| //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the AsmPrinter class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Module.h" |
| #include "llvm/CodeGen/GCMetadataPrinter.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/DwarfWriter.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FormattedStream.h" |
| #include "llvm/Support/Mangler.h" |
| #include "llvm/Target/TargetAsmInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include <cerrno> |
| using namespace llvm; |
| |
| static cl::opt<cl::boolOrDefault> |
| AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), |
| cl::init(cl::BOU_UNSET)); |
| |
| char AsmPrinter::ID = 0; |
| AsmPrinter::AsmPrinter(formatted_raw_ostream &o, TargetMachine &tm, |
| const TargetAsmInfo *T, bool VDef) |
| : MachineFunctionPass(&ID), FunctionNumber(0), O(o), |
| TM(tm), TAI(T), TRI(tm.getRegisterInfo()), |
| |
| OutContext(*new MCContext()), |
| OutStreamer(*createAsmStreamer(OutContext, O)), |
| |
| LastMI(0), LastFn(0), Counter(~0U), |
| PrevDLT(0, ~0U, ~0U) { |
| CurrentSection = 0; |
| DW = 0; MMI = 0; |
| switch (AsmVerbose) { |
| case cl::BOU_UNSET: VerboseAsm = VDef; break; |
| case cl::BOU_TRUE: VerboseAsm = true; break; |
| case cl::BOU_FALSE: VerboseAsm = false; break; |
| } |
| } |
| |
| AsmPrinter::~AsmPrinter() { |
| for (gcp_iterator I = GCMetadataPrinters.begin(), |
| E = GCMetadataPrinters.end(); I != E; ++I) |
| delete I->second; |
| |
| delete &OutStreamer; |
| delete &OutContext; |
| } |
| |
| TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { |
| return TM.getTargetLowering()->getObjFileLowering(); |
| } |
| |
| /// SwitchToSection - Switch to the specified section of the executable if we |
| /// are not already in it! If "NS" is null, then this causes us to exit the |
| /// current section and not reenter another one. This is generally used for |
| /// asmprinter hacks. |
| /// |
| /// FIXME: Remove support for null sections. |
| /// |
| void AsmPrinter::SwitchToSection(const MCSection *NS) { |
| // If we're already in this section, we're done. |
| if (CurrentSection == NS) return; |
| |
| CurrentSection = NS; |
| |
| if (NS != 0) { |
| // If section is named we need to switch into it via special '.section' |
| // directive and also append funky flags. Otherwise - section name is just |
| // some magic assembler directive. |
| if (!NS->isDirective()) { |
| SmallString<32> FlagsStr; |
| |
| getObjFileLowering().getSectionFlagsAsString(NS->getKind(), FlagsStr); |
| |
| O << TAI->getSwitchToSectionDirective() |
| << CurrentSection->getName() << FlagsStr.c_str(); |
| } else { |
| O << CurrentSection->getName(); |
| } |
| O << TAI->getDataSectionStartSuffix() << '\n'; |
| } |
| } |
| |
| void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<GCModuleInfo>(); |
| } |
| |
| bool AsmPrinter::doInitialization(Module &M) { |
| // Initialize TargetLoweringObjectFile. |
| const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) |
| .Initialize(OutContext, TM); |
| |
| Mang = new Mangler(M, TAI->getGlobalPrefix(), TAI->getPrivateGlobalPrefix(), |
| TAI->getLinkerPrivateGlobalPrefix()); |
| |
| if (TAI->doesAllowQuotesInName()) |
| Mang->setUseQuotes(true); |
| |
| GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| assert(MI && "AsmPrinter didn't require GCModuleInfo?"); |
| |
| if (TAI->hasSingleParameterDotFile()) { |
| /* Very minimal debug info. It is ignored if we emit actual |
| debug info. If we don't, this at helps the user find where |
| a function came from. */ |
| O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n"; |
| } |
| |
| for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) |
| if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) |
| MP->beginAssembly(O, *this, *TAI); |
| |
| if (!M.getModuleInlineAsm().empty()) |
| O << TAI->getCommentString() << " Start of file scope inline assembly\n" |
| << M.getModuleInlineAsm() |
| << '\n' << TAI->getCommentString() |
| << " End of file scope inline assembly\n"; |
| |
| SwitchToSection(0); // Reset back to no section to close off sections. |
| |
| if (TAI->doesSupportDebugInformation() || |
| TAI->doesSupportExceptionHandling()) { |
| MMI = getAnalysisIfAvailable<MachineModuleInfo>(); |
| if (MMI) |
| MMI->AnalyzeModule(M); |
| DW = getAnalysisIfAvailable<DwarfWriter>(); |
| if (DW) |
| DW->BeginModule(&M, MMI, O, this, TAI); |
| } |
| |
| return false; |
| } |
| |
| bool AsmPrinter::doFinalization(Module &M) { |
| // Emit global variables. |
| for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) |
| PrintGlobalVariable(I); |
| |
| // Emit final debug information. |
| if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling()) |
| DW->EndModule(); |
| |
| // If the target wants to know about weak references, print them all. |
| if (TAI->getWeakRefDirective()) { |
| // FIXME: This is not lazy, it would be nice to only print weak references |
| // to stuff that is actually used. Note that doing so would require targets |
| // to notice uses in operands (due to constant exprs etc). This should |
| // happen with the MC stuff eventually. |
| SwitchToSection(0); |
| |
| // Print out module-level global variables here. |
| for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) { |
| if (I->hasExternalWeakLinkage()) |
| O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; |
| } |
| |
| for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { |
| if (I->hasExternalWeakLinkage()) |
| O << TAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n'; |
| } |
| } |
| |
| if (TAI->getSetDirective()) { |
| O << '\n'; |
| for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); |
| I != E; ++I) { |
| std::string Name = Mang->getMangledName(I); |
| |
| const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal()); |
| std::string Target = Mang->getMangledName(GV); |
| |
| if (I->hasExternalLinkage() || !TAI->getWeakRefDirective()) |
| O << "\t.globl\t" << Name << '\n'; |
| else if (I->hasWeakLinkage()) |
| O << TAI->getWeakRefDirective() << Name << '\n'; |
| else if (!I->hasLocalLinkage()) |
| llvm_unreachable("Invalid alias linkage"); |
| |
| printVisibility(Name, I->getVisibility()); |
| |
| O << TAI->getSetDirective() << ' ' << Name << ", " << Target << '\n'; |
| } |
| } |
| |
| GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| assert(MI && "AsmPrinter didn't require GCModuleInfo?"); |
| for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) |
| if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) |
| MP->finishAssembly(O, *this, *TAI); |
| |
| // If we don't have any trampolines, then we don't require stack memory |
| // to be executable. Some targets have a directive to declare this. |
| Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); |
| if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) |
| if (TAI->getNonexecutableStackDirective()) |
| O << TAI->getNonexecutableStackDirective() << '\n'; |
| |
| delete Mang; Mang = 0; |
| DW = 0; MMI = 0; |
| |
| OutStreamer.Finish(); |
| return false; |
| } |
| |
| std::string |
