| //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a pass that splits the constant pool up into 'islands' |
| // which are scattered through-out the function. This is required due to the |
| // limited pc-relative displacements that ARM has. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "arm-cp-islands" |
| #include "ARM.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "Thumb2InstrInfo.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumCPEs, "Number of constpool entries"); |
| STATISTIC(NumSplit, "Number of uncond branches inserted"); |
| STATISTIC(NumCBrFixed, "Number of cond branches fixed"); |
| STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); |
| STATISTIC(NumTBs, "Number of table branches generated"); |
| STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); |
| STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); |
| STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); |
| STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); |
| STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); |
| |
| |
| static cl::opt<bool> |
| AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), |
| cl::desc("Adjust basic block layout to better use TB[BH]")); |
| |
| // FIXME: This option should be removed once it has received sufficient testing. |
| static cl::opt<bool> |
| AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true), |
| cl::desc("Align constant islands in code")); |
| |
| /// UnknownPadding - Return the worst case padding that could result from |
| /// unknown offset bits. This does not include alignment padding caused by |
| /// known offset bits. |
| /// |
| /// @param LogAlign log2(alignment) |
| /// @param KnownBits Number of known low offset bits. |
| static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { |
| if (KnownBits < LogAlign) |
| return (1u << LogAlign) - (1u << KnownBits); |
| return 0; |
| } |
| |
| namespace { |
| /// ARMConstantIslands - Due to limited PC-relative displacements, ARM |
| /// requires constant pool entries to be scattered among the instructions |
| /// inside a function. To do this, it completely ignores the normal LLVM |
| /// constant pool; instead, it places constants wherever it feels like with |
| /// special instructions. |
| /// |
| /// The terminology used in this pass includes: |
| /// Islands - Clumps of constants placed in the function. |
| /// Water - Potential places where an island could be formed. |
| /// CPE - A constant pool entry that has been placed somewhere, which |
| /// tracks a list of users. |
| class ARMConstantIslands : public MachineFunctionPass { |
| /// BasicBlockInfo - Information about the offset and size of a single |
| /// basic block. |
| struct BasicBlockInfo { |
| /// Offset - Distance from the beginning of the function to the beginning |
| /// of this basic block. |
| /// |
| /// Offsets are computed assuming worst case padding before an aligned |
| /// block. This means that subtracting basic block offsets always gives a |
| /// conservative estimate of the real distance which may be smaller. |
| /// |
| /// Because worst case padding is used, the computed offset of an aligned |
| /// block may not actually be aligned. |
| unsigned Offset; |
| |
| /// Size - Size of the basic block in bytes. If the block contains |
| /// inline assembly, this is a worst case estimate. |
| /// |
| /// The size does not include any alignment padding whether from the |
| /// beginning of the block, or from an aligned jump table at the end. |
| unsigned Size; |
| |
| /// KnownBits - The number of low bits in Offset that are known to be |
| /// exact. The remaining bits of Offset are an upper bound. |
| uint8_t KnownBits; |
| |
| /// Unalign - When non-zero, the block contains instructions (inline asm) |
| /// of unknown size. The real size may be smaller than Size bytes by a |
| /// multiple of 1 << Unalign. |
| uint8_t Unalign; |
| |
| /// PostAlign - When non-zero, the block terminator contains a .align |
| /// directive, so the end of the block is aligned to 1 << PostAlign |
| /// bytes. |
| uint8_t PostAlign; |
| |
| BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), |
| PostAlign(0) {} |
| |
| /// Compute the number of known offset bits internally to this block. |
| /// This number should be used to predict worst case padding when |
| /// splitting the block. |
| unsigned internalKnownBits() const { |
| unsigned Bits = Unalign ? Unalign : KnownBits; |
| // If the block size isn't a multiple of the known bits, assume the |
| // worst case padding. |
| if (Size & ((1u << Bits) - 1)) |
| Bits = CountTrailingZeros_32(Size); |
| return Bits; |
| } |
| |
| /// Compute the offset immediately following this block. If LogAlign is |
| /// specified, return the offset the successor block will get if it has |
| /// this alignment. |
| unsigned postOffset(unsigned LogAlign = 0) const { |
| unsigned PO = Offset + Size; |
| unsigned LA = std::max(unsigned(PostAlign), LogAlign); |
| if (!LA) |
| return PO; |
| // Add alignment padding from the terminator. |
| return PO + UnknownPadding(LA, internalKnownBits()); |
| } |
| |
| /// Compute the number of known low bits of postOffset. If this block |
| /// contains inline asm, the number of known bits drops to the |
| /// instruction alignment. An aligned terminator may increase the number |
| /// of know bits. |
| /// If LogAlign is given, also consider the alignment of the next block. |
| unsigned postKnownBits(unsigned LogAlign = 0) const { |
| return std::max(std::max(unsigned(PostAlign), LogAlign), |
| internalKnownBits()); |
| } |
| }; |
| |
| std::vector<BasicBlockInfo> BBInfo; |
| |
| /// WaterList - A sorted list of basic blocks where islands could be placed |
| /// (i.e. blocks that don't fall through to the following block, due |
| /// to a return, unreachable, or unconditional branch). |
| std::vector<MachineBasicBlock*> WaterList; |
| |
| /// NewWaterList - The subset of WaterList that was created since the |
| /// previous iteration by inserting unconditional branches. |
| SmallSet<MachineBasicBlock*, 4> NewWaterList; |
| |
| typedef std::vector<MachineBasicBlock*>::iterator water_iterator; |
| |
| /// CPUser - One user of a constant pool, keeping the machine instruction |
| /// pointer, the constant pool being referenced, and the max displacement |
| /// allowed from the instruction to the CP. The HighWaterMark records the |
| /// highest basic block where a new CPEntry can be placed. To ensure this |
| /// pass terminates, the CP entries are initially placed at the end of the |
| /// function and then move monotonically to lower addresses. The |
| /// exception to this rule is when the current CP entry for a particular |
| /// CPUser is out of range, but there is another CP entry for the same |
| /// constant value in range. We want to use the existing in-range CP |
| /// entry, but if it later moves out of range, the search for new water |
| /// should resume where it left off. The HighWaterMark is used to record |
| /// that point. |
| struct CPUser { |
| MachineInstr *MI; |
| MachineInstr *CPEMI; |
| MachineBasicBlock *HighWaterMark; |
| private: |
| unsigned MaxDisp; |
| public: |
| bool NegOk; |
| bool IsSoImm; |
| bool KnownAlignment; |
| CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, |
| bool neg, bool soimm) |
| : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), |
| KnownAlignment(false) { |
| HighWaterMark = CPEMI->getParent(); |
| } |
| /// getMaxDisp - Returns the maximum displacement supported by MI. |
| /// Correct for unknown alignment. |
| /// Conservatively subtract 2 bytes to handle weird alignment effects. |
| unsigned getMaxDisp() const { |
| return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; |
| } |
| }; |
| |
| /// CPUsers - Keep track of all of the machine instructions that use various |
| /// constant pools and their max displacement. |
| std::vector<CPUser> CPUsers; |
| |
| /// CPEntry - One per constant pool entry, keeping the machine instruction |
| /// pointer, the constpool index, and the number of CPUser's which |
| /// reference this entry. |
| struct CPEntry { |
| MachineInstr *CPEMI; |
| unsigned CPI; |
| unsigned RefCount; |
| CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) |
| : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} |
| }; |
| |
| /// CPEntries - Keep track of all of the constant pool entry machine |
| /// instructions. For each original constpool index (i.e. those that |
| /// existed upon entry to this pass), it keeps a vector of entries. |
| /// Original elements are cloned as we go along; the clones are |
| /// put in the vector of the original element, but have distinct CPIs. |
| std::vector<std::vector<CPEntry> > CPEntries; |
| |
| /// ImmBranch - One per immediate branch, keeping the machine instruction |
| /// pointer, conditional or unconditional, the max displacement, |
| /// and (if isCond is true) the corresponding unconditional branch |
| /// opcode. |
| struct ImmBranch { |
| MachineInstr *MI; |
| unsigned MaxDisp : 31; |
| bool isCond : 1; |
| int UncondBr; |
| ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) |
| : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} |
| }; |
| |
| /// ImmBranches - Keep track of all the immediate branch instructions. |
| /// |
| std::vector<ImmBranch> ImmBranches; |
| |
| /// PushPopMIs - Keep track of all the Thumb push / pop instructions. |
| /// |
| SmallVector<MachineInstr*, 4> PushPopMIs; |
| |
| /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. |
