DefBB != UseBB) |
| return dominates(DefBB, UseBB); |
| |
| // Loop through the basic block until we find Def or User. |
| BasicBlock::const_iterator I = DefBB->begin(); |
| for (; &*I != Def && &*I != User; ++I) |
| /*empty*/; |
| |
| return &*I == Def; |
| } |
| |
| // true if Def would dominate a use in any instruction in UseBB. |
| // note that dominates(Def, Def->getParent()) is false. |
| bool DominatorTree::dominates(const Instruction *Def, |
| const BasicBlock *UseBB) const { |
| const BasicBlock *DefBB = Def->getParent(); |
| |
| // Any unreachable use is dominated, even if DefBB == UseBB. |
| if (!isReachableFromEntry(UseBB)) |
| return true; |
| |
| // Unreachable definitions don't dominate anything. |
| if (!isReachableFromEntry(DefBB)) |
| return false; |
| |
| if (DefBB == UseBB) |
| return false; |
| |
| const InvokeInst *II = dyn_cast<InvokeInst>(Def); |
| if (!II) |
| return dominates(DefBB, UseBB); |
| |
| // Invoke results are only usable in the normal destination, not in the |
| // exceptional destination. |
| BasicBlock *NormalDest = II->getNormalDest(); |
| BasicBlockEdge E(DefBB, NormalDest); |
| return dominates(E, UseBB); |
| } |
| |
| bool DominatorTree::dominates(const BasicBlockEdge &BBE, |
| const BasicBlock *UseBB) const { |
| // Assert that we have a single edge. We could handle them by simply |
| // returning false, but since isSingleEdge is linear on the number of |
| // edges, the callers can normally handle them more efficiently. |
| assert(BBE.isSingleEdge()); |
| |
| // If the BB the edge ends in doesn't dominate the use BB, then the |
| // edge also doesn't. |
| const BasicBlock *Start = BBE.getStart(); |
| const BasicBlock *End = BBE.getEnd(); |
| if (!dominates(End, UseBB)) |
| return false; |
| |
| // Simple case: if the end BB has a single predecessor, the fact that it |
| // dominates the use block implies that the edge also does. |
| if (End->getSinglePredecessor()) |
| return true; |
| |
| // The normal edge from the invoke is critical. Conceptually, what we would |
| // like to do is split it and check if the new block dominates the use. |
| // With X being the new block, the graph would look like: |
| // |
| // DefBB |
| // /\ . . |
| // / \ . . |
| // / \ . . |
| // / \ | | |
| // A X B C |
| // | \ | / |
| // . \|/ |
| // . NormalDest |
| // . |
| // |
| // Given the definition of dominance, NormalDest is dominated by X iff X |
| // dominates all of NormalDest's predecessors (X, B, C in the example). X |
| // trivially dominates itself, so we only have to find if it dominates the |
| // other predecessors. Since the only way out of X is via NormalDest, X can |
| // only properly dominate a node if NormalDest dominates that node too. |
| for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); |
| PI != E; ++PI) { |
| const BasicBlock *BB = *PI; |
| if (BB == Start) |
| continue; |
| |
| if (!dominates(End, BB)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool DominatorTree::dominates(const BasicBlockEdge &BBE, |
| const Use &U) const { |
| // Assert that we have a single edge. We could handle them by simply |
| // returning false, but since isSingleEdge is linear on the number of |
| // edges, the callers can normally handle them more efficiently. |
| assert(BBE.isSingleEdge()); |
| |
| Instruction *UserInst = cast<Instruction>(U.getUser()); |
| // A PHI in the end of the edge is dominated by it. |
| PHINode *PN = dyn_cast<PHINode>(UserInst); |
| if (PN && PN->getParent() == BBE.getEnd() && |
| PN->getIncomingBlock(U) == BBE.getStart()) |
| return true; |
| |
| // Otherwise use the edge-dominates-block query, which |
| // handles the crazy critical edge cases properly. |
| const BasicBlock *UseBB; |
| if (PN) |
| UseBB = PN->getIncomingBlock(U); |
| else |
| UseBB = UserInst->getParent(); |
| return dominates(BBE, UseBB); |
| } |
| |
| bool DominatorTree::dominates(const Instruction *Def, |
| const Use &U) const { |
| Instruction *UserInst = cast<Instruction>(U.getUser()); |
| const BasicBlock *DefBB = Def->getParent(); |
| |
| // Determine the block in which the use happens. PHI nodes use |
| // their operands on edges; simulate this by thinking of the use |
| // happening at the end of the predecessor block. |
| const BasicBlock *UseBB; |
| if (PHINode *PN = dyn_cast<PHINode>(UserInst)) |
| UseBB = PN->getIncomingBlock(U); |
| else |
| UseBB = UserInst->getParent(); |
| |
| // Any unreachable use is dominated, even if Def == User. |
| if (!isReachableFromEntry(UseBB)) |
| return true; |
| |
| // Unreachable definitions don't dominate anything. |
| if (!isReachableFromEntry(DefBB)) |
| return false; |
| |
| // Invoke instructions define their return values on the edges |
| // to their normal successors, so we have to handle them specially. |
| // Among other things, this means they don't dominate anything in |
| // their own block, except possibly a phi, so we don't need to |
| // walk the block in any case. |
| if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { |
| BasicBlock *NormalDest = II->getNormalDest(); |
| BasicBlockEdge E(DefBB, NormalDest); |
| return dominates(E, U); |
| } |
| |
| // If the def and use are in different blocks, do a simple CFG dominator |
| // tree query. |
| if (DefBB != UseBB) |
| return dominates(DefBB, UseBB); |
| |
| // Ok, def and use are in the same block. If the def is an invoke, it |
| // doesn't dominate anything in the block. If it's a PHI, it dominates |
| // everything in the block. |
| if (isa<PHINode>(UserInst)) |
| return true; |
| |
| // Otherwise, just loop through the basic block until we find Def or User. |
| BasicBlock::const_iterator I = DefBB->begin(); |
| for (; &*I != Def && &*I != UserInst; ++I) |
| /*empty*/; |
| |
| return &*I != UserInst; |
| } |
| |
| bool DominatorTree::isReachableFromEntry(const Use &U) const { |
| Instruction *I = dyn_cast<Instruction>(U.getUser()); |
| |
| // ConstantExprs aren't really reachable from the entry block, but they |
| // don't need to be treated like unreachable code either. |
| if (!I) return true; |
| |
| // PHI nodes use their operands on their incoming edges. |
| if (PHINode *PN = dyn_cast<PHINode>(I)) |
| return isReachableFromEntry(PN->getIncomingBlock(U)); |
| |
| // Everything else uses their operands in their own block. |
| return isReachableFromEntry(I->getParent()); |
| } |