| AsmPrinter::getCurrentFunctionEHName(const MachineFunction *MF) const { |
| assert(MF && "No machine function?"); |
| return Mang->getMangledName(MF->getFunction(), ".eh", |
| TAI->is_EHSymbolPrivate()); |
| } |
| |
| void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { |
| // What's my mangled name? |
| CurrentFnName = Mang->getMangledName(MF.getFunction()); |
| IncrementFunctionNumber(); |
| } |
| |
| namespace { |
| // SectionCPs - Keep track the alignment, constpool entries per Section. |
| struct SectionCPs { |
| const MCSection *S; |
| unsigned Alignment; |
| SmallVector<unsigned, 4> CPEs; |
| SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}; |
| }; |
| } |
| |
| /// EmitConstantPool - Print to the current output stream assembly |
| /// representations of the constants in the constant pool MCP. This is |
| /// used to print out constants which have been "spilled to memory" by |
| /// the code generator. |
| /// |
| void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) { |
| const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); |
| if (CP.empty()) return; |
| |
| // Calculate sections for constant pool entries. We collect entries to go into |
| // the same section together to reduce amount of section switch statements. |
| SmallVector<SectionCPs, 4> CPSections; |
| for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| const MachineConstantPoolEntry &CPE = CP[i]; |
| unsigned Align = CPE.getAlignment(); |
| |
| SectionKind Kind; |
| switch (CPE.getRelocationInfo()) { |
| default: llvm_unreachable("Unknown section kind"); |
| case 2: Kind = SectionKind::getReadOnlyWithRel(); break; |
| case 1: |
| Kind = SectionKind::getReadOnlyWithRelLocal(); |
| break; |
| case 0: |
| switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { |
| case 4: Kind = SectionKind::getMergeableConst4(); break; |
| case 8: Kind = SectionKind::getMergeableConst8(); break; |
| case 16: Kind = SectionKind::getMergeableConst16();break; |
| default: Kind = SectionKind::getMergeableConst(); break; |
| } |
| } |
| |
| const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); |
| |
| // The number of sections are small, just do a linear search from the |
| // last section to the first. |
| bool Found = false; |
| unsigned SecIdx = CPSections.size(); |
| while (SecIdx != 0) { |
| if (CPSections[--SecIdx].S == S) { |
| Found = true; |
| break; |
| } |
| } |
| if (!Found) { |
| SecIdx = CPSections.size(); |
| CPSections.push_back(SectionCPs(S, Align)); |
| } |
| |
| if (Align > CPSections[SecIdx].Alignment) |
| CPSections[SecIdx].Alignment = Align; |
| CPSections[SecIdx].CPEs.push_back(i); |
| } |
| |
| // Now print stuff into the calculated sections. |
| for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { |
| SwitchToSection(CPSections[i].S); |
| EmitAlignment(Log2_32(CPSections[i].Alignment)); |
| |
| unsigned Offset = 0; |
| for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { |
| unsigned CPI = CPSections[i].CPEs[j]; |
| MachineConstantPoolEntry CPE = CP[CPI]; |
| |
| // Emit inter-object padding for alignment. |
| unsigned AlignMask = CPE.getAlignment() - 1; |
| unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; |
| EmitZeros(NewOffset - Offset); |
| |
| const Type *Ty = CPE.getType(); |
| Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); |
| |
| O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' |
| << CPI << ":\t\t\t\t\t"; |
| if (VerboseAsm) { |
| O << TAI->getCommentString() << ' '; |
| WriteTypeSymbolic(O, CPE.getType(), 0); |
| } |
| O << '\n'; |
| if (CPE.isMachineConstantPoolEntry()) |
| EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); |
| else |
| EmitGlobalConstant(CPE.Val.ConstVal); |
| } |
| } |
| } |
| |
| /// EmitJumpTableInfo - Print assembly representations of the jump tables used |
| /// by the current function to the current output stream. |
| /// |
| void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI, |
| MachineFunction &MF) { |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| |
| bool IsPic = TM.getRelocationModel() == Reloc::PIC_; |
| |
| // Pick the directive to use to print the jump table entries, and switch to |
| // the appropriate section. |
| TargetLowering *LoweringInfo = TM.getTargetLowering(); |
| |
| const Function *F = MF.getFunction(); |
| bool JTInDiffSection = false; |
| if (F->isWeakForLinker() || |
| (IsPic && !LoweringInfo->usesGlobalOffsetTable())) { |
| // In PIC mode, we need to emit the jump table to the same section as the |
| // function body itself, otherwise the label differences won't make sense. |
| // We should also do if the section name is NULL or function is declared in |
| // discardable section. |
| SwitchToSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); |
| } else { |
| // Otherwise, drop it in the readonly section. |
| const MCSection *ReadOnlySection = |
| getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); |
| SwitchToSection(ReadOnlySection); |
| JTInDiffSection = true; |
| } |
| |
| EmitAlignment(Log2_32(MJTI->getAlignment())); |
| |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs; |
| |
| // If this jump table was deleted, ignore it. |
| if (JTBBs.empty()) continue; |
| |
| // For PIC codegen, if possible we want to use the SetDirective to reduce |
| // the number of relocations the assembler will generate for the jump table. |
| // Set directives are all printed before the jump table itself. |
| SmallPtrSet<MachineBasicBlock*, 16> EmittedSets; |
| if (TAI->getSetDirective() && IsPic) |
| for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) |
| if (EmittedSets.insert(JTBBs[ii])) |
| printPICJumpTableSetLabel(i, JTBBs[ii]); |
| |
| // On some targets (e.g. darwin) we want to emit two consequtive labels |
| // before each jump table. The first label is never referenced, but tells |
| // the assembler and linker the extents of the jump table object. The |
| // second label is actually referenced by the code. |
| if (JTInDiffSection) { |
| if (const char *JTLabelPrefix = TAI->getJumpTableSpecialLabelPrefix()) |
| O << JTLabelPrefix << "JTI" << getFunctionNumber() << '_' << i << ":\n"; |
| } |
| |
| O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() |
| << '_' << i << ":\n"; |
| |
| for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { |
| printPICJumpTableEntry(MJTI, JTBBs[ii], i); |
| O << '\n'; |
| } |
| } |
| } |
| |
| void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, |
| const MachineBasicBlock *MBB, |
| unsigned uid) const { |
| bool IsPic = TM.getRelocationModel() == Reloc::PIC_; |
| |
| // Use JumpTableDirective otherwise honor the entry size from the jump table |
| // info. |
| const char *JTEntryDirective = TAI->getJumpTableDirective(); |
| bool HadJTEntryDirective = JTEntryDirective != NULL; |
| if (!HadJTEntryDirective) { |
| JTEntryDirective = MJTI->getEntrySize() == 4 ? |
| TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); |
| } |
| |
| O << JTEntryDirective << ' '; |
| |
| // If we have emitted set directives for the jump table entries, print |
