blob: 9d27f25439b4d147e5e6d0992f698ec140b8d432 [file] [log] [blame]
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef WANT_XTI
#ifndef lint
char nettest_xti_id[]="\
@(#)nettest_xti.c (c) Copyright 1995-2007 Hewlett-Packard Co. Version 2.4.3";
#else
#define DIRTY
#define WANT_HISTOGRAM
#define WANT_INTERVALS
#endif /* lint */
/****************************************************************/
/* */
/* nettest_xti.c */
/* */
/* the XTI args parsing routine... */
/* */
/* scan_xti_args() */
/* */
/* the actual test routines... */
/* */
/* send_xti_tcp_stream() perform a tcp stream test */
/* recv_xti_tcp_stream() */
/* send_xti_tcp_rr() perform a tcp request/response */
/* recv_xti_tcp_rr() */
/* send_xti_tcp_conn_rr() an RR test including connect */
/* recv_xti_tcp_conn_rr() */
/* send_xti_udp_stream() perform a udp stream test */
/* recv_xti_udp_stream() */
/* send_xti_udp_rr() perform a udp request/response */
/* recv_xti_udp_rr() */
/* */
/****************************************************************/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <sys/types.h>
#include <fcntl.h>
#ifndef WIN32
#include <sys/ipc.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <errno.h>
#include <signal.h>
#else /* WIN32 */
#include <process.h>
#include <winsock2.h>
#include <windows.h>
#endif /* WIN32 */
#include <stdio.h>
#include <time.h>
#include <malloc.h>
/* xti.h should be included *after* in.h because there are name */
/* conflicts!( Silly standards people... raj 2/95 fortuenately, the */
/* confilcts are on IP_TOP and IP_TTL, whcih netperf does not yet use */
#include <xti.h>
#include "netlib.h"
#include "netsh.h"
#include "nettest_xti.h"
#ifdef WANT_HISTOGRAM
#ifdef __sgi
#include <sys/time.h>
#endif /* __sgi */
#include "hist.h"
#endif /* WANT_HISTOGRAM */
/* these variables are specific to the XTI sockets tests. declare */
/* them static to make them global only to this file. */
static int
rss_size, /* remote socket send buffer size */
rsr_size, /* remote socket recv buffer size */
lss_size, /* local socket send buffer size */
lsr_size, /* local socket recv buffer size */
req_size = 1, /* request size */
rsp_size = 1, /* response size */
send_size, /* how big are individual sends */
recv_size; /* how big are individual receives */
static int confidence_iteration;
static char local_cpu_method;
static char remote_cpu_method;
/* different options for the xti */
static int
loc_nodelay, /* don't/do use NODELAY locally */
rem_nodelay, /* don't/do use NODELAY remotely */
loc_sndavoid, /* avoid send copies locally */
loc_rcvavoid, /* avoid recv copies locally */
rem_sndavoid, /* avoid send copies remotely */
rem_rcvavoid; /* avoid recv_copies remotely */
static struct t_info info_struct;
#ifdef WANT_HISTOGRAM
#ifdef HAVE_GETHRTIME
hrtime_t time_one;
hrtime_t time_two;
#else
static struct timeval time_one;
static struct timeval time_two;
#endif /* HAVE_GETHRTIME */
static HIST time_hist;
#endif /* WANT_HISTOGRAM */
static char loc_xti_device[32] = "/dev/tcp";
static char rem_xti_device[32] = "/dev/tcp";
static int xti_flags = 0;
char xti_usage[] = "\n\
Usage: netperf [global options] -- [test options] \n\
\n\
TCP/UDP XTI API Test Options:\n\
-D [L][,R] Set XTI_TCP_NODELAY locally and/or remotely (XTI_TCP_*)\n\
-h Display this text\n\
-m bytes Set the send size (XTI_TCP_STREAM, XTI_UDP_STREAM)\n\
-M bytes Set the recv size (XTI_TCP_STREAM, XTI_UDP_STREAM)\n\
-r bytes Set request size (XTI_TCP_RR, XTI_UDP_RR)\n\
-R bytes Set response size (XTI_TCP_RR, XTI_UDP_RR)\n\
-s send[,recv] Set local socket send/recv buffer sizes\n\
-S send[,recv] Set remote socket send/recv buffer sizes\n\
-X dev[,dev] Set the local/remote XTI device file name\n\
\n\
For those options taking two parms, at least one must be specified;\n\
specifying one value without a comma will set both parms to that\n\
value, specifying a value with a leading comma will set just the second\n\
parm, a value with a trailing comma will set just the first. To set\n\
each parm to unique values, specify both and separate them with a\n\
comma.\n";
/* This routine is intended to retrieve interesting aspects of tcp */