| SmallVector<MachineInstr*, 4> T2JumpTables; |
| |
| /// HasFarJump - True if any far jump instruction has been emitted during |
| /// the branch fix up pass. |
| bool HasFarJump; |
| |
| MachineFunction *MF; |
| MachineConstantPool *MCP; |
| const ARMBaseInstrInfo *TII; |
| const ARMSubtarget *STI; |
| ARMFunctionInfo *AFI; |
| bool isThumb; |
| bool isThumb1; |
| bool isThumb2; |
| public: |
| static char ID; |
| ARMConstantIslands() : MachineFunctionPass(ID) {} |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual const char *getPassName() const { |
| return "ARM constant island placement and branch shortening pass"; |
| } |
| |
| private: |
| void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); |
| CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); |
| unsigned getCPELogAlign(const MachineInstr *CPEMI); |
| void scanFunctionJumpTables(); |
| void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); |
| MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); |
| void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); |
| void adjustBBOffsetsAfter(MachineBasicBlock *BB); |
| bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); |
| int findInRangeCPEntry(CPUser& U, unsigned UserOffset); |
| bool findAvailableWater(CPUser&U, unsigned UserOffset, |
| water_iterator &WaterIter); |
| void createNewWater(unsigned CPUserIndex, unsigned UserOffset, |
| MachineBasicBlock *&NewMBB); |
| bool handleConstantPoolUser(unsigned CPUserIndex); |
| void removeDeadCPEMI(MachineInstr *CPEMI); |
| bool removeUnusedCPEntries(); |
| bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, |
| MachineInstr *CPEMI, unsigned Disp, bool NegOk, |
| bool DoDump = false); |
| bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, |
| CPUser &U, unsigned &Growth); |
| bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); |
| bool fixupImmediateBr(ImmBranch &Br); |
| bool fixupConditionalBr(ImmBranch &Br); |
| bool fixupUnconditionalBr(ImmBranch &Br); |
| bool undoLRSpillRestore(); |
| bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; |
| bool optimizeThumb2Instructions(); |
| bool optimizeThumb2Branches(); |
| bool reorderThumb2JumpTables(); |
| bool optimizeThumb2JumpTables(); |
| MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, |
| MachineBasicBlock *JTBB); |
| |
| void computeBlockSize(MachineBasicBlock *MBB); |
| unsigned getOffsetOf(MachineInstr *MI) const; |
| unsigned getUserOffset(CPUser&) const; |
| void dumpBBs(); |
| void verify(); |
| |
| bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, |
| unsigned Disp, bool NegativeOK, bool IsSoImm = false); |
| bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, |
| const CPUser &U) { |
| return isOffsetInRange(UserOffset, TrialOffset, |
| U.getMaxDisp(), U.NegOk, U.IsSoImm); |
| } |
| }; |
| char ARMConstantIslands::ID = 0; |
| } |
| |
| /// verify - check BBOffsets, BBSizes, alignment of islands |
| void ARMConstantIslands::verify() { |
| #ifndef NDEBUG |
| for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock *MBB = MBBI; |
| unsigned MBBId = MBB->getNumber(); |
| assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); |
| } |
| DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); |
| for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { |
| CPUser &U = CPUsers[i]; |
| unsigned UserOffset = getUserOffset(U); |
| // Verify offset using the real max displacement without the safety |
| // adjustment. |
| if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, |
| /* DoDump = */ true)) { |
| DEBUG(dbgs() << "OK\n"); |
| continue; |
| } |
| DEBUG(dbgs() << "Out of range.\n"); |
| dumpBBs(); |
| DEBUG(MF->dump()); |
| llvm_unreachable("Constant pool entry out of range!"); |
| } |
| #endif |
| } |
| |
| /// print block size and offset information - debugging |
| void ARMConstantIslands::dumpBBs() { |
| DEBUG({ |
| for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { |
| const BasicBlockInfo &BBI = BBInfo[J]; |
| dbgs() << format("%08x BB#%u\t", BBI.Offset, J) |
| << " kb=" << unsigned(BBI.KnownBits) |
| << " ua=" << unsigned(BBI.Unalign) |
| << " pa=" << unsigned(BBI.PostAlign) |
| << format(" size=%#x\n", BBInfo[J].Size); |
| } |
| }); |
| } |
| |
| /// createARMConstantIslandPass - returns an instance of the constpool |
| /// island pass. |
| FunctionPass *llvm::createARMConstantIslandPass() { |
| return new ARMConstantIslands(); |
| } |
| |
| bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { |
| MF = &mf; |
| MCP = mf.getConstantPool(); |
| |
| DEBUG(dbgs() << "***** ARMConstantIslands: " |
| << MCP->getConstants().size() << " CP entries, aligned to " |
| << MCP->getConstantPoolAlignment() << " bytes *****\n"); |
| |
| TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo(); |
| AFI = MF->getInfo<ARMFunctionInfo>(); |
| STI = &MF->getTarget().getSubtarget<ARMSubtarget>(); |
| |
| isThumb = AFI->isThumbFunction(); |
| isThumb1 = AFI->isThumb1OnlyFunction(); |
| isThumb2 = AFI->isThumb2Function(); |
| |
| HasFarJump = false; |
| |
| // This pass invalidates liveness information when it splits basic blocks. |
| MF->getRegInfo().invalidateLiveness(); |
| |
| // Renumber all of the machine basic blocks in the function, guaranteeing that |
| // the numbers agree with the position of the block in the function. |
| MF->RenumberBlocks(); |
| |
| // Try to reorder and otherwise adjust the block layout to make good use |
| // of the TB[BH] instructions. |
| bool MadeChange = false; |
| if (isThumb2 && AdjustJumpTableBlocks) { |
| scanFunctionJumpTables(); |
| MadeChange |= reorderThumb2JumpTables(); |
| // Data is out of date, so clear it. It'll be re-computed later. |
| T2JumpTables.clear(); |
| // Blocks may have shifted around. Keep the numbering up to date. |
| MF->RenumberBlocks(); |
| } |
| |
| // Thumb1 functions containing constant pools get 4-byte alignment. |
| // This is so we can keep exact track of where the alignment padding goes. |
| |
| // ARM and Thumb2 functions need to be 4-byte aligned. |
| if (!isThumb1) |
| MF->ensureAlignment(2); // 2 = log2(4) |
| |
| // Perform the initial placement of the constant pool entries. To start with, |
| // we put them all at the end of the function. |
| std::vector<MachineInstr*> CPEMIs; |
| if (!MCP->isEmpty()) |
| doInitialPlacement(CPEMIs); |
| |
| /// The next UID to take is the first unused one. |
| AFI->initPICLabelUId(CPEMIs.size()); |
| |
| // Do the initial scan of the function, building up information about the |
| // sizes of each block, the location of all the water, and finding all of the |
| // constant pool users. |
| initializeFunctionInfo(CPEMIs); |
| CPEMIs.clear(); |
| DEBUG(dumpBBs()); |
| |
| |
| /// Remove dead constant pool entries. |
| MadeChange |= removeUnusedCPEntries(); |
| |
| // Iteratively place constant pool entries and fix up branches until there |
| // is no change. |
| unsigned NoCPIters = 0, NoBRIters = 0; |
| while (true) { |
| DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); |
| bool CPChange = false; |
| for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) |
| CPChange |= handleConstantPoolUser(i); |
| if (CPChange && ++NoCPIters > 30) |
| report_fatal_error("Constant Island pass failed to converge!"); |
| DEBUG(dumpBBs()); |
| |
| // Clear NewWaterList now. If we split a block for branches, it should |
| // appear as "new water" for the next iteration of constant pool placement. |
| NewWaterList.clear(); |
| |
| DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); |
| bool BRChange = false; |
| for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) |
| BRChange |= fixupImmediateBr(ImmBranches[i]); |
| if (BRChange && ++NoBRIters > 30) |
| report_fatal_error("Branch Fix Up pass failed to converge!"); |
| DEBUG(dumpBBs()); |
| |
| if (!CPChange && !BRChange) |
| break; |
| MadeChange = true; |
| } |
| |
| // Shrink 32-bit Thumb2 branch, load, and store instructions. |
| if (isThumb2 && !STI->prefers32BitThumb()) |
| MadeChange |= optimizeThumb2Instructions(); |
| |
| // After a while, this might be made debug-only, but it is not expensive. |
| verify(); |
| |
| // If LR has been forced spilled and no far jump (i.e. BL) has been issued, |
| // undo the spill / restore of LR if possible. |
| if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) |
| MadeChange |= undoLRSpillRestore(); |
| |
| // Save the mapping between original and cloned constpool entries. |
| for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { |
| for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { |
| const CPEntry & CPE = CPEntries[i][j]; |
| AFI->recordCPEClone(i, CPE.CPI); |
| } |
| } |
| |
| DEBUG(dbgs() << '\n'; dumpBBs()); |
| |
| BBInfo.clear(); |
| WaterList.clear(); |
| CPUsers.clear(); |
| CPEntries.clear(); |
| ImmBranches.clear(); |
| PushPopMIs.clear(); |
| T2JumpTables.clear(); |
| |
| return MadeChange; |
| } |
| |
| /// doInitialPlacement - Perform the initial placement of the constant pool |
| /// entries. To start with, we put them all at the end of the function. |
| void |
| ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { |
| // Create the basic block to hold the CPE's. |
| MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); |
| MF->push_back(BB); |
| |
| // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). |
| unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); |
| |
| // Mark the basic block as required by the const-pool. |
| // If AlignConstantIslands isn't set, use 4-byte alignment for everything. |
| BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); |
| |
| // The function needs to be as aligned as the basic blocks. The linker may |
| // move functions around based on their alignment. |
| MF->ensureAlignment(BB->getAlignment()); |
| |
| // Order the entries in BB by descending alignment. That ensures correct |
| // alignment of all entries as long as BB is sufficiently aligned. Keep |
| // track of the insertion point for each alignment. We are going to bucket |
| // sort the entries as they are created. |
| SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); |
| |
| // Add all of the constants from the constant pool to the end block, use an |
| // identity mapping of CPI's to CPE's. |
| const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); |
| |
| const DataLayout &TD = *MF->getTarget().getDataLayout(); |
| for (unsigned i = 0, e = CPs.size(); i != e; ++i) { |
| unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); |
| assert(Size >= 4 && "Too small constant pool entry"); |
| unsigned Align = CPs[i].getAlignment(); |
| assert(isPowerOf2_32(Align) && "Invalid alignment"); |
| // Verify that all constant pool entries are a multiple of their alignment. |
| // If not, we would have to pad them out so that instructions stay aligned. |
| assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); |
| |
| // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. |
| unsigned LogAlign = Log2_32(Align); |
| MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; |
| MachineInstr *CPEMI = |
| BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) |
| .addImm(i).addConstantPoolIndex(i).addImm(Size); |
| CPEMIs.push_back(CPEMI); |
| |
| // Ensure that future entries with higher alignment get inserted before |
| // CPEMI. This is bucket sort with iterators. |
| for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) |
| if (InsPoint[a] == InsAt) |
| InsPoint[a] = CPEMI; |
| |
| // Add a new CPEntry, but no corresponding CPUser yet. |
| std::vector<CPEntry> CPEs; |
| CPEs.push_back(CPEntry(CPEMI, i)); |
| CPEntries.push_back(CPEs); |
| ++NumCPEs; |
| DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " |
| << Size << ", align = " << Align <<'\n'); |
| } |
| DEBUG(BB->dump()); |
| } |
| |
| /// BBHasFallthrough - Return true if the specified basic block can fallthrough |
| /// into the block immediately after it. |
| static bool BBHasFallthrough(MachineBasicBlock *MBB) { |
| // Get the next machine basic block in the function. |
| MachineFunction::iterator MBBI = MBB; |
| // Can't fall off end of function. |
| if (llvm::next(MBBI) == MBB->getParent()->end()) |
| return false; |
| |
| MachineBasicBlock *NextBB = llvm::next(MBBI); |
| for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), |
| E = MBB->succ_end(); I != E; ++I) |
| if (*I == NextBB) |
| return true; |
| |
| return false; |
| } |
| |
| /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, |
| /// look up the corresponding CPEntry. |
| ARMConstantIslands::CPEntry |
| *ARMConstantIslands::findConstPoolEntry(unsigned CPI, |
| const MachineInstr *CPEMI) { |
| std::vector<CPEntry> &CPEs = CPEntries[CPI]; |
| // Number of entries per constpool index should be small, just do a |
| // linear search. |
| for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { |
| if (CPEs[i].CPEMI == CPEMI) |
| return &CPEs[i]; |
| } |
| return NULL; |
| } |
| |
| /// getCPELogAlign - Returns the required alignment of the constant pool entry |
| /// represented by CPEMI. Alignment is measured in log2(bytes) units. |
| unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { |
| assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY); |
| |
| // Everything is 4-byte aligned unless AlignConstantIslands is set. |
| if (!AlignConstantIslands) |
| return 2; |
| |
| unsigned CPI = CPEMI->getOperand(1).getIndex(); |
| assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); |
| unsigned Align = MCP->getConstants()[CPI].getAlignment(); |
| assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); |
| return Log2_32(Align); |
| } |
| |
| /// scanFunctionJumpTables - Do a scan of the function, building up |
| /// information about the sizes of each block and the locations of all |
| /// the jump tables. |
| void ARMConstantIslands::scanFunctionJumpTables() { |
| for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock &MBB = *MBBI; |
| |
| for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); |
| I != E; ++I) |
| if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT) |
| T2JumpTables.push_back(I); |
| } |
| } |
| |
| /// initializeFunctionInfo - Do the initial scan of the function, building up |
| /// information about the sizes of each block, the location of all the water, |
| /// and finding all of the constant pool users. |
| void ARMConstantIslands:: |
| initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { |
| BBInfo.clear(); |
| BBInfo.resize(MF->getNumBlockIDs()); |
| |
| // First thing, compute the size of all basic blocks, and see if the function |
| // has any inline assembly in it. If so, we have to be conservative about |
| // alignment assumptions, as we don't know for sure the size of any |
| // instructions in the inline assembly. |
| for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) |
| computeBlockSize(I); |
| |
| // The known bits of the entry block offset are determined by the function |
| // alignment. |
| BBInfo.front().KnownBits = MF->getAlignment(); |
| |
| // Compute block offsets and known bits. |
| adjustBBOffsetsAfter(MF->begin()); |
| |
| // Now go back through the instructions and build up our data structures. |
| for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock &MBB = *MBBI; |
| |
| // If this block doesn't fall through into the next MBB, then this is |
| // 'water' that a constant pool island could be placed. |
| if (!BBHasFallthrough(&MBB)) |
| WaterList.push_back(&MBB); |
| |
| for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); |
| I != E; ++I) { |
| if (I->isDebugValue()) |
| continue; |
| |
| int Opc = I->getOpcode(); |
| if (I->isBranch()) { |
| bool isCond = false; |
| unsigned Bits = 0; |
| unsigned Scale = 1; |
| int UOpc = Opc; |
| switch (Opc) { |
| default: |
| continue; // Ignore other JT branches |
| case ARM::t2BR_JT: |
| T2JumpTables.push_back(I); |
| continue; // Does not get an entry in ImmBranches |
| case ARM::Bcc: |
| isCond = true; |
| UOpc = ARM::B; |
| // Fallthrough |
| case ARM::B: |
| Bits = 24; |
| Scale = 4; |
| break; |
| case ARM::tBcc: |
| isCond = true; |
| UOpc = ARM::tB; |
| Bits = 8; |
| Scale = 2; |
| break; |
| case ARM::tB: |
| Bits = 11; |
| Scale = 2; |
| break; |
| case ARM::t2Bcc: |
| isCond = true; |
| UOpc = ARM::t2B; |
| Bits = 20; |
| Scale = 2; |
| break; |
| case ARM::t2B: |
| Bits = 24; |
| Scale = 2; |
| break; |
| } |
| |
| // Record this immediate branch. |
| unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; |
| ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); |
| } |
| |
| if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) |
| PushPopMIs.push_back(I); |
| |
| if (Opc == ARM::CONSTPOOL_ENTRY) |
| continue; |
| |
| // Scan the instructions for constant pool operands. |
| for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) |
| if (I->getOperand(op).isCPI()) { |
| // We found one. The addressing mode tells us the max displacement |
| // from the PC that this instruction permits. |
| |
| // Basic size info comes from the TSFlags field. |
| unsigned Bits = 0; |
| unsigned Scale = 1; |
| bool NegOk = false; |
| bool IsSoImm = false; |
| |
| switch (Opc) { |
| default: |
| llvm_unreachable("Unknown addressing mode for CP reference!"); |
| |
| // Taking the address of a CP entry. |
| case ARM::LEApcrel: |
| // This takes a SoImm, which is 8 bit immediate rotated. We'll |
| // pretend the maximum offset is 255 * 4. Since each instruction |
| // 4 byte wide, this is always correct. We'll check for other |
| // displacements that fits in a SoImm as well. |
| Bits = 8; |
| Scale = 4; |
| NegOk = true; |
| IsSoImm = true; |
| break; |
| case ARM::t2LEApcrel: |
| Bits = 12; |
| NegOk = true; |
| break; |
| case ARM::tLEApcrel: |
| Bits = 8; |
| Scale = 4; |
| break; |
| |
| case ARM::LDRi12: |
| case ARM::LDRcp: |
| case ARM::t2LDRpci: |
| Bits = 12; // +-offset_12 |
| NegOk = true; |
| break; |
| |
| case ARM::tLDRpci: |
| Bits = 8; |
| Scale = 4; // +(offset_8*4) |
| break; |
| |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| Bits = 8; |
| Scale = 4; // +-(offset_8*4) |
| NegOk = true; |
| break; |
| } |
| |
| // Remember that this is a user of a CP entry. |
| unsigned CPI = I->getOperand(op).getIndex(); |
| MachineInstr *CPEMI = CPEMIs[CPI]; |
| unsigned MaxOffs = ((1 << Bits)-1) * Scale; |
| CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); |
| |
| // Increment corresponding CPEntry reference count. |
| CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); |
| assert(CPE && "Cannot find a corresponding CPEntry!"); |
| CPE->RefCount++; |
| |
| // Instructions can only use one CP entry, don't bother scanning the |
| // rest of the operands. |
| break; |
| } |
| } |
| } |
| } |
| |
| /// computeBlockSize - Compute the size and some alignment information for MBB. |
| /// This function updates BBInfo directly. |
| void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { |
| BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; |
| BBI.Size = 0; |
| BBI.Unalign = 0; |
| BBI.PostAlign = 0; |
| |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; |
| ++I) { |