| // them rather than the entries themselves. If we're emitting PIC, then |
| // emit the table entries as differences between two text section labels. |
| // If we're emitting non-PIC code, then emit the entries as direct |
| // references to the target basic blocks. |
| if (IsPic) { |
| if (TAI->getSetDirective()) { |
| O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() |
| << '_' << uid << "_set_" << MBB->getNumber(); |
| } else { |
| printBasicBlockLabel(MBB, false, false, false); |
| // If the arch uses custom Jump Table directives, don't calc relative to |
| // JT |
| if (!HadJTEntryDirective) |
| O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" |
| << getFunctionNumber() << '_' << uid; |
| } |
| } else { |
| printBasicBlockLabel(MBB, false, false, false); |
| } |
| } |
| |
| |
| /// EmitSpecialLLVMGlobal - Check to see if the specified global is a |
| /// special global used by LLVM. If so, emit it and return true, otherwise |
| /// do nothing and return false. |
| bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { |
| if (GV->getName() == "llvm.used") { |
| if (TAI->getUsedDirective() != 0) // No need to emit this at all. |
| EmitLLVMUsedList(GV->getInitializer()); |
| return true; |
| } |
| |
| // Ignore debug and non-emitted data. This handles llvm.compiler.used. |
| if (GV->getSection() == "llvm.metadata" || |
| GV->hasAvailableExternallyLinkage()) |
| return true; |
| |
| if (!GV->hasAppendingLinkage()) return false; |
| |
| assert(GV->hasInitializer() && "Not a special LLVM global!"); |
| |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Align = Log2_32(TD->getPointerPrefAlignment()); |
| if (GV->getName() == "llvm.global_ctors") { |
| SwitchToSection(getObjFileLowering().getStaticCtorSection()); |
| EmitAlignment(Align, 0); |
| EmitXXStructorList(GV->getInitializer()); |
| return true; |
| } |
| |
| if (GV->getName() == "llvm.global_dtors") { |
| SwitchToSection(getObjFileLowering().getStaticDtorSection()); |
| EmitAlignment(Align, 0); |
| EmitXXStructorList(GV->getInitializer()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// EmitLLVMUsedList - For targets that define a TAI::UsedDirective, mark each |
| /// global in the specified llvm.used list for which emitUsedDirectiveFor |
| /// is true, as being used with this directive. |
| void AsmPrinter::EmitLLVMUsedList(Constant *List) { |
| const char *Directive = TAI->getUsedDirective(); |
| |
| // Should be an array of 'i8*'. |
| ConstantArray *InitList = dyn_cast<ConstantArray>(List); |
| if (InitList == 0) return; |
| |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
| const GlobalValue *GV = |
| dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); |
| if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) { |
| O << Directive; |
| EmitConstantValueOnly(InitList->getOperand(i)); |
| O << '\n'; |
| } |
| } |
| } |
| |
| /// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the |
| /// function pointers, ignoring the init priority. |
| void AsmPrinter::EmitXXStructorList(Constant *List) { |
| // Should be an array of '{ int, void ()* }' structs. The first value is the |
| // init priority, which we ignore. |
| if (!isa<ConstantArray>(List)) return; |
| ConstantArray *InitList = cast<ConstantArray>(List); |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) |
| if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ |
| if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. |
| |
| if (CS->getOperand(1)->isNullValue()) |
| return; // Found a null terminator, exit printing. |
| // Emit the function pointer. |
| EmitGlobalConstant(CS->getOperand(1)); |
| } |
| } |
| |
| /// getGlobalLinkName - Returns the asm/link name of of the specified |
| /// global variable. Should be overridden by each target asm printer to |
| /// generate the appropriate value. |
| const std::string &AsmPrinter::getGlobalLinkName(const GlobalVariable *GV, |
| std::string &LinkName) const { |
| if (isa<Function>(GV)) { |
| LinkName += TAI->getFunctionAddrPrefix(); |
| LinkName += Mang->getMangledName(GV); |
| LinkName += TAI->getFunctionAddrSuffix(); |
| } else { |
| LinkName += TAI->getGlobalVarAddrPrefix(); |
| LinkName += Mang->getMangledName(GV); |
| LinkName += TAI->getGlobalVarAddrSuffix(); |
| } |
| |
| return LinkName; |
| } |
| |
| /// EmitExternalGlobal - Emit the external reference to a global variable. |
| /// Should be overridden if an indirect reference should be used. |
| void AsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { |
| std::string GLN; |
| O << getGlobalLinkName(GV, GLN); |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// LEB 128 number encoding. |
| |
| /// PrintULEB128 - Print a series of hexidecimal values (separated by commas) |
| /// representing an unsigned leb128 value. |
| void AsmPrinter::PrintULEB128(unsigned Value) const { |
| char Buffer[20]; |
| do { |
| unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); |
| Value >>= 7; |
| if (Value) Byte |= 0x80; |
| O << "0x" << utohex_buffer(Byte, Buffer+20); |
| if (Value) O << ", "; |
| } while (Value); |
| } |
| |
| /// PrintSLEB128 - Print a series of hexidecimal values (separated by commas) |
| /// representing a signed leb128 value. |
| void AsmPrinter::PrintSLEB128(int Value) const { |
| int Sign = Value >> (8 * sizeof(Value) - 1); |
| bool IsMore; |
| char Buffer[20]; |
| |
| do { |
| unsigned char Byte = static_cast<unsigned char>(Value & 0x7f); |
| Value >>= 7; |
| IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; |
| if (IsMore) Byte |= 0x80; |
| O << "0x" << utohex_buffer(Byte, Buffer+20); |
| if (IsMore) O << ", "; |
| } while (IsMore); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Emission and print routines |
| // |
| |
| /// PrintHex - Print a value as a hexidecimal value. |
| /// |
| void AsmPrinter::PrintHex(int Value) const { |
| char Buffer[20]; |
| O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20); |
| } |
| |
| /// EOL - Print a newline character to asm stream. If a comment is present |
| /// then it will be printed first. Comments should not contain '\n'. |
| void AsmPrinter::EOL() const { |
| O << '\n'; |
| } |
| |
| void AsmPrinter::EOL(const std::string &Comment) const { |
| if (VerboseAsm && !Comment.empty()) { |
| O << '\t' |
| << TAI->getCommentString() |
| << ' ' |
| << Comment; |
| } |
| O << '\n'; |
| } |
| |
| void AsmPrinter::EOL(const char* Comment) const { |
| if (VerboseAsm && *Comment) { |
| O << '\t' |
| << TAI->getCommentString() |
| << ' ' |
| << Comment; |
| } |
| O << '\n'; |
| } |
| |
| /// EmitULEB128Bytes - Emit an assembler byte data directive to compose an |
| /// unsigned leb128 value. |
| void AsmPrinter::EmitULEB128Bytes(unsigned Value) const { |
| if (TAI->hasLEB128()) { |
| O << "\t.uleb128\t" |
| << Value; |
| } else { |
| O << TAI->getData8bitsDirective(); |
| PrintULEB128(Value); |
| } |
| } |
| |
| /// EmitSLEB128Bytes - print an assembler byte data directive to compose a |
| /// signed leb128 value. |
| void AsmPrinter::EmitSLEB128Bytes(int Value) const { |