/* for the data connection. at first, it attempts to retrieve the */
/* maximum segment size. later, it might be modified to retrieve */
/* other information, but it must be information that can be */
/* retrieved quickly as it is called during the timing of the test. */
/* for that reason, a second routine may be created that can be */
/* called outside of the timing loop */
void
get_xti_info(socket, info_struct)
int socket;
struct t_info *info_struct;
{
}
/* This routine will create a data (listen) socket with the apropriate */
/* options set and return it to the caller. this replaces all the */
/* duplicate code in each of the test routines and should help make */
/* things a little easier to understand. since this routine can be */
/* called by either the netperf or netserver programs, all output */
/* should be directed towards "where." family is generally AF_INET, */
/* and type will be either SOCK_STREAM or SOCK_DGRAM */
SOCKET
create_xti_endpoint(char *name)
{
SOCKET temp_socket;
struct t_optmgmt *opt_req; /* we request an option */
struct t_optmgmt *opt_ret; /* it tells us what we got */
/* we use this to pass-in BSD-like socket options through t_optmgmt. */
/* it ends up being about as clear as mud. raj 2/95 */
struct sock_option {
struct t_opthdr myopthdr;
long value;
} *sock_option;
if (debug) {
fprintf(where,"create_xti_endpoint: attempting to open %s\n",
name);
fflush(where);
}
/*set up the data socket */
temp_socket = t_open(name,O_RDWR,NULL);
if (temp_socket == INVALID_SOCKET){
fprintf(where,
"netperf: create_xti_endpoint: t_open %s: errno %d t_errno %d\n",
name,
errno,
t_errno);
fflush(where);
exit(1);
}
if (debug) {
fprintf(where,"create_xti_endpoint: socket %d obtained...\n",temp_socket);
fflush(where);
}
/* allocate what we need for option mgmt */
if ((opt_req = (struct t_optmgmt *)t_alloc(temp_socket,T_OPTMGMT,T_ALL)) ==
NULL) {
fprintf(where,
"netperf: create_xti_endpoint: t_alloc: opt_req errno %d\n",
errno);
fflush(where);
exit(1);
}
if (debug) {
fprintf(where,
"create_xti_endpoint: opt_req->opt.buf %x maxlen %d len %d\n",
opt_req->opt.buf,
opt_req->opt.maxlen,
opt_req->opt.len);
fflush(where);
}
if ((opt_ret = (struct t_optmgmt *) t_alloc(temp_socket,T_OPTMGMT,T_ALL)) ==
NULL) {
fprintf(where,
"netperf: create_xti_endpoint: t_alloc: opt_ret errno %d\n",
errno);
fflush(where);
exit(1);
}
if (debug) {
fprintf(where,
"create_xti_endpoint: opt_ret->opt.buf %x maxlen %d len %d\n",
opt_ret->opt.buf,
opt_ret->opt.maxlen,
opt_ret->opt.len);
fflush(where);
}
/* Modify the local socket size. The reason we alter the send buffer */
/* size here rather than when the connection is made is to take care */
/* of decreases in buffer size. Decreasing the window size after */
/* connection establishment is a TCP no-no. Also, by setting the */
/* buffer (window) size before the connection is established, we can */
/* control the TCP MSS (segment size). The MSS is never more that 1/2 */
/* the minimum receive buffer size at each half of the connection. */
/* This is why we are altering the receive buffer size on the sending */
/* size of a unidirectional transfer. If the user has not requested */
/* that the socket buffers be altered, we will try to find-out what */
/* their values are. If we cannot touch the socket buffer in any way, */
/* we will set the values to -1 to indicate that. */
#ifdef XTI_SNDBUF
if (lss_size > 0) {
/* we want to "negotiate" the option */
opt_req->flags = T_NEGOTIATE;
}
else {
/* we want to accept the default, and know what it is. I assume */
/* that when nothing has been changed, that T_CURRENT will return */
/* the same as T_DEFAULT raj 3/95 */
opt_req->flags = T_CURRENT;
}
/* the first part is for the netbuf that holds the option we want */
/* to negotiate or check */
/* the buffer of the netbuf points at the socket options structure */
/* we assume that the t_alloc call allocated a buffer that started */
/* on a proper alignment */
sock_option = (struct sock_option *)opt_req->opt.buf;
/* and next, set the fields in the sock_option structure */
sock_option->myopthdr.level = XTI_GENERIC;
sock_option->myopthdr.name = XTI_SNDBUF;