| BBI.Size += TII->GetInstSizeInBytes(I); |
| // For inline asm, GetInstSizeInBytes returns a conservative estimate. |
| // The actual size may be smaller, but still a multiple of the instr size. |
| if (I->isInlineAsm()) |
| BBI.Unalign = isThumb ? 1 : 2; |
| // Also consider instructions that may be shrunk later. |
| else if (isThumb && mayOptimizeThumb2Instruction(I)) |
| BBI.Unalign = 1; |
| } |
| |
| // tBR_JTr contains a .align 2 directive. |
| if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { |
| BBI.PostAlign = 2; |
| MBB->getParent()->ensureAlignment(2); |
| } |
| } |
| |
| /// getOffsetOf - Return the current offset of the specified machine instruction |
| /// from the start of the function. This offset changes as stuff is moved |
| /// around inside the function. |
| unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { |
| MachineBasicBlock *MBB = MI->getParent(); |
| |
| // The offset is composed of two things: the sum of the sizes of all MBB's |
| // before this instruction's block, and the offset from the start of the block |
| // it is in. |
| unsigned Offset = BBInfo[MBB->getNumber()].Offset; |
| |
| // Sum instructions before MI in MBB. |
| for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { |
| assert(I != MBB->end() && "Didn't find MI in its own basic block?"); |
| Offset += TII->GetInstSizeInBytes(I); |
| } |
| return Offset; |
| } |
| |
| /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB |
| /// ID. |
| static bool CompareMBBNumbers(const MachineBasicBlock *LHS, |
| const MachineBasicBlock *RHS) { |
| return LHS->getNumber() < RHS->getNumber(); |
| } |
| |
| /// updateForInsertedWaterBlock - When a block is newly inserted into the |
| /// machine function, it upsets all of the block numbers. Renumber the blocks |
| /// and update the arrays that parallel this numbering. |
| void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { |
| // Renumber the MBB's to keep them consecutive. |
| NewBB->getParent()->RenumberBlocks(NewBB); |
| |
| // Insert an entry into BBInfo to align it properly with the (newly |
| // renumbered) block numbers. |
| BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); |
| |
| // Next, update WaterList. Specifically, we need to add NewMBB as having |
| // available water after it. |
| water_iterator IP = |
| std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, |
| CompareMBBNumbers); |
| WaterList.insert(IP, NewBB); |
| } |
| |
| |
| /// Split the basic block containing MI into two blocks, which are joined by |
| /// an unconditional branch. Update data structures and renumber blocks to |
| /// account for this change and returns the newly created block. |
| MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { |
| MachineBasicBlock *OrigBB = MI->getParent(); |
| |
| // Create a new MBB for the code after the OrigBB. |
| MachineBasicBlock *NewBB = |
| MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); |
| MachineFunction::iterator MBBI = OrigBB; ++MBBI; |
| MF->insert(MBBI, NewBB); |
| |
| // Splice the instructions starting with MI over to NewBB. |
| NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); |
| |
| // Add an unconditional branch from OrigBB to NewBB. |
| // Note the new unconditional branch is not being recorded. |
| // There doesn't seem to be meaningful DebugInfo available; this doesn't |
| // correspond to anything in the source. |
| unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; |
| if (!isThumb) |
| BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); |
| else |
| BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) |
| .addImm(ARMCC::AL).addReg(0); |
| ++NumSplit; |
| |
| // Update the CFG. All succs of OrigBB are now succs of NewBB. |
| NewBB->transferSuccessors(OrigBB); |
| |
| // OrigBB branches to NewBB. |
| OrigBB->addSuccessor(NewBB); |
| |
| // Update internal data structures to account for the newly inserted MBB. |
| // This is almost the same as updateForInsertedWaterBlock, except that |
| // the Water goes after OrigBB, not NewBB. |
| MF->RenumberBlocks(NewBB); |
| |
| // Insert an entry into BBInfo to align it properly with the (newly |
| // renumbered) block numbers. |
| BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); |
| |
| // Next, update WaterList. Specifically, we need to add OrigMBB as having |
| // available water after it (but not if it's already there, which happens |
| // when splitting before a conditional branch that is followed by an |
| // unconditional branch - in that case we want to insert NewBB). |
| water_iterator IP = |
| std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, |
| CompareMBBNumbers); |
| MachineBasicBlock* WaterBB = *IP; |
| if (WaterBB == OrigBB) |
| WaterList.insert(llvm::next(IP), NewBB); |
| else |
| WaterList.insert(IP, OrigBB); |
| NewWaterList.insert(OrigBB); |
| |
| // Figure out how large the OrigBB is. As the first half of the original |
| // block, it cannot contain a tablejump. The size includes |
| // the new jump we added. (It should be possible to do this without |
| // recounting everything, but it's very confusing, and this is rarely |
| // executed.) |
| computeBlockSize(OrigBB); |
| |
| // Figure out how large the NewMBB is. As the second half of the original |
| // block, it may contain a tablejump. |
| computeBlockSize(NewBB); |
| |
| // All BBOffsets following these blocks must be modified. |
| adjustBBOffsetsAfter(OrigBB); |
| |
| return NewBB; |
| } |
| |
| /// getUserOffset - Compute the offset of U.MI as seen by the hardware |
| /// displacement computation. Update U.KnownAlignment to match its current |
| /// basic block location. |
| unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { |
| unsigned UserOffset = getOffsetOf(U.MI); |
| const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; |
| unsigned KnownBits = BBI.internalKnownBits(); |
| |
| // The value read from PC is offset from the actual instruction address. |
| UserOffset += (isThumb ? 4 : 8); |
| |
| // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. |
| // Make sure U.getMaxDisp() returns a constrained range. |
| U.KnownAlignment = (KnownBits >= 2); |
| |
| // On Thumb, offsets==2 mod 4 are rounded down by the hardware for |
| // purposes of the displacement computation; compensate for that here. |
| // For unknown alignments, getMaxDisp() constrains the range instead. |
| if (isThumb && U.KnownAlignment) |
| UserOffset &= ~3u; |
| |
| return UserOffset; |
| } |
| |
| /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool |
| /// reference) is within MaxDisp of TrialOffset (a proposed location of a |
| /// constant pool entry). |
| /// UserOffset is computed by getUserOffset above to include PC adjustments. If |
| /// the mod 4 alignment of UserOffset is not known, the uncertainty must be |
| /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. |
| bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, |
| unsigned TrialOffset, unsigned MaxDisp, |
| bool NegativeOK, bool IsSoImm) { |
| if (UserOffset <= TrialOffset) { |
| // User before the Trial. |
| if (TrialOffset - UserOffset <= MaxDisp) |
| return true; |
| // FIXME: Make use full range of soimm values. |
| } else if (NegativeOK) { |
| if (UserOffset - TrialOffset <= MaxDisp) |
| return true; |
| // FIXME: Make use full range of soimm values. |
| } |
| return false; |
| } |
| |
| /// isWaterInRange - Returns true if a CPE placed after the specified |
| /// Water (a basic block) will be in range for the specific MI. |
| /// |
| /// Compute how much the function will grow by inserting a CPE after Water. |
| bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, |
| MachineBasicBlock* Water, CPUser &U, |
| unsigned &Growth) { |
| unsigned CPELogAlign = getCPELogAlign(U.CPEMI); |
| unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); |
| unsigned NextBlockOffset, NextBlockAlignment; |
| MachineFunction::const_iterator NextBlock = Water; |
| if (++NextBlock == MF->end()) { |
| NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); |
| NextBlockAlignment = 0; |
| } else { |
| NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; |
| NextBlockAlignment = NextBlock->getAlignment(); |
| } |
| unsigned Size = U.CPEMI->getOperand(2).getImm(); |
| unsigned CPEEnd = CPEOffset + Size; |
| |
| // The CPE may be able to hide in the alignment padding before the next |
| // block. It may also cause more padding to be required if it is more aligned |
| // that the next block. |
| if (CPEEnd > NextBlockOffset) { |
| Growth = CPEEnd - NextBlockOffset; |
| // Compute the padding that would go at the end of the CPE to align the next |
| // block. |
| Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); |
| |
| // If the CPE is to be inserted before the instruction, that will raise |
| // the offset of the instruction. Also account for unknown alignment padding |
| // in blocks between CPE and the user. |
| if (CPEOffset < UserOffset) |
| UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); |
| } else |
| // CPE fits in existing padding. |
| Growth = 0; |
| |
| return isOffsetInRange(UserOffset, CPEOffset, U); |
| } |
| |
| /// isCPEntryInRange - Returns true if the distance between specific MI and |
| /// specific ConstPool entry instruction can fit in MI's displacement field. |
| bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, |
| MachineInstr *CPEMI, unsigned MaxDisp, |
| bool NegOk, bool DoDump) { |
| unsigned CPEOffset = getOffsetOf(CPEMI); |
| |
| if (DoDump) { |
| DEBUG({ |
| unsigned Block = MI->getParent()->getNumber(); |
