| //===-- R600MachineScheduler.cpp - R600 Scheduler Interface -*- C++ -*-----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// \brief R600 Machine Scheduler interface |
| // TODO: Scheduling is optimised for VLIW4 arch, modify it to support TRANS slot |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "misched" |
| |
| #include "R600MachineScheduler.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/Pass.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <set> |
| |
| using namespace llvm; |
| |
| void R600SchedStrategy::initialize(ScheduleDAGMI *dag) { |
| |
| DAG = dag; |
| TII = static_cast<const R600InstrInfo*>(DAG->TII); |
| TRI = static_cast<const R600RegisterInfo*>(DAG->TRI); |
| MRI = &DAG->MRI; |
| Available[IDAlu]->clear(); |
| Available[IDFetch]->clear(); |
| Available[IDOther]->clear(); |
| CurInstKind = IDOther; |
| CurEmitted = 0; |
| OccupedSlotsMask = 15; |
| InstKindLimit[IDAlu] = 120; // 120 minus 8 for security |
| |
| |
| const AMDGPUSubtarget &ST = DAG->TM.getSubtarget<AMDGPUSubtarget>(); |
| if (ST.device()->getGeneration() <= AMDGPUDeviceInfo::HD5XXX) { |
| InstKindLimit[IDFetch] = 7; // 8 minus 1 for security |
| } else { |
| InstKindLimit[IDFetch] = 15; // 16 minus 1 for security |
| } |
| } |
| |
| void R600SchedStrategy::MoveUnits(ReadyQueue *QSrc, ReadyQueue *QDst) |
| { |
| if (QSrc->empty()) |
| return; |
| for (ReadyQueue::iterator I = QSrc->begin(), |
| E = QSrc->end(); I != E; ++I) { |
| (*I)->NodeQueueId &= ~QSrc->getID(); |
| QDst->push(*I); |
| } |
| QSrc->clear(); |
| } |
| |
| SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) { |
| SUnit *SU = 0; |
| IsTopNode = true; |
| NextInstKind = IDOther; |
| |
| // check if we might want to switch current clause type |
| bool AllowSwitchToAlu = (CurInstKind == IDOther) || |
| (CurEmitted > InstKindLimit[CurInstKind]) || |
| (Available[CurInstKind]->empty()); |
| bool AllowSwitchFromAlu = (CurEmitted > InstKindLimit[CurInstKind]) && |
| (!Available[IDFetch]->empty() || !Available[IDOther]->empty()); |
| |
| if ((AllowSwitchToAlu && CurInstKind != IDAlu) || |
| (!AllowSwitchFromAlu && CurInstKind == IDAlu)) { |
| // try to pick ALU |
| SU = pickAlu(); |
| if (SU) { |
| if (CurEmitted > InstKindLimit[IDAlu]) |
| CurEmitted = 0; |
| NextInstKind = IDAlu; |
| } |
| } |
| |
| if (!SU) { |
| // try to pick FETCH |
| SU = pickOther(IDFetch); |
| if (SU) |
| NextInstKind = IDFetch; |
| } |
| |
| // try to pick other |
| if (!SU) { |
| SU = pickOther(IDOther); |
| if (SU) |
| NextInstKind = IDOther; |
| } |
| |
| DEBUG( |
| if (SU) { |
| dbgs() << "picked node: "; |
| SU->dump(DAG); |
| } else { |
| dbgs() << "NO NODE "; |
| for (int i = 0; i < IDLast; ++i) { |
| Available[i]->dump(); |
| Pending[i]->dump(); |
| } |
| for (unsigned i = 0; i < DAG->SUnits.size(); i++) { |
| const SUnit &S = DAG->SUnits[i]; |
| if (!S.isScheduled) |
| S.dump(DAG); |
| } |
| } |
| ); |
| |
| return SU; |
| } |
| |