sock_option->myopthdr.len = sizeof(struct t_opthdr) + sizeof(long);
sock_option->value = lss_size;
opt_req->opt.len = sizeof(struct t_opthdr) + sizeof(long);
/* now, set-up the stuff to return the value in the end */
/* we assume that the t_alloc call allocated a buffer that started */
/* on a proper alignment */
sock_option = (struct sock_option *)opt_ret->opt.buf;
/* finally, call t_optmgmt. clear as mud. */
if (t_optmgmt(temp_socket,opt_req,opt_ret) == -1) {
fprintf(where,
"netperf: create_xti_endpoint: XTI_SNDBUF option: t_errno %d\n",
t_errno);
fflush(where);
exit(1);
}
if (sock_option->myopthdr.status == T_SUCCESS) {
lss_size = sock_option->value;
}
else {
fprintf(where,"create_xti_endpoint: XTI_SNDBUF option status 0x%.4x",
sock_option->myopthdr.status);
fprintf(where," value %d\n",
sock_option->value);
fflush(where);
lss_size = -1;
}
if (lsr_size > 0) {
/* we want to "negotiate" the option */
opt_req->flags = T_NEGOTIATE;
}
else {
/* we want to accept the default, and know what it is. I assume */
/* that when nothing has been changed, that T_CURRENT will return */
/* the same as T_DEFAULT raj 3/95 */
opt_req->flags = T_CURRENT;
}
/* the first part is for the netbuf that holds the option we want */
/* to negotiate or check */
/* the buffer of the netbuf points at the socket options structure */
/* we assume that the t_alloc call allocated a buffer that started */
/* on a proper alignment */
sock_option = (struct sock_option *)opt_req->opt.buf;
/* and next, set the fields in the sock_option structure */
sock_option->myopthdr.level = XTI_GENERIC;
sock_option->myopthdr.name = XTI_RCVBUF;
sock_option->myopthdr.len = sizeof(struct t_opthdr) + sizeof(long);
sock_option->value = lsr_size;
opt_req->opt.len = sizeof(struct t_opthdr) + sizeof(long);
/* now, set-up the stuff to return the value in the end */
/* we assume that the t_alloc call allocated a buffer that started */
/* on a proper alignment */
sock_option = (struct sock_option *)opt_ret->opt.buf;
/* finally, call t_optmgmt. clear as mud. */
if (t_optmgmt(temp_socket,opt_req,opt_ret) == -1) {
fprintf(where,
"netperf: create_xti_endpoint: XTI_RCVBUF option: t_errno %d\n",
t_errno);
fflush(where);
exit(1);
}
lsr_size = sock_option->value;
/* this needs code */
if (debug) {
fprintf(where,"netperf: create_xti_endpoint: socket sizes determined...\n");
fprintf(where," send: %d recv: %d\n",
lss_size,lsr_size);
fflush(where);
}
#else /* XTI_SNDBUF */
lss_size = -1;
lsr_size = -1;
#endif /* XTI_SNDBUF */
/* now, we may wish to enable the copy avoidance features on the */
/* local system. of course, this may not be possible... */
if (loc_rcvavoid) {
fprintf(where,
"netperf: create_xti_endpoint: Could not enable receive copy avoidance");
fflush(where);
loc_rcvavoid = 0;
}
if (loc_sndavoid) {
fprintf(where,
"netperf: create_xti_endpoint: Could not enable send copy avoidance");
fflush(where);
loc_sndavoid = 0;
}
/* Now, we will see about setting the TCP_NODELAY flag on the local */
/* socket. We will only do this for those systems that actually */
/* support the option. If it fails, note the fact, but keep going. */
/* If the user tries to enable TCP_NODELAY on a UDP socket, this */
/* will cause an error to be displayed */
#ifdef TCP_NODELAY
if ((strcmp(test_name,"XTI_TCP_STREAM") == 0) ||
(strcmp(test_name,"XTI_TCP_RR") == 0) ||
(strcmp(test_name,"XTI_TCP_CRR") == 0)) {
if (loc_nodelay) {
/* we want to "negotiate" the option */
opt_req->flags = T_NEGOTIATE;
}
else {
/* we want to accept the default, and know what it is. I assume */
/* that when nothing has been changed, that T_CURRENT will return */
/* the same as T_DEFAULT raj 3/95 */
opt_req->flags = T_CURRENT;
}
/* the first part is for the netbuf that holds the option we want */
/* to negotiate or check the buffer of the netbuf points at the */
/* socket options structure */
/* we assume that the t_alloc call allocated a buffer that started */
/* on a proper alignment */
sock_option = (struct sock_option *)opt_req->opt.buf;
/* and next, set the fields in the sock_option structure */
sock_option->myopthdr.level = INET_TCP;
sock_option->myopthdr.name = TCP_NODELAY;