| const BasicBlockInfo &BBI = BBInfo[Block]; |
| dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() |
| << " max delta=" << MaxDisp |
| << format(" insn address=%#x", UserOffset) |
| << " in BB#" << Block << ": " |
| << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI |
| << format("CPE address=%#x offset=%+d: ", CPEOffset, |
| int(CPEOffset-UserOffset)); |
| }); |
| } |
| |
| return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); |
| } |
| |
| #ifndef NDEBUG |
| /// BBIsJumpedOver - Return true of the specified basic block's only predecessor |
| /// unconditionally branches to its only successor. |
| static bool BBIsJumpedOver(MachineBasicBlock *MBB) { |
| if (MBB->pred_size() != 1 || MBB->succ_size() != 1) |
| return false; |
| |
| MachineBasicBlock *Succ = *MBB->succ_begin(); |
| MachineBasicBlock *Pred = *MBB->pred_begin(); |
| MachineInstr *PredMI = &Pred->back(); |
| if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB |
| || PredMI->getOpcode() == ARM::t2B) |
| return PredMI->getOperand(0).getMBB() == Succ; |
| return false; |
| } |
| #endif // NDEBUG |
| |
| void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { |
| unsigned BBNum = BB->getNumber(); |
| for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { |
| // Get the offset and known bits at the end of the layout predecessor. |
| // Include the alignment of the current block. |
| unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); |
| unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); |
| unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); |
| |
| // This is where block i begins. Stop if the offset is already correct, |
| // and we have updated 2 blocks. This is the maximum number of blocks |
| // changed before calling this function. |
| if (i > BBNum + 2 && |
| BBInfo[i].Offset == Offset && |
| BBInfo[i].KnownBits == KnownBits) |
| break; |
| |
| BBInfo[i].Offset = Offset; |
| BBInfo[i].KnownBits = KnownBits; |
| } |
| } |
| |
| /// decrementCPEReferenceCount - find the constant pool entry with index CPI |
| /// and instruction CPEMI, and decrement its refcount. If the refcount |
| /// becomes 0 remove the entry and instruction. Returns true if we removed |
| /// the entry, false if we didn't. |
| |
| bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, |
| MachineInstr *CPEMI) { |
| // Find the old entry. Eliminate it if it is no longer used. |
| CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); |
| assert(CPE && "Unexpected!"); |
| if (--CPE->RefCount == 0) { |
| removeDeadCPEMI(CPEMI); |
| CPE->CPEMI = NULL; |
| --NumCPEs; |
| return true; |
| } |
| return false; |
| } |
| |
| /// LookForCPEntryInRange - see if the currently referenced CPE is in range; |
| /// if not, see if an in-range clone of the CPE is in range, and if so, |
| /// change the data structures so the user references the clone. Returns: |
| /// 0 = no existing entry found |
| /// 1 = entry found, and there were no code insertions or deletions |
| /// 2 = entry found, and there were code insertions or deletions |
| int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) |
| { |
| MachineInstr *UserMI = U.MI; |
| MachineInstr *CPEMI = U.CPEMI; |
| |
| // Check to see if the CPE is already in-range. |
| if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, |
| true)) { |
| DEBUG(dbgs() << "In range\n"); |
| return 1; |
| } |
| |
| // No. Look for previously created clones of the CPE that are in range. |
| unsigned CPI = CPEMI->getOperand(1).getIndex(); |
| std::vector<CPEntry> &CPEs = CPEntries[CPI]; |
| for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { |
| // We already tried this one |
| if (CPEs[i].CPEMI == CPEMI) |
| continue; |
| // Removing CPEs can leave empty entries, skip |
| if (CPEs[i].CPEMI == NULL) |
| continue; |
| if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), |
| U.NegOk)) { |
| DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" |
| << CPEs[i].CPI << "\n"); |
| // Point the CPUser node to the replacement |
| U.CPEMI = CPEs[i].CPEMI; |
| // Change the CPI in the instruction operand to refer to the clone. |
| for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) |
| if (UserMI->getOperand(j).isCPI()) { |
| UserMI->getOperand(j).setIndex(CPEs[i].CPI); |
| break; |
| } |
| // Adjust the refcount of the clone... |
| CPEs[i].RefCount++; |
| // ...and the original. If we didn't remove the old entry, none of the |
| // addresses changed, so we don't need another pass. |
| return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; |
| } |
| } |
| return 0; |
| } |
| |
| /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in |
| /// the specific unconditional branch instruction. |
| static inline unsigned getUnconditionalBrDisp(int Opc) { |
| switch (Opc) { |
| case ARM::tB: |
| return ((1<<10)-1)*2; |
| case ARM::t2B: |
| return ((1<<23)-1)*2; |
| default: |
| break; |
| } |
| |
| return ((1<<23)-1)*4; |
| } |
| |
| /// findAvailableWater - Look for an existing entry in the WaterList in which |
| /// we can place the CPE referenced from U so it's within range of U's MI. |
| /// Returns true if found, false if not. If it returns true, WaterIter |
| /// is set to the WaterList entry. For Thumb, prefer water that will not |
| /// introduce padding to water that will. To ensure that this pass |
| /// terminates, the CPE location for a particular CPUser is only allowed to |
| /// move to a lower address, so search backward from the end of the list and |
| /// prefer the first water that is in range. |
| bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, |
| water_iterator &WaterIter) { |
| if (WaterList.empty()) |
| return false; |
| |
| unsigned BestGrowth = ~0u; |
| for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();; |
| --IP) { |
| MachineBasicBlock* WaterBB = *IP; |
| // Check if water is in range and is either at a lower address than the |
| // current "high water mark" or a new water block that was created since |
| // the previous iteration by inserting an unconditional branch. In the |
| // latter case, we want to allow resetting the high water mark back to |
| // this new water since we haven't seen it before. Inserting branches |
| // should be relatively uncommon and when it does happen, we want to be |
| // sure to take advantage of it for all the CPEs near that block, so that |
| // we don't insert more branches than necessary. |
| unsigned Growth; |
| if (isWaterInRange(UserOffset, WaterBB, U, Growth) && |
| (WaterBB->getNumber() < U.HighWaterMark->getNumber() || |
| NewWaterList.count(WaterBB)) && Growth < BestGrowth) { |
| // This is the least amount of required padding seen so far. |
| BestGrowth = Growth; |
| WaterIter = IP; |
| DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() |
| << " Growth=" << Growth << '\n'); |
| |
| // Keep looking unless it is perfect. |
| if (BestGrowth == 0) |
| return true; |
| } |
| if (IP == B) |
| break; |
| } |
| return BestGrowth != ~0u; |
| } |
| |
| /// createNewWater - No existing WaterList entry will work for |
| /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the |
| /// block is used if in range, and the conditional branch munged so control |
| /// flow is correct. Otherwise the block is split to create a hole with an |
| /// unconditional branch around it. In either case NewMBB is set to a |
| /// block following which the new island can be inserted (the WaterList |
| /// is not adjusted). |
| void ARMConstantIslands::createNewWater(unsigned CPUserIndex, |
| unsigned UserOffset, |
| MachineBasicBlock *&NewMBB) { |
| CPUser &U = CPUsers[CPUserIndex]; |
| MachineInstr *UserMI = U.MI; |
| MachineInstr *CPEMI = U.CPEMI; |
| unsigned CPELogAlign = getCPELogAlign(CPEMI); |
| MachineBasicBlock *UserMBB = UserMI->getParent(); |
| const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; |
| |
| // If the block does not end in an unconditional branch already, and if the |
| // end of the block is within range, make new water there. (The addition |
| // below is for the unconditional branch we will be adding: 4 bytes on ARM + |
| // Thumb2, 2 on Thumb1. |
| if (BBHasFallthrough(UserMBB)) { |
| // Size of branch to insert. |
| unsigned Delta = isThumb1 ? 2 : 4; |
| // Compute the offset where the CPE will begin. |
| unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; |
| |
| if (isOffsetInRange(UserOffset, CPEOffset, U)) { |
| DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() |
| << format(", expected CPE offset %#x\n", CPEOffset)); |
| NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); |
| // Add an unconditional branch from UserMBB to fallthrough block. Record |
| // it for branch lengthening; this new branch will not get out of range, |
| // but if the preceding conditional branch is out of range, the targets |
| // will be exchanged, and the altered branch may be out of range, so the |
| // machinery has to know about it. |
| int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; |
| if (!isThumb) |
| BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); |
| else |
| BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) |
| .addImm(ARMCC::AL).addReg(0); |
| unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); |
| ImmBranches.push_back(ImmBranch(&UserMBB->back(), |
| MaxDisp, false, UncondBr)); |
| BBInfo[UserMBB->getNumber()].Size += Delta; |
| adjustBBOffsetsAfter(UserMBB); |
| return; |
| } |
| } |
| |
| // What a big block. Find a place within the block to split it. This is a |