| void R600SchedStrategy::schedNode(SUnit *SU, bool IsTopNode) { |
| |
| DEBUG(dbgs() << "scheduled: "); |
| DEBUG(SU->dump(DAG)); |
| |
| if (NextInstKind != CurInstKind) { |
| DEBUG(dbgs() << "Instruction Type Switch\n"); |
| if (NextInstKind != IDAlu) |
| OccupedSlotsMask = 15; |
| CurEmitted = 0; |
| CurInstKind = NextInstKind; |
| } |
| |
| if (CurInstKind == IDAlu) { |
| switch (getAluKind(SU)) { |
| case AluT_XYZW: |
| CurEmitted += 4; |
| break; |
| case AluDiscarded: |
| break; |
| default: { |
| ++CurEmitted; |
| for (MachineInstr::mop_iterator It = SU->getInstr()->operands_begin(), |
| E = SU->getInstr()->operands_end(); It != E; ++It) { |
| MachineOperand &MO = *It; |
| if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X) |
| ++CurEmitted; |
| } |
| } |
| } |
| } else { |
| ++CurEmitted; |
| } |
| |
| |
| DEBUG(dbgs() << CurEmitted << " Instructions Emitted in this clause\n"); |
| |
| if (CurInstKind != IDFetch) { |
| MoveUnits(Pending[IDFetch], Available[IDFetch]); |
| } |
| MoveUnits(Pending[IDOther], Available[IDOther]); |
| } |
| |
| void R600SchedStrategy::releaseTopNode(SUnit *SU) { |
| int IK = getInstKind(SU); |
| |
| DEBUG(dbgs() << IK << " <= "); |
| DEBUG(SU->dump(DAG)); |
| |
| Pending[IK]->push(SU); |
| } |
| |
| void R600SchedStrategy::releaseBottomNode(SUnit *SU) { |
| } |
| |
| bool R600SchedStrategy::regBelongsToClass(unsigned Reg, |
| const TargetRegisterClass *RC) const { |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) { |
| return RC->contains(Reg); |
| } else { |
| return MRI->getRegClass(Reg) == RC; |
| } |
| } |
| |
| R600SchedStrategy::AluKind R600SchedStrategy::getAluKind(SUnit *SU) const { |
| MachineInstr *MI = SU->getInstr(); |
| |
| switch (MI->getOpcode()) { |
| case AMDGPU::INTERP_PAIR_XY: |
| case AMDGPU::INTERP_PAIR_ZW: |
| case AMDGPU::INTERP_VEC_LOAD: |
| return AluT_XYZW; |
| case AMDGPU::COPY: |
| if (TargetRegisterInfo::isPhysicalRegister(MI->getOperand(1).getReg())) { |
| // %vregX = COPY Tn_X is likely to be discarded in favor of an |
| // assignement of Tn_X to %vregX, don't considers it in scheduling |
| return AluDiscarded; |
| } |
| else if (MI->getOperand(1).isUndef()) { |
| // MI will become a KILL, don't considers it in scheduling |
| return AluDiscarded; |
| } |
| default: |
| break; |
| } |
| |
| // Does the instruction take a whole IG ? |
| if(TII->isVector(*MI) || |
| TII->isCubeOp(MI->getOpcode()) || |
| TII->isReductionOp(MI->getOpcode())) |
| return AluT_XYZW; |
| |
| // Is the result already assigned to a channel ? |
| unsigned DestSubReg = MI->getOperand(0).getSubReg(); |
| switch (DestSubReg) { |
| case AMDGPU::sub0: |
| return AluT_X; |
| case AMDGPU::sub1: |
| return AluT_Y; |
| case AMDGPU::sub2: |
| return AluT_Z; |
| case AMDGPU::sub3: |
| return AluT_W; |
| default: |
| break; |
| } |
| |
| // Is the result already member of a X/Y/Z/W class ? |
| unsigned DestReg = MI->getOperand(0).getReg(); |
