blob: 9260b4a27661fffe53f8335d0c26c0ec00a69d06 [file] [log] [blame]
//===- HexagonMCInst.cpp - Hexagon sub-class of MCInst --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class extends MCInst to allow some Hexagon VLIW annotations.
//
//===----------------------------------------------------------------------===//
#include "HexagonInstrInfo.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCInst.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
using namespace llvm;
// Return the slots used by the insn.
unsigned HexagonMCInst::getUnits(const HexagonTargetMachine* TM) const {
const HexagonInstrInfo* QII = TM->getInstrInfo();
const InstrItineraryData* II = TM->getInstrItineraryData();
const InstrStage*
IS = II->beginStage(QII->get(this->getOpcode()).getSchedClass());
return (IS->getUnits());
}
// Return the Hexagon ISA class for the insn.
unsigned HexagonMCInst::getType() const {
const uint64_t F = MCID->TSFlags;
return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
}
// Return whether the insn is an actual insn.
bool HexagonMCInst::isCanon() const {
return (!MCID->isPseudo() &&
!isPrefix() &&
getType() != HexagonII::TypeENDLOOP);
}
// Return whether the insn is a prefix.
bool HexagonMCInst::isPrefix() const {
return (getType() == HexagonII::TypePREFIX);
}
// Return whether the insn is solo, i.e., cannot be in a packet.
bool HexagonMCInst::isSolo() const {
const uint64_t F = MCID->TSFlags;
return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
}
// Return whether the insn is a new-value consumer.
bool HexagonMCInst::isNewValue() const {
const uint64_t F = MCID->TSFlags;
return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}
// Return whether the instruction is a legal new-value producer.
bool HexagonMCInst::hasNewValue() const {
const uint64_t F = MCID->TSFlags;
return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
}
// Return the operand that consumes or produces a new value.
const MCOperand& HexagonMCInst::getNewValue() const {
const uint64_t F = MCID->TSFlags;
const unsigned O = (F >> HexagonII::NewValueOpPos) &
HexagonII::NewValueOpMask;
const MCOperand& MCO = getOperand(O);
assert ((isNewValue() || hasNewValue()) && MCO.isReg());
return (MCO);
}
// Return whether the instruction needs to be constant extended.
// 1) Always return true if the instruction has 'isExtended' flag set.
//
// isExtendable:
// 2) For immediate extended operands, return true only if the value is
// out-of-range.
// 3) For global address, always return true.
bool HexagonMCInst::isConstExtended(void) const {
if (isExtended())
return true;
if (!isExtendable())
return false;
short ExtOpNum = getCExtOpNum();
int MinValue = getMinValue();
int MaxValue = getMaxValue();
const MCOperand& MO = getOperand(ExtOpNum);
// We could be using an instruction with an extendable immediate and shoehorn
// a global address into it. If it is a global address it will be constant
// extended. We do this for COMBINE.
// We currently only handle isGlobal() because it is the only kind of
// object we are going to end up with here for now.
// In the future we probably should add isSymbol(), etc.
if (MO.isExpr())
return true;
// If the extendable operand is not 'Immediate' type, the instruction should
// have 'isExtended' flag set.
assert(MO.isImm() && "Extendable operand must be Immediate type");
int ImmValue = MO.getImm();
return (ImmValue < MinValue || ImmValue > MaxValue);
}
// Return whether the instruction must be always extended.
bool HexagonMCInst::isExtended(void) const {
const uint64_t F = MCID->TSFlags;
return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
}
// Return true if the instruction may be extended based on the operand value.
bool HexagonMCInst::isExtendable(void) const {
const uint64_t F = MCID->TSFlags;
return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
}
// Return number of bits in the constant extended operand.
unsigned HexagonMCInst::getBitCount(void) const {
const uint64_t F = MCID->TSFlags;
return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}
// Return constant extended operand number.
unsigned short HexagonMCInst::getCExtOpNum(void) const {
const uint64_t F = MCID->TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}
// Return whether the operand can be constant extended.
bool HexagonMCInst::isOperandExtended(const unsigned short OperandNum) const {
const uint64_t F = MCID->TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
== OperandNum;
}
// Return the min value that a constant extendable operand can have
// without being extended.
int HexagonMCInst::getMinValue(void) const {
const uint64_t F = MCID->TSFlags;
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
& HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos)
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return -1 << (bits - 1);
else
return 0;
}
// Return the max value that a constant extendable operand can have
// without being extended.
int HexagonMCInst::getMaxValue(void) const {
const uint64_t F = MCID->TSFlags;
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
& HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos)
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return ~(-1 << (bits - 1));
else
return ~(-1 << bits);
}