| // little tricky on Thumb1 since instructions are 2 bytes and constant pool |
| // entries are 4 bytes: if instruction I references island CPE, and |
| // instruction I+1 references CPE', it will not work well to put CPE as far |
| // forward as possible, since then CPE' cannot immediately follow it (that |
| // location is 2 bytes farther away from I+1 than CPE was from I) and we'd |
| // need to create a new island. So, we make a first guess, then walk through |
| // the instructions between the one currently being looked at and the |
| // possible insertion point, and make sure any other instructions that |
| // reference CPEs will be able to use the same island area; if not, we back |
| // up the insertion point. |
| |
| // Try to split the block so it's fully aligned. Compute the latest split |
| // point where we can add a 4-byte branch instruction, and then align to |
| // LogAlign which is the largest possible alignment in the function. |
| unsigned LogAlign = MF->getAlignment(); |
| assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); |
| unsigned KnownBits = UserBBI.internalKnownBits(); |
| unsigned UPad = UnknownPadding(LogAlign, KnownBits); |
| unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; |
| DEBUG(dbgs() << format("Split in middle of big block before %#x", |
| BaseInsertOffset)); |
| |
| // The 4 in the following is for the unconditional branch we'll be inserting |
| // (allows for long branch on Thumb1). Alignment of the island is handled |
| // inside isOffsetInRange. |
| BaseInsertOffset -= 4; |
| |
| DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) |
| << " la=" << LogAlign |
| << " kb=" << KnownBits |
| << " up=" << UPad << '\n'); |
| |
| // This could point off the end of the block if we've already got constant |
| // pool entries following this block; only the last one is in the water list. |
| // Back past any possible branches (allow for a conditional and a maximally |
| // long unconditional). |
| if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { |
| BaseInsertOffset = UserBBI.postOffset() - UPad - 8; |
| DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); |
| } |
| unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + |
| CPEMI->getOperand(2).getImm(); |
| MachineBasicBlock::iterator MI = UserMI; |
| ++MI; |
| unsigned CPUIndex = CPUserIndex+1; |
| unsigned NumCPUsers = CPUsers.size(); |
| MachineInstr *LastIT = 0; |
| for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); |
| Offset < BaseInsertOffset; |
| Offset += TII->GetInstSizeInBytes(MI), |
| MI = llvm::next(MI)) { |
| assert(MI != UserMBB->end() && "Fell off end of block"); |
| if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { |
| CPUser &U = CPUsers[CPUIndex]; |
| if (!isOffsetInRange(Offset, EndInsertOffset, U)) { |
| // Shift intertion point by one unit of alignment so it is within reach. |
| BaseInsertOffset -= 1u << LogAlign; |
| EndInsertOffset -= 1u << LogAlign; |
| } |
| // This is overly conservative, as we don't account for CPEMIs being |
| // reused within the block, but it doesn't matter much. Also assume CPEs |
| // are added in order with alignment padding. We may eventually be able |
| // to pack the aligned CPEs better. |
| EndInsertOffset += U.CPEMI->getOperand(2).getImm(); |
| CPUIndex++; |
| } |
| |
| // Remember the last IT instruction. |
| if (MI->getOpcode() == ARM::t2IT) |
| LastIT = MI; |
| } |
| |
| --MI; |
| |
| // Avoid splitting an IT block. |
| if (LastIT) { |
| unsigned PredReg = 0; |
| ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg); |
| if (CC != ARMCC::AL) |
| MI = LastIT; |
| } |
| NewMBB = splitBlockBeforeInstr(MI); |
| } |
| |
| /// handleConstantPoolUser - Analyze the specified user, checking to see if it |
| /// is out-of-range. If so, pick up the constant pool value and move it some |
| /// place in-range. Return true if we changed any addresses (thus must run |
| /// another pass of branch lengthening), false otherwise. |
| bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { |
| CPUser &U = CPUsers[CPUserIndex]; |
| MachineInstr *UserMI = U.MI; |
| MachineInstr *CPEMI = U.CPEMI; |
| unsigned CPI = CPEMI->getOperand(1).getIndex(); |
| unsigned Size = CPEMI->getOperand(2).getImm(); |
| // Compute this only once, it's expensive. |
| unsigned UserOffset = getUserOffset(U); |
| |
| // See if the current entry is within range, or there is a clone of it |
| // in range. |
| int result = findInRangeCPEntry(U, UserOffset); |
| if (result==1) return false; |
| else if (result==2) return true; |
| |
| // No existing clone of this CPE is within range. |
| // We will be generating a new clone. Get a UID for it. |
| unsigned ID = AFI->createPICLabelUId(); |
| |
| // Look for water where we can place this CPE. |
| MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); |
| MachineBasicBlock *NewMBB; |
| water_iterator IP; |
| if (findAvailableWater(U, UserOffset, IP)) { |
| DEBUG(dbgs() << "Found water in range\n"); |
| MachineBasicBlock *WaterBB = *IP; |
| |
| // If the original WaterList entry was "new water" on this iteration, |
| // propagate that to the new island. This is just keeping NewWaterList |
| // updated to match the WaterList, which will be updated below. |
| if (NewWaterList.erase(WaterBB)) |
| NewWaterList.insert(NewIsland); |
| |
| // The new CPE goes before the following block (NewMBB). |
| NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); |
| |
| } else { |
| // No water found. |
| DEBUG(dbgs() << "No water found\n"); |
| createNewWater(CPUserIndex, UserOffset, NewMBB); |
| |
| // splitBlockBeforeInstr adds to WaterList, which is important when it is |
| // called while handling branches so that the water will be seen on the |
| // next iteration for constant pools, but in this context, we don't want |
| // it. Check for this so it will be removed from the WaterList. |
| // Also remove any entry from NewWaterList. |
| MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); |
| IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); |
| if (IP != WaterList.end()) |
| NewWaterList.erase(WaterBB); |
| |
| // We are adding new water. Update NewWaterList. |
| NewWaterList.insert(NewIsland); |
| } |
| |
| // Remove the original WaterList entry; we want subsequent insertions in |
| // this vicinity to go after the one we're about to insert. This |
| // considerably reduces the number of times we have to move the same CPE |
| // more than once and is also important to ensure the algorithm terminates. |
| if (IP != WaterList.end()) |
| WaterList.erase(IP); |
| |
| // Okay, we know we can put an island before NewMBB now, do it! |
| MF->insert(NewMBB, NewIsland); |
| |
| // Update internal data structures to account for the newly inserted MBB. |
| updateForInsertedWaterBlock(NewIsland); |
| |
| // Decrement the old entry, and remove it if refcount becomes 0. |
| decrementCPEReferenceCount(CPI, CPEMI); |
| |
| // Now that we have an island to add the CPE to, clone the original CPE and |
| // add it to the island. |
| U.HighWaterMark = NewIsland; |
| U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) |
| .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); |
| CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); |
| ++NumCPEs; |
| |
| // Mark the basic block as aligned as required by the const-pool entry. |
| NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); |
| |
| // Increase the size of the island block to account for the new entry. |
| BBInfo[NewIsland->getNumber()].Size += Size; |
| adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland))); |
| |
| // Finally, change the CPI in the instruction operand to be ID. |
| for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) |
| if (UserMI->getOperand(i).isCPI()) { |
| UserMI->getOperand(i).setIndex(ID); |
| break; |
| } |
| |
| DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI |
| << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); |
| |
| return true; |
| } |
| |
| /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update |
| /// sizes and offsets of impacted basic blocks. |
| void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { |
| MachineBasicBlock *CPEBB = CPEMI->getParent(); |
| unsigned Size = CPEMI->getOperand(2).getImm(); |
| CPEMI->eraseFromParent(); |
| BBInfo[CPEBB->getNumber()].Size -= Size; |
| // All succeeding offsets have the current size value added in, fix this. |
| if (CPEBB->empty()) { |
| BBInfo[CPEBB->getNumber()].Size = 0; |
| |
| // This block no longer needs to be aligned. |
| CPEBB->setAlignment(0); |
| } else |
| // Entries are sorted by descending alignment, so realign from the front. |
| CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); |
| |
| adjustBBOffsetsAfter(CPEBB); |
| // An island has only one predecessor BB and one successor BB. Check if |
| // this BB's predecessor jumps directly to this BB's successor. This |
| // shouldn't happen currently. |
| assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); |
| // FIXME: remove the empty blocks after all the work is done? |
| } |
| |
| /// removeUnusedCPEntries - Remove constant pool entries whose refcounts |
| /// are zero. |
| bool ARMConstantIslands::removeUnusedCPEntries() { |
| unsigned MadeChange = false; |
| for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { |
| std::vector<CPEntry> &CPEs = CPEntries[i]; |
| for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { |
| if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { |
| removeDeadCPEMI(CPEs[j].CPEMI); |
| CPEs[j].CPEMI = NULL; |
| MadeChange = true; |