| if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_XRegClass) || |
| regBelongsToClass(DestReg, &AMDGPU::R600_AddrRegClass)) |
| return AluT_X; |
| if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_YRegClass)) |
| return AluT_Y; |
| if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass)) |
| return AluT_Z; |
| if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_WRegClass)) |
| return AluT_W; |
| if (regBelongsToClass(DestReg, &AMDGPU::R600_Reg128RegClass)) |
| return AluT_XYZW; |
| |
| return AluAny; |
| |
| } |
| |
| int R600SchedStrategy::getInstKind(SUnit* SU) { |
| int Opcode = SU->getInstr()->getOpcode(); |
| |
| if (TII->isALUInstr(Opcode)) { |
| return IDAlu; |
| } |
| |
| switch (Opcode) { |
| case AMDGPU::COPY: |
| case AMDGPU::CONST_COPY: |
| case AMDGPU::INTERP_PAIR_XY: |
| case AMDGPU::INTERP_PAIR_ZW: |
| case AMDGPU::INTERP_VEC_LOAD: |
| case AMDGPU::DOT4_eg_pseudo: |
| case AMDGPU::DOT4_r600_pseudo: |
| return IDAlu; |
| case AMDGPU::TEX_VTX_CONSTBUF: |
| case AMDGPU::TEX_VTX_TEXBUF: |
| case AMDGPU::TEX_LD: |
| case AMDGPU::TEX_GET_TEXTURE_RESINFO: |
| case AMDGPU::TEX_GET_GRADIENTS_H: |
| case AMDGPU::TEX_GET_GRADIENTS_V: |
| case AMDGPU::TEX_SET_GRADIENTS_H: |
| case AMDGPU::TEX_SET_GRADIENTS_V: |
| case AMDGPU::TEX_SAMPLE: |
| case AMDGPU::TEX_SAMPLE_C: |
| case AMDGPU::TEX_SAMPLE_L: |
| case AMDGPU::TEX_SAMPLE_C_L: |
| case AMDGPU::TEX_SAMPLE_LB: |
| case AMDGPU::TEX_SAMPLE_C_LB: |
| case AMDGPU::TEX_SAMPLE_G: |
| case AMDGPU::TEX_SAMPLE_C_G: |
| case AMDGPU::TXD: |
| case AMDGPU::TXD_SHADOW: |
| return IDFetch; |
| default: |
| DEBUG( |
| dbgs() << "other inst: "; |
| SU->dump(DAG); |
| ); |
| return IDOther; |
| } |
| } |
| |
| SUnit *R600SchedStrategy::PopInst(std::multiset<SUnit *, CompareSUnit> &Q) { |
| if (Q.empty()) |
| return NULL; |
| for (std::set<SUnit *, CompareSUnit>::iterator It = Q.begin(), E = Q.end(); |
| It != E; ++It) { |
| SUnit *SU = *It; |
| InstructionsGroupCandidate.push_back(SU->getInstr()); |
| if (TII->canBundle(InstructionsGroupCandidate)) { |
| InstructionsGroupCandidate.pop_back(); |
| Q.erase(It); |
| return SU; |
| } else { |
| InstructionsGroupCandidate.pop_back(); |
| } |
| } |
| return NULL; |
| } |
| |
| void R600SchedStrategy::LoadAlu() { |
| ReadyQueue *QSrc = Pending[IDAlu]; |
| for (ReadyQueue::iterator I = QSrc->begin(), |
| E = QSrc->end(); I != E; ++I) { |
| (*I)->NodeQueueId &= ~QSrc->getID(); |
| AluKind AK = getAluKind(*I); |
| AvailableAlus[AK].insert(*I); |
| } |
| QSrc->clear(); |
| } |
| |
| void R600SchedStrategy::PrepareNextSlot() { |
| DEBUG(dbgs() << "New Slot\n"); |
| assert (OccupedSlotsMask && "Slot wasn't filled"); |
| OccupedSlotsMask = 0; |
| InstructionsGroupCandidate.clear(); |
| LoadAlu(); |
| } |
| |
| void R600SchedStrategy::AssignSlot(MachineInstr* MI, unsigned Slot) { |
| unsigned DestReg = MI->getOperand(0).getReg(); |
| // PressureRegister crashes if an operand is def and used in the same inst |