| if (TAI->hasLEB128()) { |
| O << "\t.sleb128\t" |
| << Value; |
| } else { |
| O << TAI->getData8bitsDirective(); |
| PrintSLEB128(Value); |
| } |
| } |
| |
| /// EmitInt8 - Emit a byte directive and value. |
| /// |
| void AsmPrinter::EmitInt8(int Value) const { |
| O << TAI->getData8bitsDirective(); |
| PrintHex(Value & 0xFF); |
| } |
| |
| /// EmitInt16 - Emit a short directive and value. |
| /// |
| void AsmPrinter::EmitInt16(int Value) const { |
| O << TAI->getData16bitsDirective(); |
| PrintHex(Value & 0xFFFF); |
| } |
| |
| /// EmitInt32 - Emit a long directive and value. |
| /// |
| void AsmPrinter::EmitInt32(int Value) const { |
| O << TAI->getData32bitsDirective(); |
| PrintHex(Value); |
| } |
| |
| /// EmitInt64 - Emit a long long directive and value. |
| /// |
| void AsmPrinter::EmitInt64(uint64_t Value) const { |
| if (TAI->getData64bitsDirective()) { |
| O << TAI->getData64bitsDirective(); |
| PrintHex(Value); |
| } else { |
| if (TM.getTargetData()->isBigEndian()) { |
| EmitInt32(unsigned(Value >> 32)); O << '\n'; |
| EmitInt32(unsigned(Value)); |
| } else { |
| EmitInt32(unsigned(Value)); O << '\n'; |
| EmitInt32(unsigned(Value >> 32)); |
| } |
| } |
| } |
| |
| /// toOctal - Convert the low order bits of X into an octal digit. |
| /// |
| static inline char toOctal(int X) { |
| return (X&7)+'0'; |
| } |
| |
| /// printStringChar - Print a char, escaped if necessary. |
| /// |
| static void printStringChar(formatted_raw_ostream &O, unsigned char C) { |
| if (C == '"') { |
| O << "\\\""; |
| } else if (C == '\\') { |
| O << "\\\\"; |
| } else if (isprint((unsigned char)C)) { |
| O << C; |
| } else { |
| switch(C) { |
| case '\b': O << "\\b"; break; |
| case '\f': O << "\\f"; break; |
| case '\n': O << "\\n"; break; |
| case '\r': O << "\\r"; break; |
| case '\t': O << "\\t"; break; |
| default: |
| O << '\\'; |
| O << toOctal(C >> 6); |
| O << toOctal(C >> 3); |
| O << toOctal(C >> 0); |
| break; |
| } |
| } |
| } |
| |
| /// EmitString - Emit a string with quotes and a null terminator. |
| /// Special characters are emitted properly. |
| /// \literal (Eg. '\t') \endliteral |
| void AsmPrinter::EmitString(const std::string &String) const { |
| EmitString(String.c_str(), String.size()); |
| } |
| |
| void AsmPrinter::EmitString(const char *String, unsigned Size) const { |
| const char* AscizDirective = TAI->getAscizDirective(); |
| if (AscizDirective) |
| O << AscizDirective; |
| else |
| O << TAI->getAsciiDirective(); |
| O << '\"'; |
| for (unsigned i = 0; i < Size; ++i) |
| printStringChar(O, String[i]); |
| if (AscizDirective) |
| O << '\"'; |
| else |
| O << "\\0\""; |
| } |
| |
| |
| /// EmitFile - Emit a .file directive. |
| void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const { |
| O << "\t.file\t" << Number << " \""; |
| for (unsigned i = 0, N = Name.size(); i < N; ++i) |
| printStringChar(O, Name[i]); |
| O << '\"'; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| |
| // EmitAlignment - Emit an alignment directive to the specified power of |
| // two boundary. For example, if you pass in 3 here, you will get an 8 |
| // byte alignment. If a global value is specified, and if that global has |
| // an explicit alignment requested, it will unconditionally override the |
| // alignment request. However, if ForcedAlignBits is specified, this value |
| // has final say: the ultimate alignment will be the max of ForcedAlignBits |
| // and the alignment computed with NumBits and the global. |
| // |
| // The algorithm is: |
| // Align = NumBits; |
| // if (GV && GV->hasalignment) Align = GV->getalignment(); |
| // Align = std::max(Align, ForcedAlignBits); |
| // |
| void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV, |
| unsigned ForcedAlignBits, |
| bool UseFillExpr) const { |
| if (GV && GV->getAlignment()) |
| NumBits = Log2_32(GV->getAlignment()); |
| NumBits = std::max(NumBits, ForcedAlignBits); |
| |
| if (NumBits == 0) return; // No need to emit alignment. |
| if (TAI->getAlignmentIsInBytes()) NumBits = 1 << NumBits; |
| O << TAI->getAlignDirective() << NumBits; |
| |
| if (CurrentSection && CurrentSection->getKind().isText()) |
| if (unsigned FillValue = TAI->getTextAlignFillValue()) { |
| O << ','; |
| PrintHex(FillValue); |
| } |
| O << '\n'; |
| } |
| |
| /// PadToColumn - This gets called every time a tab is emitted. If |
| /// column padding is turned on, we replace the tab with the |
| /// appropriate amount of padding. If not, we replace the tab with a |
| /// space, except for the first operand so that initial operands are |
| /// always lined up by tabs. |
| void AsmPrinter::PadToColumn(unsigned Operand) const { |
| if (TAI->getOperandColumn(Operand) > 0) { |
| O.PadToColumn(TAI->getOperandColumn(Operand), 1); |
| } |
| else { |
| if (Operand == 1) { |
| // Emit the tab after the mnemonic. |
| O << '\t'; |
| } |
| else { |
| // Replace the tab with a space. |
| O << ' '; |
| } |
| } |
| } |
| |
| /// EmitZeros - Emit a block of zeros. |
| /// |
| void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const { |
| if (NumZeros) { |
| if (TAI->getZeroDirective()) { |
| O << TAI->getZeroDirective() << NumZeros; |
| if (TAI->getZeroDirectiveSuffix()) |
| O << TAI->getZeroDirectiveSuffix(); |
| O << '\n'; |
| } else { |
| for (; NumZeros; --NumZeros) |
| O << TAI->getData8bitsDirective(AddrSpace) << "0\n"; |
| } |
| } |
| } |
| |
| // Print out the specified constant, without a storage class. Only the |
| // constants valid in constant expressions can occur here. |
| void AsmPrinter::EmitConstantValueOnly(const Constant *CV) { |
| if (CV->isNullValue() || isa<UndefValue>(CV)) |
| O << '0'; |
| else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| O << CI->getZExtValue(); |
| } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) { |
| // This is a constant address for a global variable or function. Use the |
| // name of the variable or function as the address value, possibly |
| // decorating it with GlobalVarAddrPrefix/Suffix or |
| // FunctionAddrPrefix/Suffix (these all default to "" ) |
| if (isa<Function>(GV)) { |
| O << TAI->getFunctionAddrPrefix() |
| << Mang->getMangledName(GV) |
| << TAI->getFunctionAddrSuffix(); |
| } else { |
| O << TAI->getGlobalVarAddrPrefix() |
| << Mang->getMangledName(GV) |
| << TAI->getGlobalVarAddrSuffix(); |
| } |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Opcode = CE->getOpcode(); |
| switch (Opcode) { |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| llvm_unreachable("FIXME: Don't support this constant cast expr"); |
| case Instruction::GetElementPtr: { |
| // generate a symbolic expression for the byte address |
| const Constant *ptrVal = CE->getOperand(0); |
| SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end()); |
| if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0], |
| idxVec.size())) { |
| // Truncate/sext the offset to the pointer size. |
| if (TD->getPointerSizeInBits() != 64) { |
| int SExtAmount = 64-TD->getPointerSizeInBits(); |
| Offset = (Offset << SExtAmount) >> SExtAmount; |