| } |
| } |
| } |
| return MadeChange; |
| } |
| |
| /// isBBInRange - Returns true if the distance between specific MI and |
| /// specific BB can fit in MI's displacement field. |
| bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, |
| unsigned MaxDisp) { |
| unsigned PCAdj = isThumb ? 4 : 8; |
| unsigned BrOffset = getOffsetOf(MI) + PCAdj; |
| unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; |
| |
| DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() |
| << " from BB#" << MI->getParent()->getNumber() |
| << " max delta=" << MaxDisp |
| << " from " << getOffsetOf(MI) << " to " << DestOffset |
| << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); |
| |
| if (BrOffset <= DestOffset) { |
| // Branch before the Dest. |
| if (DestOffset-BrOffset <= MaxDisp) |
| return true; |
| } else { |
| if (BrOffset-DestOffset <= MaxDisp) |
| return true; |
| } |
| return false; |
| } |
| |
| /// fixupImmediateBr - Fix up an immediate branch whose destination is too far |
| /// away to fit in its displacement field. |
| bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { |
| MachineInstr *MI = Br.MI; |
| MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); |
| |
| // Check to see if the DestBB is already in-range. |
| if (isBBInRange(MI, DestBB, Br.MaxDisp)) |
| return false; |
| |
| if (!Br.isCond) |
| return fixupUnconditionalBr(Br); |
| return fixupConditionalBr(Br); |
| } |
| |
| /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is |
| /// too far away to fit in its displacement field. If the LR register has been |
| /// spilled in the epilogue, then we can use BL to implement a far jump. |
| /// Otherwise, add an intermediate branch instruction to a branch. |
| bool |
| ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { |
| MachineInstr *MI = Br.MI; |
| MachineBasicBlock *MBB = MI->getParent(); |
| if (!isThumb1) |
| llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); |
| |
| // Use BL to implement far jump. |
| Br.MaxDisp = (1 << 21) * 2; |
| MI->setDesc(TII->get(ARM::tBfar)); |
| BBInfo[MBB->getNumber()].Size += 2; |
| adjustBBOffsetsAfter(MBB); |
| HasFarJump = true; |
| ++NumUBrFixed; |
| |
| DEBUG(dbgs() << " Changed B to long jump " << *MI); |
| |
| return true; |
| } |
| |
| /// fixupConditionalBr - Fix up a conditional branch whose destination is too |
| /// far away to fit in its displacement field. It is converted to an inverse |
| /// conditional branch + an unconditional branch to the destination. |
| bool |
| ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { |
| MachineInstr *MI = Br.MI; |
| MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); |
| |
| // Add an unconditional branch to the destination and invert the branch |
| // condition to jump over it: |
| // blt L1 |
| // => |
| // bge L2 |
| // b L1 |
| // L2: |
| ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); |
| CC = ARMCC::getOppositeCondition(CC); |
| unsigned CCReg = MI->getOperand(2).getReg(); |
| |
| // If the branch is at the end of its MBB and that has a fall-through block, |
| // direct the updated conditional branch to the fall-through block. Otherwise, |
| // split the MBB before the next instruction. |
| MachineBasicBlock *MBB = MI->getParent(); |
| MachineInstr *BMI = &MBB->back(); |
| bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); |
| |
| ++NumCBrFixed; |
| if (BMI != MI) { |
| if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && |
| BMI->getOpcode() == Br.UncondBr) { |
| // Last MI in the BB is an unconditional branch. Can we simply invert the |
| // condition and swap destinations: |
| // beq L1 |
| // b L2 |
| // => |
| // bne L2 |
| // b L1 |
| MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); |
| if (isBBInRange(MI, NewDest, Br.MaxDisp)) { |
| DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " |
| << *BMI); |
| BMI->getOperand(0).setMBB(DestBB); |
| MI->getOperand(0).setMBB(NewDest); |
| MI->getOperand(1).setImm(CC); |
| return true; |
| } |
| } |
| } |
| |
| if (NeedSplit) { |
| splitBlockBeforeInstr(MI); |
| // No need for the branch to the next block. We're adding an unconditional |
| // branch to the destination. |
| int delta = TII->GetInstSizeInBytes(&MBB->back()); |
| BBInfo[MBB->getNumber()].Size -= delta; |
| MBB->back().eraseFromParent(); |
| // BBInfo[SplitBB].Offset is wrong temporarily, fixed below |
| } |
| MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); |
| |
| DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() |
| << " also invert condition and change dest. to BB#" |
| << NextBB->getNumber() << "\n"); |
| |
| // Insert a new conditional branch and a new unconditional branch. |
| // Also update the ImmBranch as well as adding a new entry for the new branch. |
| BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) |
| .addMBB(NextBB).addImm(CC).addReg(CCReg); |
| Br.MI = &MBB->back(); |
| BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); |
| if (isThumb) |
| BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) |
| .addImm(ARMCC::AL).addReg(0); |
| else |
| BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); |
| BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); |
| unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); |
| ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); |
| |
| // Remove the old conditional branch. It may or may not still be in MBB. |
| BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); |
| MI->eraseFromParent(); |
| adjustBBOffsetsAfter(MBB); |
| return true; |
| } |
| |
| /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills |
| /// LR / restores LR to pc. FIXME: This is done here because it's only possible |
| /// to do this if tBfar is not used. |
| bool ARMConstantIslands::undoLRSpillRestore() { |
| bool MadeChange = false; |
| for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { |
| MachineInstr *MI = PushPopMIs[i]; |
| // First two operands are predicates. |
| if (MI->getOpcode() == ARM::tPOP_RET && |
| MI->getOperand(2).getReg() == ARM::PC && |
| MI->getNumExplicitOperands() == 3) { |
| // Create the new insn and copy the predicate from the old. |
| BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) |
| .addOperand(MI->getOperand(0)) |
| .addOperand(MI->getOperand(1)); |
| MI->eraseFromParent(); |
| MadeChange = true; |
| } |
| } |
| return MadeChange; |
| } |
| |
| // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions |
| // below may shrink MI. |
| bool |
| ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { |
| switch(MI->getOpcode()) { |
| // optimizeThumb2Instructions. |
| case ARM::t2LEApcrel: |
| case ARM::t2LDRpci: |
| // optimizeThumb2Branches. |
| case ARM::t2B: |
| case ARM::t2Bcc: |
| case ARM::tBcc: |
| // optimizeThumb2JumpTables. |
| case ARM::t2BR_JT: |
| return true; |
| } |
| return false; |
| } |
| |
| bool ARMConstantIslands::optimizeThumb2Instructions() { |
| bool MadeChange = false; |
| |
| // Shrink ADR and LDR from constantpool. |
| for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { |
| CPUser &U = CPUsers[i]; |
| unsigned Opcode = U.MI->getOpcode(); |
| unsigned NewOpc = 0; |
| unsigned Scale = 1; |
| unsigned Bits = 0; |
| switch (Opcode) { |
| default: break; |
| case ARM::t2LEApcrel: |
| if (isARMLowRegister(U.MI->getOperand(0).getReg())) { |
| NewOpc = ARM::tLEApcrel; |
| Bits = 8; |
| Scale = 4; |
| } |
| break; |
| case ARM::t2LDRpci: |
| if (isARMLowRegister(U.MI->getOperand(0).getReg())) { |
| NewOpc = ARM::tLDRpci; |
| Bits = 8; |
| Scale = 4; |
| } |
| break; |
| } |
| |
| if (!NewOpc) |
| continue; |
| |
| unsigned UserOffset = getUserOffset(U); |
| unsigned MaxOffs = ((1 << Bits) - 1) * Scale; |
| |
| // Be conservative with inline asm. |
| if (!U.KnownAlignment) |
| MaxOffs -= 2; |
| |
| // FIXME: Check if offset is multiple of scale if scale is not 4. |
| if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { |
| DEBUG(dbgs() << "Shrink: " << *U.MI); |
| U.MI->setDesc(TII->get(NewOpc)); |
| MachineBasicBlock *MBB = U.MI->getParent(); |
| BBInfo[MBB->getNumber()].Size -= 2; |
| adjustBBOffsetsAfter(MBB); |
| ++NumT2CPShrunk; |
| MadeChange = true; |
| } |
| } |
| |
| MadeChange |= optimizeThumb2Branches(); |
| MadeChange |= optimizeThumb2JumpTables(); |
| return MadeChange; |
| } |
| |
| bool ARMConstantIslands::optimizeThumb2Branches() { |
| bool MadeChange = false; |
| |
| for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { |
| ImmBranch &Br = ImmBranches[i]; |
| unsigned Opcode = Br.MI->getOpcode(); |
| unsigned NewOpc = 0; |
| unsigned Scale = 1; |
| unsigned Bits = 0; |
| switch (Opcode) { |
| default: break; |
| case ARM::t2B: |
| NewOpc = ARM::tB; |
| Bits = 11; |
| Scale = 2; |
| break; |
| case ARM::t2Bcc: { |
| NewOpc = ARM::tBcc; |
| Bits = 8; |
| Scale = 2; |
| break; |
| } |
| } |
| if (NewOpc) { |
| unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; |
| MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); |
| if (isBBInRange(Br.MI, DestBB, MaxOffs)) { |
| DEBUG(dbgs() << "Shrink branch: " << *Br.MI); |
| Br.MI->setDesc(TII->get(NewOpc)); |
| MachineBasicBlock *MBB = Br.MI->getParent(); |
| BBInfo[MBB->getNumber()].Size -= 2; |
| adjustBBOffsetsAfter(MBB); |
| ++NumT2BrShrunk; |
| MadeChange = true; |
| } |
| } |
| |
| Opcode = Br.MI->getOpcode(); |
| if (Opcode != ARM::tBcc) |
| continue; |
| |
| // If the conditional branch doesn't kill CPSR, then CPSR can be liveout |
| // so this transformation is not safe. |
| if (!Br.MI->killsRegister(ARM::CPSR)) |
| continue; |
| |
| NewOpc = 0; |