| // and we try to constraint its regclass |
| for (MachineInstr::mop_iterator It = MI->operands_begin(), |
| E = MI->operands_end(); It != E; ++It) { |
| MachineOperand &MO = *It; |
| if (MO.isReg() && !MO.isDef() && |
| MO.getReg() == MI->getOperand(0).getReg()) |
| return; |
| } |
| // Constrains the regclass of DestReg to assign it to Slot |
| switch (Slot) { |
| case 0: |
| MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_XRegClass); |
| break; |
| case 1: |
| MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_YRegClass); |
| break; |
| case 2: |
| MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass); |
| break; |
| case 3: |
| MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_WRegClass); |
| break; |
| } |
| } |
| |
| SUnit *R600SchedStrategy::AttemptFillSlot(unsigned Slot) { |
| static const AluKind IndexToID[] = {AluT_X, AluT_Y, AluT_Z, AluT_W}; |
| SUnit *SlotedSU = PopInst(AvailableAlus[IndexToID[Slot]]); |
| SUnit *UnslotedSU = PopInst(AvailableAlus[AluAny]); |
| if (!UnslotedSU) { |
| return SlotedSU; |
| } else if (!SlotedSU) { |
| AssignSlot(UnslotedSU->getInstr(), Slot); |
| return UnslotedSU; |
| } else { |
| //Determine which one to pick (the lesser one) |
| if (CompareSUnit()(SlotedSU, UnslotedSU)) { |
| AvailableAlus[AluAny].insert(UnslotedSU); |
| return SlotedSU; |
| } else { |
| AvailableAlus[IndexToID[Slot]].insert(SlotedSU); |
| AssignSlot(UnslotedSU->getInstr(), Slot); |
| return UnslotedSU; |
| } |
| } |
| } |
| |
| bool R600SchedStrategy::isAvailablesAluEmpty() const { |
| return Pending[IDAlu]->empty() && AvailableAlus[AluAny].empty() && |
| AvailableAlus[AluT_XYZW].empty() && AvailableAlus[AluT_X].empty() && |
| AvailableAlus[AluT_Y].empty() && AvailableAlus[AluT_Z].empty() && |
| AvailableAlus[AluT_W].empty() && AvailableAlus[AluDiscarded].empty(); |
| } |
| |
| SUnit* R600SchedStrategy::pickAlu() { |
| while (!isAvailablesAluEmpty()) { |
| if (!OccupedSlotsMask) { |
| // Flush physical reg copies (RA will discard them) |
| if (!AvailableAlus[AluDiscarded].empty()) { |
| OccupedSlotsMask = 15; |
| return PopInst(AvailableAlus[AluDiscarded]); |
| } |
| // If there is a T_XYZW alu available, use it |
| if (!AvailableAlus[AluT_XYZW].empty()) { |
| OccupedSlotsMask = 15; |
| return PopInst(AvailableAlus[AluT_XYZW]); |
| } |
| } |
| for (unsigned Chan = 0; Chan < 4; ++Chan) { |
| bool isOccupied = OccupedSlotsMask & (1 << Chan); |
| if (!isOccupied) { |
| SUnit *SU = AttemptFillSlot(Chan); |
| if (SU) { |
| OccupedSlotsMask |= (1 << Chan); |
| InstructionsGroupCandidate.push_back(SU->getInstr()); |
| return SU; |
| } |
| } |
| } |
| PrepareNextSlot(); |
| } |
| return NULL; |
| } |
| |
| SUnit* R600SchedStrategy::pickOther(int QID) { |
| SUnit *SU = 0; |
| ReadyQueue *AQ = Available[QID]; |
| |
| if (AQ->empty()) { |
| MoveUnits(Pending[QID], AQ); |
| } |
| if (!AQ->empty()) { |
| SU = *AQ->begin(); |
| AQ->remove(AQ->begin()); |
| } |
| return SU; |
| } |
| |