| } |
| |
| if (Offset) |
| O << '('; |
| EmitConstantValueOnly(ptrVal); |
| if (Offset > 0) |
| O << ") + " << Offset; |
| else if (Offset < 0) |
| O << ") - " << -Offset; |
| } else { |
| EmitConstantValueOnly(ptrVal); |
| } |
| break; |
| } |
| case Instruction::BitCast: |
| return EmitConstantValueOnly(CE->getOperand(0)); |
| |
| case Instruction::IntToPtr: { |
| // Handle casts to pointers by changing them into casts to the appropriate |
| // integer type. This promotes constant folding and simplifies this code. |
| Constant *Op = CE->getOperand(0); |
| Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(), false/*ZExt*/); |
| return EmitConstantValueOnly(Op); |
| } |
| |
| |
| case Instruction::PtrToInt: { |
| // Support only foldable casts to/from pointers that can be eliminated by |
| // changing the pointer to the appropriately sized integer type. |
| Constant *Op = CE->getOperand(0); |
| const Type *Ty = CE->getType(); |
| |
| // We can emit the pointer value into this slot if the slot is an |
| // integer slot greater or equal to the size of the pointer. |
| if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType())) |
| return EmitConstantValueOnly(Op); |
| |
| O << "(("; |
| EmitConstantValueOnly(Op); |
| APInt ptrMask = |
| APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType())); |
| |
| SmallString<40> S; |
| ptrMask.toStringUnsigned(S); |
| O << ") & " << S.c_str() << ')'; |
| break; |
| } |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| O << '('; |
| EmitConstantValueOnly(CE->getOperand(0)); |
| O << ')'; |
| switch (Opcode) { |
| case Instruction::Add: |
| O << " + "; |
| break; |
| case Instruction::Sub: |
| O << " - "; |
| break; |
| case Instruction::And: |
| O << " & "; |
| break; |
| case Instruction::Or: |
| O << " | "; |
| break; |
| case Instruction::Xor: |
| O << " ^ "; |
| break; |
| default: |
| break; |
| } |
| O << '('; |
| EmitConstantValueOnly(CE->getOperand(1)); |
| O << ')'; |
| break; |
| default: |
| llvm_unreachable("Unsupported operator!"); |
| } |
| } else { |
| llvm_unreachable("Unknown constant value!"); |
| } |
| } |
| |
| /// printAsCString - Print the specified array as a C compatible string, only if |
| /// the predicate isString is true. |
| /// |
| static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA, |
| unsigned LastElt) { |
| assert(CVA->isString() && "Array is not string compatible!"); |
| |
| O << '\"'; |
| for (unsigned i = 0; i != LastElt; ++i) { |
| unsigned char C = |
| (unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue(); |
| printStringChar(O, C); |
| } |
| O << '\"'; |
| } |
| |
| /// EmitString - Emit a zero-byte-terminated string constant. |
| /// |
| void AsmPrinter::EmitString(const ConstantArray *CVA) const { |
| unsigned NumElts = CVA->getNumOperands(); |
| if (TAI->getAscizDirective() && NumElts && |
| cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) { |
| O << TAI->getAscizDirective(); |
| printAsCString(O, CVA, NumElts-1); |
| } else { |
| O << TAI->getAsciiDirective(); |
| printAsCString(O, CVA, NumElts); |
| } |
| O << '\n'; |
| } |
| |
| void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA, |
| unsigned AddrSpace) { |
| if (CVA->isString()) { |
| EmitString(CVA); |
| } else { // Not a string. Print the values in successive locations |
| for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) |
| EmitGlobalConstant(CVA->getOperand(i), AddrSpace); |
| } |
| } |
| |
| void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) { |
| const VectorType *PTy = CP->getType(); |
| |
| for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I) |
| EmitGlobalConstant(CP->getOperand(I)); |
| } |
| |
| void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS, |
| unsigned AddrSpace) { |
| // Print the fields in successive locations. Pad to align if needed! |
| const TargetData *TD = TM.getTargetData(); |
| unsigned Size = TD->getTypeAllocSize(CVS->getType()); |
| const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType()); |
| uint64_t sizeSoFar = 0; |
| for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { |
| const Constant* field = CVS->getOperand(i); |
| |
| // Check if padding is needed and insert one or more 0s. |
| uint64_t fieldSize = TD->getTypeAllocSize(field->getType()); |
| uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1)) |
| - cvsLayout->getElementOffset(i)) - fieldSize; |
| sizeSoFar += fieldSize + padSize; |
| |
| // Now print the actual field value. |
| EmitGlobalConstant(field, AddrSpace); |
| |
| // Insert padding - this may include padding to increase the size of the |
| // current field up to the ABI size (if the struct is not packed) as well |
| // as padding to ensure that the next field starts at the right offset. |
| EmitZeros(padSize, AddrSpace); |
| } |
| assert(sizeSoFar == cvsLayout->getSizeInBytes() && |
| "Layout of constant struct may be incorrect!"); |
| } |
| |
| void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP, |
| unsigned AddrSpace) { |
| // FP Constants are printed as integer constants to avoid losing |
| // precision... |
| const TargetData *TD = TM.getTargetData(); |
| if (CFP->getType() == Type::DoubleTy) { |
| double Val = CFP->getValueAPF().convertToDouble(); // for comment only |
| uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); |
| if (TAI->getData64bitsDirective(AddrSpace)) { |
| O << TAI->getData64bitsDirective(AddrSpace) << i; |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() << " double value: " << Val; |
| O << '\n'; |
| } else if (TD->isBigEndian()) { |
| O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " double most significant word " << Val; |
| O << '\n'; |
| O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " double least significant word " << Val; |
| O << '\n'; |
| } else { |
| O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " double least significant word " << Val; |
| O << '\n'; |
| O << TAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " double most significant word " << Val; |
| O << '\n'; |
| } |
| return; |
| } else if (CFP->getType() == Type::FloatTy) { |
| float Val = CFP->getValueAPF().convertToFloat(); // for comment only |
| O << TAI->getData32bitsDirective(AddrSpace) |
| << CFP->getValueAPF().bitcastToAPInt().getZExtValue(); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() << " float " << Val; |
| O << '\n'; |
| return; |
| } else if (CFP->getType() == Type::X86_FP80Ty) { |
| // all long double variants are printed as hex |
| // api needed to prevent premature destruction |
| APInt api = CFP->getValueAPF().bitcastToAPInt(); |
| const uint64_t *p = api.getRawData(); |
| // Convert to double so we can print the approximate val as a comment. |
| APFloat DoubleVal = CFP->getValueAPF(); |
| bool ignored; |
| DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, |
| &ignored); |
| if (TD->isBigEndian()) { |
| O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double most significant halfword of ~" |
| << DoubleVal.convertToDouble(); |
| O << '\n'; |