| unsigned PredReg = 0; |
| ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg); |
| if (Pred == ARMCC::EQ) |
| NewOpc = ARM::tCBZ; |
| else if (Pred == ARMCC::NE) |
| NewOpc = ARM::tCBNZ; |
| if (!NewOpc) |
| continue; |
| MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); |
| // Check if the distance is within 126. Subtract starting offset by 2 |
| // because the cmp will be eliminated. |
| unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; |
| unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; |
| if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { |
| MachineBasicBlock::iterator CmpMI = Br.MI; |
| if (CmpMI != Br.MI->getParent()->begin()) { |
| --CmpMI; |
| if (CmpMI->getOpcode() == ARM::tCMPi8) { |
| unsigned Reg = CmpMI->getOperand(0).getReg(); |
| Pred = getInstrPredicate(CmpMI, PredReg); |
| if (Pred == ARMCC::AL && |
| CmpMI->getOperand(1).getImm() == 0 && |
| isARMLowRegister(Reg)) { |
| MachineBasicBlock *MBB = Br.MI->getParent(); |
| DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); |
| MachineInstr *NewBR = |
| BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) |
| .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); |
| CmpMI->eraseFromParent(); |
| Br.MI->eraseFromParent(); |
| Br.MI = NewBR; |
| BBInfo[MBB->getNumber()].Size -= 2; |
| adjustBBOffsetsAfter(MBB); |
| ++NumCBZ; |
| MadeChange = true; |
| } |
| } |
| } |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller |
| /// jumptables when it's possible. |
| bool ARMConstantIslands::optimizeThumb2JumpTables() { |
| bool MadeChange = false; |
| |
| // FIXME: After the tables are shrunk, can we get rid some of the |
| // constantpool tables? |
| MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
| if (MJTI == 0) return false; |
| |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { |
| MachineInstr *MI = T2JumpTables[i]; |
| const MCInstrDesc &MCID = MI->getDesc(); |
| unsigned NumOps = MCID.getNumOperands(); |
| unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); |
| MachineOperand JTOP = MI->getOperand(JTOpIdx); |
| unsigned JTI = JTOP.getIndex(); |
| assert(JTI < JT.size()); |
| |
| bool ByteOk = true; |
| bool HalfWordOk = true; |
| unsigned JTOffset = getOffsetOf(MI) + 4; |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
| for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { |
| MachineBasicBlock *MBB = JTBBs[j]; |
| unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; |
| // Negative offset is not ok. FIXME: We should change BB layout to make |
| // sure all the branches are forward. |
| if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) |
| ByteOk = false; |
| unsigned TBHLimit = ((1<<16)-1)*2; |
| if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) |
| HalfWordOk = false; |
| if (!ByteOk && !HalfWordOk) |
| break; |
| } |
| |
| if (ByteOk || HalfWordOk) { |
| MachineBasicBlock *MBB = MI->getParent(); |
| unsigned BaseReg = MI->getOperand(0).getReg(); |
| bool BaseRegKill = MI->getOperand(0).isKill(); |
| if (!BaseRegKill) |
| continue; |
| unsigned IdxReg = MI->getOperand(1).getReg(); |
| bool IdxRegKill = MI->getOperand(1).isKill(); |
| |
| // Scan backwards to find the instruction that defines the base |
| // register. Due to post-RA scheduling, we can't count on it |
| // immediately preceding the branch instruction. |
| MachineBasicBlock::iterator PrevI = MI; |
| MachineBasicBlock::iterator B = MBB->begin(); |
| while (PrevI != B && !PrevI->definesRegister(BaseReg)) |
| --PrevI; |
| |
| // If for some reason we didn't find it, we can't do anything, so |
| // just skip this one. |
| if (!PrevI->definesRegister(BaseReg)) |
| continue; |
| |
| MachineInstr *AddrMI = PrevI; |
| bool OptOk = true; |
| // Examine the instruction that calculates the jumptable entry address. |
| // Make sure it only defines the base register and kills any uses |
| // other than the index register. |
| for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { |
| const MachineOperand &MO = AddrMI->getOperand(k); |
| if (!MO.isReg() || !MO.getReg()) |
| continue; |
| if (MO.isDef() && MO.getReg() != BaseReg) { |
| OptOk = false; |
| break; |
| } |
| if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { |
| OptOk = false; |
| break; |
| } |
| } |
| if (!OptOk) |
| continue; |
| |
| // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction |
| // that gave us the initial base register definition. |
| for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) |
| ; |
| |
| // The instruction should be a tLEApcrel or t2LEApcrelJT; we want |
| // to delete it as well. |
| MachineInstr *LeaMI = PrevI; |
| if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && |
| LeaMI->getOpcode() != ARM::t2LEApcrelJT) || |
| LeaMI->getOperand(0).getReg() != BaseReg) |
| OptOk = false; |
| |
| if (!OptOk) |
| continue; |
| |
| DEBUG(dbgs() << "Shrink JT: " << *MI << " addr: " << *AddrMI |
| << " lea: " << *LeaMI); |
| unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; |
| MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) |
| .addReg(IdxReg, getKillRegState(IdxRegKill)) |
| .addJumpTableIndex(JTI, JTOP.getTargetFlags()) |
| .addImm(MI->getOperand(JTOpIdx+1).getImm()); |
| DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); |
| // FIXME: Insert an "ALIGN" instruction to ensure the next instruction |
| // is 2-byte aligned. For now, asm printer will fix it up. |
| unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); |
| unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); |
| OrigSize += TII->GetInstSizeInBytes(LeaMI); |
| OrigSize += TII->GetInstSizeInBytes(MI); |
| |
| AddrMI->eraseFromParent(); |
| LeaMI->eraseFromParent(); |
| MI->eraseFromParent(); |
| |
| int delta = OrigSize - NewSize; |
| BBInfo[MBB->getNumber()].Size -= delta; |
| adjustBBOffsetsAfter(MBB); |
| |
| ++NumTBs; |
| MadeChange = true; |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that |
| /// jump tables always branch forwards, since that's what tbb and tbh need. |
| bool ARMConstantIslands::reorderThumb2JumpTables() { |
| bool MadeChange = false; |
| |
| MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
| if (MJTI == 0) return false; |
| |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { |
| MachineInstr *MI = T2JumpTables[i]; |
| const MCInstrDesc &MCID = MI->getDesc(); |
| unsigned NumOps = MCID.getNumOperands(); |
| unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); |
| MachineOperand JTOP = MI->getOperand(JTOpIdx); |
| unsigned JTI = JTOP.getIndex(); |
| assert(JTI < JT.size()); |
| |
| // We prefer if target blocks for the jump table come after the jump |
| // instruction so we can use TB[BH]. Loop through the target blocks |
| // and try to adjust them such that that's true. |
| int JTNumber = MI->getParent()->getNumber(); |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
| for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { |
| MachineBasicBlock *MBB = JTBBs[j]; |
| int DTNumber = MBB->getNumber(); |
| |
| if (DTNumber < JTNumber) { |
| // The destination precedes the switch. Try to move the block forward |
| // so we have a positive offset. |
| MachineBasicBlock *NewBB = |
| adjustJTTargetBlockForward(MBB, MI->getParent()); |
| if (NewBB) |
| MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); |
| MadeChange = true; |
| } |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| MachineBasicBlock *ARMConstantIslands:: |
| adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { |
| // If the destination block is terminated by an unconditional branch, |
| // try to move it; otherwise, create a new block following the jump |
| // table that branches back to the actual target. This is a very simple |
| // heuristic. FIXME: We can definitely improve it. |
| MachineBasicBlock *TBB = 0, *FBB = 0; |
| SmallVector<MachineOperand, 4> Cond; |
| SmallVector<MachineOperand, 4> CondPrior; |
| MachineFunction::iterator BBi = BB; |
| MachineFunction::iterator OldPrior = prior(BBi); |
| |
| // If the block terminator isn't analyzable, don't try to move the block |
| bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); |
| |
| // If the block ends in an unconditional branch, move it. The prior block |
| // has to have an analyzable terminator for us to move this one. Be paranoid |
| // and make sure we're not trying to move the entry block of the function. |
| if (!B && Cond.empty() && BB != MF->begin() && |
| !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { |
| BB->moveAfter(JTBB); |
| OldPrior->updateTerminator(); |
| BB->updateTerminator(); |
| // Update numbering to account for the block being moved. |
| MF->RenumberBlocks(); |
| ++NumJTMoved; |
| return NULL; |
| } |
| |
| // Create a new MBB for the code after the jump BB. |
| MachineBasicBlock *NewBB = |
| MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); |
| MachineFunction::iterator MBBI = JTBB; ++MBBI; |
| MF->insert(MBBI, NewBB); |
| |
| // Add an unconditional branch from NewBB to BB. |
| // There doesn't seem to be meaningful DebugInfo available; this doesn't |
| // correspond directly to anything in the source. |
| assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); |
| BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) |
| .addImm(ARMCC::AL).addReg(0); |
| |
| // Update internal data structures to account for the newly inserted MBB. |
| MF->RenumberBlocks(NewBB); |
| |
| // Update the CFG. |
| NewBB->addSuccessor(BB); |
| JTBB->removeSuccessor(BB); |
| JTBB->addSuccessor(NewBB); |
| |
| ++NumJTInserted; |
| return NewBB; |
| } |