| O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() << " long double next halfword"; |
| O << '\n'; |
| O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() << " long double next halfword"; |
| O << '\n'; |
| O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() << " long double next halfword"; |
| O << '\n'; |
| O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double least significant halfword"; |
| O << '\n'; |
| } else { |
| O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double least significant halfword of ~" |
| << DoubleVal.convertToDouble(); |
| O << '\n'; |
| O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double next halfword"; |
| O << '\n'; |
| O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double next halfword"; |
| O << '\n'; |
| O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double next halfword"; |
| O << '\n'; |
| O << TAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double most significant halfword"; |
| O << '\n'; |
| } |
| EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) - |
| TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace); |
| return; |
| } else if (CFP->getType() == Type::PPC_FP128Ty) { |
| // all long double variants are printed as hex |
| // api needed to prevent premature destruction |
| APInt api = CFP->getValueAPF().bitcastToAPInt(); |
| const uint64_t *p = api.getRawData(); |
| if (TD->isBigEndian()) { |
| O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double most significant word"; |
| O << '\n'; |
| O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double next word"; |
| O << '\n'; |
| O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double next word"; |
| O << '\n'; |
| O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double least significant word"; |
| O << '\n'; |
| } else { |
| O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double least significant word"; |
| O << '\n'; |
| O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double next word"; |
| O << '\n'; |
| O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double next word"; |
| O << '\n'; |
| O << TAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " long double most significant word"; |
| O << '\n'; |
| } |
| return; |
| } else llvm_unreachable("Floating point constant type not handled"); |
| } |
| |
| void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI, |
| unsigned AddrSpace) { |
| const TargetData *TD = TM.getTargetData(); |
| unsigned BitWidth = CI->getBitWidth(); |
| assert(isPowerOf2_32(BitWidth) && |
| "Non-power-of-2-sized integers not handled!"); |
| |
| // We don't expect assemblers to support integer data directives |
| // for more than 64 bits, so we emit the data in at most 64-bit |
| // quantities at a time. |
| const uint64_t *RawData = CI->getValue().getRawData(); |
| for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { |
| uint64_t Val; |
| if (TD->isBigEndian()) |
| Val = RawData[e - i - 1]; |
| else |
| Val = RawData[i]; |
| |
| if (TAI->getData64bitsDirective(AddrSpace)) |
| O << TAI->getData64bitsDirective(AddrSpace) << Val << '\n'; |
| else if (TD->isBigEndian()) { |
| O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " Double-word most significant word " << Val; |
| O << '\n'; |
| O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " Double-word least significant word " << Val; |
| O << '\n'; |
| } else { |
| O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " Double-word least significant word " << Val; |
| O << '\n'; |
| O << TAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32); |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() |
| << " Double-word most significant word " << Val; |
| O << '\n'; |
| } |
| } |
| } |
| |
| /// EmitGlobalConstant - Print a general LLVM constant to the .s file. |
| void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { |
| const TargetData *TD = TM.getTargetData(); |
| const Type *type = CV->getType(); |
| unsigned Size = TD->getTypeAllocSize(type); |
| |
| if (CV->isNullValue() || isa<UndefValue>(CV)) { |
| EmitZeros(Size, AddrSpace); |
| return; |
| } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) { |
| EmitGlobalConstantArray(CVA , AddrSpace); |
| return; |
| } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) { |
| EmitGlobalConstantStruct(CVS, AddrSpace); |
| return; |
| } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { |
| EmitGlobalConstantFP(CFP, AddrSpace); |
| return; |
| } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| // Small integers are handled below; large integers are handled here. |
| if (Size > 4) { |
| EmitGlobalConstantLargeInt(CI, AddrSpace); |
| return; |
| } |
| } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) { |
| EmitGlobalConstantVector(CP); |
| return; |
| } |
| |
| printDataDirective(type, AddrSpace); |
| EmitConstantValueOnly(CV); |
| if (VerboseAsm) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| SmallString<40> S; |
| CI->getValue().toStringUnsigned(S, 16); |
| O << "\t\t\t" << TAI->getCommentString() << " 0x" << S.c_str(); |
| } |
| } |
| O << '\n'; |
| } |
| |
| void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { |
| // Target doesn't support this yet! |
| llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); |
| } |
| |
| /// PrintSpecial - Print information related to the specified machine instr |
| /// that is independent of the operand, and may be independent of the instr |
| /// itself. This can be useful for portably encoding the comment character |
| /// or other bits of target-specific knowledge into the asmstrings. The |
| /// syntax used is ${:comment}. Targets can override this to add support |
| /// for their own strange codes. |
| void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const { |
| if (!strcmp(Code, "private")) { |
| O << TAI->getPrivateGlobalPrefix(); |
| } else if (!strcmp(Code, "comment")) { |
| if (VerboseAsm) |
| O << TAI->getCommentString(); |
| } else if (!strcmp(Code, "uid")) { |
| // Comparing the address of MI isn't sufficient, because machineinstrs may |
| // be allocated to the same address across functions. |
| const Function *ThisF = MI->getParent()->getParent()->getFunction(); |
| |
| // If this is a new LastFn instruction, bump the counter. |
| if (LastMI != MI || LastFn != ThisF) { |
| ++Counter; |
| LastMI = MI; |
| LastFn = ThisF; |
| } |
| O << Counter; |
| } else { |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Unknown special formatter '" << Code |
| << "' for machine instr: " << *MI; |
| llvm_report_error(Msg.str()); |
| } |
| } |
| |
| /// processDebugLoc - Processes the debug information of each machine |
| /// instruction's DebugLoc. |
| void AsmPrinter::processDebugLoc(DebugLoc DL) { |
| if (TAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) { |
| if (!DL.isUnknown()) { |
| DebugLocTuple CurDLT = MF->getDebugLocTuple(DL); |
| |
| if (CurDLT.CompileUnit != 0 && PrevDLT != CurDLT) |
| printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col, |
| DICompileUnit(CurDLT.CompileUnit))); |
| |
| PrevDLT = CurDLT; |
| } |
| } |
| } |
| |
| /// printInlineAsm - This method formats and prints the specified machine |
| /// instruction that is an inline asm. |
| void AsmPrinter::printInlineAsm(const MachineInstr *MI) const { |
| unsigned NumOperands = MI->getNumOperands(); |
| |
| // Count the number of register definitions. |
| unsigned NumDefs = 0; |
| for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); |
| ++NumDefs) |
| assert(NumDefs != NumOperands-1 && "No asm string?"); |
| |
| assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?"); |
| |
| // Disassemble the AsmStr, printing out the literal pieces, the operands, etc. |
| const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); |
| |
| // If this asmstr is empty, just print the #APP/#NOAPP markers. |
| // These are useful to see where empty asm's wound up. |
| if (AsmStr[0] == 0) { |
| O << TAI->getInlineAsmStart() << "\n\t" << TAI->getInlineAsmEnd() << '\n'; |
| return; |
| } |
| |
| O << TAI->getInlineAsmStart() << "\n\t"; |
| |
| // The variant of the current asmprinter. |
| int AsmPrinterVariant = TAI->getAssemblerDialect(); |
| |
| int CurVariant = -1; // The number of the {.|.|.} region we are in. |
| const char *LastEmitted = AsmStr; // One past the last character emitted. |
| |
| while (*LastEmitted) { |
| switch (*LastEmitted) { |
| default: { |
| // Not a special case, emit the string section literally. |
| const char *LiteralEnd = LastEmitted+1; |
| while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' && |
| *LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n') |
| ++LiteralEnd; |
| if (CurVariant == -1 || CurVariant == AsmPrinterVariant) |
| O.write(LastEmitted, LiteralEnd-LastEmitted); |
| LastEmitted = LiteralEnd; |
| break; |
| } |
| case '\n': |
| ++LastEmitted; // Consume newline character. |
| O << '\n'; // Indent code with newline. |
| break; |
| case '$': { |
| ++LastEmitted; // Consume '$' character. |
| bool Done = true; |
| |
| // Handle escapes. |
| switch (*LastEmitted) { |
| default: Done = false; break; |
| case '$': // $$ -> $ |
| if (CurVariant == -1 || CurVariant == AsmPrinterVariant) |
| O << '$'; |
| ++LastEmitted; // Consume second '$' character. |
| break; |
| case '(': // $( -> same as GCC's { character. |
| ++LastEmitted; // Consume '(' character. |
| if (CurVariant != -1) { |
| llvm_report_error("Nested variants found in inline asm string: '" |
| + std::string(AsmStr) + "'"); |
| } |
| CurVariant = 0; // We're in the first variant now. |
| break; |
| case '|': |
| ++LastEmitted; // consume '|' character. |
| if (CurVariant == -1) |
| O << '|'; // this is gcc's behavior for | outside a variant |
| else |
| ++CurVariant; // We're in the next variant. |
| break; |
| case ')': // $) -> same as GCC's } char. |
| ++LastEmitted; // consume ')' character. |
| if (CurVariant == -1) |
| O << '}'; // this is gcc's behavior for } outside a variant |
| else |
| CurVariant = -1; |
| break; |
| } |
| if (Done) break; |
| |
| bool HasCurlyBraces = false; |
| if (*LastEmitted == '{') { // ${variable} |
| ++LastEmitted; // Consume '{' character. |
| HasCurlyBraces = true; |
| } |
| |
| // If we have ${:foo}, then this is not a real operand reference, it is a |
| // "magic" string reference, just like in .td files. Arrange to call |
| // PrintSpecial. |
| if (HasCurlyBraces && *LastEmitted == ':') { |
| ++LastEmitted; |
| const char *StrStart = LastEmitted; |
| const char *StrEnd = strchr(StrStart, '}'); |
| if (StrEnd == 0) { |
| llvm_report_error("Unterminated ${:foo} operand in inline asm string: '" |
| + std::string(AsmStr) + "'"); |
| } |
| |
| std::string Val(StrStart, StrEnd); |
| PrintSpecial(MI, Val.c_str()); |
| LastEmitted = StrEnd+1; |
| break; |
| } |
| |
| const char *IDStart = LastEmitted; |
| char *IDEnd; |
| errno = 0; |
| long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs. |
| if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) { |
| llvm_report_error("Bad $ operand number in inline asm string: '" |
| + std::string(AsmStr) + "'"); |
| } |
| LastEmitted = IDEnd; |
| |
| char Modifier[2] = { 0, 0 }; |
| |
| if (HasCurlyBraces) { |
| // If we have curly braces, check for a modifier character. This |
| // supports syntax like ${0:u}, which correspond to "%u0" in GCC asm. |
| if (*LastEmitted == ':') { |
| ++LastEmitted; // Consume ':' character. |
| if (*LastEmitted == 0) { |
| llvm_report_error("Bad ${:} expression in inline asm string: '" |
| + std::string(AsmStr) + "'"); |
| } |
| |
| Modifier[0] = *LastEmitted; |
| ++LastEmitted; // Consume modifier character. |
| } |
| |
| if (*LastEmitted != '}') { |
| llvm_report_error("Bad ${} expression in inline asm string: '" |
| + std::string(AsmStr) + "'"); |
| } |
| ++LastEmitted; // Consume '}' character. |
| } |
| |
| if ((unsigned)Val >= NumOperands-1) { |
| llvm_report_error("Invalid $ operand number in inline asm string: '" |
| + std::string(AsmStr) + "'"); |
| } |
| |
| // Okay, we finally have a value number. Ask the target to print this |
| // operand! |
| if (CurVariant == -1 || CurVariant == AsmPrinterVariant) { |
| unsigned OpNo = 1; |
| |
| bool Error = false; |
| |
| // Scan to find the machine operand number for the operand. |
| for (; Val; --Val) { |
| if (OpNo >= MI->getNumOperands()) break; |
| unsigned OpFlags = MI->getOperand(OpNo).getImm(); |
| OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1; |
| } |
| |
| if (OpNo >= MI->getNumOperands()) { |
| Error = true; |
| } else { |
| unsigned OpFlags = MI->getOperand(OpNo).getImm(); |
| ++OpNo; // Skip over the ID number. |
| |
| if (Modifier[0]=='l') // labels are target independent |
| printBasicBlockLabel(MI->getOperand(OpNo).getMBB(), |
| false, false, false); |
| else { |
| AsmPrinter *AP = const_cast<AsmPrinter*>(this); |
| if ((OpFlags & 7) == 4) { |
| Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant, |
| Modifier[0] ? Modifier : 0); |
| } else { |
| Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant, |
| Modifier[0] ? Modifier : 0); |
| } |
| } |
| } |
| if (Error) { |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Invalid operand found in inline asm: '" |
| << AsmStr << "'\n"; |
| MI->print(Msg); |
| llvm_report_error(Msg.str()); |
| } |
| } |
| break; |
| } |
| } |
| } |
| O << "\n\t" << TAI->getInlineAsmEnd() << '\n'; |
| } |
| |
| /// printImplicitDef - This method prints the specified machine instruction |
| /// that is an implicit def. |
| void AsmPrinter::printImplicitDef(const MachineInstr *MI) const { |
| if (VerboseAsm) |
| O << '\t' << TAI->getCommentString() << " implicit-def: " |
| << TRI->getAsmName(MI->getOperand(0).getReg()) << '\n'; |
| } |
| |
| /// printLabel - This method prints a local label used by debug and |
| /// exception handling tables. |
| void AsmPrinter::printLabel(const MachineInstr *MI) const { |
| printLabel(MI->getOperand(0).getImm()); |
| } |
| |
| void AsmPrinter::printLabel(unsigned Id) const { |
| O << TAI->getPrivateGlobalPrefix() << "label" << Id << ":\n"; |
| } |
| |
| /// printDeclare - This method prints a local variable declaration used by |
| /// debug tables. |
| /// FIXME: It doesn't really print anything rather it inserts a DebugVariable |
| /// entry into dwarf table. |
| void AsmPrinter::printDeclare(const MachineInstr *MI) const { |
| unsigned FI = MI->getOperand(0).getIndex(); |
| GlobalValue *GV = MI->getOperand(1).getGlobal(); |
| DW->RecordVariable(cast<GlobalVariable>(GV), FI, MI); |
| } |
| |
| /// PrintAsmOperand - Print the specified operand of MI, an INLINEASM |
| /// instruction, using the specified assembler variant. Targets should |
| /// overried this to format as appropriate. |
| bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, |
| unsigned AsmVariant, const char *ExtraCode) { |
| // Target doesn't support this yet! |
| return true; |
| } |
| |
| bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, |
| unsigned AsmVariant, |
| const char *ExtraCode) { |
| // Target doesn't support this yet! |
| return true; |
| } |
| |
| /// printBasicBlockLabel - This method prints the label for the specified |
| /// MachineBasicBlock |
| void AsmPrinter::printBasicBlockLabel(const MachineBasicBlock *MBB, |
| bool printAlign, |
| bool printColon, |
| bool printComment) const { |
| if (printAlign) { |
| unsigned Align = MBB->getAlignment(); |
| if (Align) |
| EmitAlignment(Log2_32(Align)); |
| } |
| |
| O << TAI->getPrivateGlobalPrefix() << "BB" << getFunctionNumber() << '_' |
| << MBB->getNumber(); |
| if (printColon) |
| O << ':'; |
| if (printComment && MBB->getBasicBlock()) |
| O << '\t' << TAI->getCommentString() << ' ' |
| << MBB->getBasicBlock()->getNameStr(); |
| } |
| |
| /// printPICJumpTableSetLabel - This method prints a set label for the |
| /// specified MachineBasicBlock for a jumptable entry. |
| void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, |
| const MachineBasicBlock *MBB) const { |
| if (!TAI->getSetDirective()) |
| return; |
| |
| O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() |
| << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; |
| printBasicBlockLabel(MBB, false, false, false); |
| O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() |
| << '_' << uid << '\n'; |
| } |
| |
| void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2, |
| const MachineBasicBlock *MBB) const { |
| if (!TAI->getSetDirective()) |
| return; |
| |
| O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() |
| << getFunctionNumber() << '_' << uid << '_' << uid2 |
| << "_set_" << MBB->getNumber() << ','; |
| printBasicBlockLabel(MBB, false, false, false); |
| O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() |
| << '_' << uid << '_' << uid2 << '\n'; |
| } |
| |
| /// printDataDirective - This method prints the asm directive for the |
| /// specified type. |
| void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) { |
| const TargetData *TD = TM.getTargetData(); |
| switch (type->getTypeID()) { |
| case Type::FloatTyID: case Type::DoubleTyID: |
| case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: |
| assert(0 && "Should have already output floating point constant."); |
| default: |
| assert(0 && "Can't handle printing this type of thing"); |
| case Type::IntegerTyID: { |
| unsigned BitWidth = cast<IntegerType>(type)->getBitWidth(); |
| if (BitWidth <= 8) |
| O << TAI->getData8bitsDirective(AddrSpace); |
| else if (BitWidth <= 16) |
| O << TAI->getData16bitsDirective(AddrSpace); |
| else if (BitWidth <= 32) |
| O << TAI->getData32bitsDirective(AddrSpace); |
| else if (BitWidth <= 64) { |
| assert(TAI->getData64bitsDirective(AddrSpace) && |
| "Target cannot handle 64-bit constant exprs!"); |
| O << TAI->getData64bitsDirective(AddrSpace); |
| } else { |
| llvm_unreachable("Target cannot handle given data directive width!"); |
| } |
| break; |
| } |
| case Type::PointerTyID: |
| if (TD->getPointerSize() == 8) { |
| assert(TAI->getData64bitsDirective(AddrSpace) && |
| "Target cannot handle 64-bit pointer exprs!"); |
| O << TAI->getData64bitsDirective(AddrSpace); |
| } else if (TD->getPointerSize() == 2) { |
| O << TAI->getData16bitsDirective(AddrSpace); |
| } else if (TD->getPointerSize() == 1) { |
| O << TAI->getData8bitsDirective(AddrSpace); |
| } else { |
| O << TAI->getData32bitsDirective(AddrSpace); |
| } |
| break; |
| } |
| } |
| |
| void AsmPrinter::printVisibility(const std::string& Name, |
| unsigned Visibility) const { |
| if (Visibility == GlobalValue::HiddenVisibility) { |
| if (const char *Directive = TAI->getHiddenDirective()) |
| O << Directive << Name << '\n'; |
| } else if (Visibility == GlobalValue::ProtectedVisibility) { |
| if (const char *Directive = TAI->getProtectedDirective()) |
| O << Directive << Name << '\n'; |
| } |
| } |
| |
| void AsmPrinter::printOffset(int64_t Offset) const { |
| if (Offset > 0) |
| O << '+' << Offset; |
| else if (Offset < 0) |
| O << Offset; |
| } |
| |
| GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { |
| if (!S->usesMetadata()) |
| return 0; |
| |
| gcp_iterator GCPI = GCMetadataPrinters.find(S); |
| if (GCPI != GCMetadataPrinters.end()) |
| return GCPI->second; |
| |
| const char *Name = S->getName().c_str(); |
| |
| for (GCMetadataPrinterRegistry::iterator |
| I = GCMetadataPrinterRegistry::begin(), |
| E = GCMetadataPrinterRegistry::end(); I != E; ++I) |
| if (strcmp(Name, I->getName()) == 0) { |
| GCMetadataPrinter *GMP = I->instantiate(); |
| GMP->S = S; |
| GCMetadataPrinters.insert(std::make_pair(S, GMP)); |
| return GMP; |
| } |
| |
| cerr << "no GCMetadataPrinter registered for GC: " << Name << "\n"; |
| llvm_unreachable(0); |
| } |
| |
| /// EmitComments - Pretty-print comments for instructions |
| void AsmPrinter::EmitComments(const MachineInstr &MI) const |
| { |
| if (VerboseAsm) { |
| if (!MI.getDebugLoc().isUnknown()) { |
| DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); |
| |
| // Print source line info |
| O.PadToColumn(TAI->getCommentColumn(), 1); |
| O << TAI->getCommentString() << " SrcLine "; |
| if (DLT.CompileUnit->hasInitializer()) { |
| Constant *Name = DLT.CompileUnit->getInitializer(); |
| if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name)) |
| if (NameString->isString()) { |
| O << NameString->getAsString() << " "; |
| } |
| } |
| O << DLT.Line; |
| if (DLT.Col != 0) |
| O << ":" << DLT.Col; |
| } |
| } |
| } |
| |
| /// EmitComments - Pretty-print comments for instructions |
| void AsmPrinter::EmitComments(const MCInst &MI) const |
| { |
| if (VerboseAsm) { |
| if (!MI.getDebugLoc().isUnknown()) { |
| DebugLocTuple DLT = MF->getDebugLocTuple(MI.getDebugLoc()); |
| |
| // Print source line info |
| O.PadToColumn(TAI->getCommentColumn(), 1); |
| O << TAI->getCommentString() << " SrcLine "; |
| if (DLT.CompileUnit->hasInitializer()) { |
| Constant *Name = DLT.CompileUnit->getInitializer(); |
| if (ConstantArray *NameString = dyn_cast<ConstantArray>(Name)) |
| if (NameString->isString()) { |
| O << NameString->getAsString() << " "; |
| } |
| } |
| O << DLT.Line; |
| if (DLT.Col != 0) |
| O << ":" << DLT.Col; |
| } |
| } |
| } |