sock_option->myopthdr.len = sizeof(struct t_opthdr) + sizeof(long);
sock_option->value = T_YES;
opt_req->opt.len = sizeof(struct t_opthdr) + sizeof(long);
/* now, set-up the stuff to return the value in the end */
/* we assume that the t_alloc call allocated a buffer that started */
/* on a proper alignment */
sock_option = (struct sock_option *)opt_ret->opt.buf;
/* finally, call t_optmgmt. clear as mud. */
if (t_optmgmt(temp_socket,opt_req,opt_ret) == -1) {
fprintf(where,
"create_xti_endpoint: TCP_NODELAY option: errno %d t_errno %d\n",
errno,
t_errno);
fflush(where);
exit(1);
}
loc_nodelay = sock_option->value;
}
#else /* TCP_NODELAY */
loc_nodelay = 0;
#endif /* TCP_NODELAY */
return(temp_socket);
}
/* This routine implements the TCP unidirectional data transfer test */
/* (a.k.a. stream) for the xti interface. It receives its */
/* parameters via global variables from the shell and writes its */
/* output to the standard output. */
void
send_xti_tcp_stream(char remote_host[])
{
char *tput_title = "\
Recv Send Send \n\
Socket Socket Message Elapsed \n\
Size Size Size Time Throughput \n\
bytes bytes bytes secs. %s/sec \n\n";
char *tput_fmt_0 =
"%7.2f\n";
char *tput_fmt_1 =
"%6d %6d %6d %-6.2f %7.2f \n";
char *cpu_title = "\
Recv Send Send Utilization Service Demand\n\
Socket Socket Message Elapsed Send Recv Send Recv\n\
Size Size Size Time Throughput local remote local remote\n\
bytes bytes bytes secs. %-8.8s/s %% %c %% %c us/KB us/KB\n\n";
char *cpu_fmt_0 =
"%6.3f %c\n";
char *cpu_fmt_1 =
"%6d %6d %6d %-6.2f %7.2f %-6.2f %-6.2f %-6.3f %-6.3f\n";
char *ksink_fmt = "\n\
Alignment Offset %-8.8s %-8.8s Sends %-8.8s Recvs\n\
Local Remote Local Remote Xfered Per Per\n\
Send Recv Send Recv Send (avg) Recv (avg)\n\
%5d %5d %5d %5d %6.4g %6.2f %6d %6.2f %6d\n";
char *ksink_fmt2 = "\n\
Maximum\n\
Segment\n\
Size (bytes)\n\
%6d\n";
float elapsed_time;
#ifdef WANT_INTERVALS
int interval_count;
sigset_t signal_set;
#endif
/* what we want is to have a buffer space that is at least one */
/* send-size greater than our send window. this will insure that we */
/* are never trying to re-use a buffer that may still be in the hands */
/* of the transport. This buffer will be malloc'd after we have found */
/* the size of the local senc socket buffer. We will want to deal */
/* with alignment and offset concerns as well. */
int *message_int_ptr;
struct ring_elt *send_ring;
int len;
unsigned int nummessages;
SOCKET send_socket;
int bytes_remaining;
int tcp_mss = -1; /* possibly uninitialized on printf far below */
/* with links like fddi, one can send > 32 bits worth of bytes */
/* during a test... ;-) at some point, this should probably become a */
/* 64bit integral type, but those are not entirely common yet */
double bytes_sent;
float local_cpu_utilization;
float local_service_demand;
float remote_cpu_utilization;
float remote_service_demand;
double thruput;
/* some addressing information */
struct hostent *hp;
struct sockaddr_in server;
unsigned int addr;
struct t_call server_call;
struct xti_tcp_stream_request_struct *xti_tcp_stream_request;
struct xti_tcp_stream_response_struct *xti_tcp_stream_response;
struct xti_tcp_stream_results_struct *xti_tcp_stream_result;
xti_tcp_stream_request =
(struct xti_tcp_stream_request_struct *)netperf_request.content.test_specific_data;
xti_tcp_stream_response =
(struct xti_tcp_stream_response_struct *)netperf_response.content.test_specific_data;
xti_tcp_stream_result =
(struct xti_tcp_stream_results_struct *)netperf_response.content.test_specific_data;
#ifdef WANT_HISTOGRAM
time_hist = HIST_new();
#endif /* WANT_HISTOGRAM */
/* since we are now disconnected from the code that established the */
/* control socket, and since we want to be able to use different */
/* protocols and such, we are passed the name of the remote host and */
/* must turn that into the test specific addressing information. */
bzero((char *)&server,
sizeof(server));
/* it would seem that while HP-UX will allow an IP address (as a */
/* string) in a call to gethostbyname, other, less enlightened */
/* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */
/* order changed to check for IP address first. raj 7/96 */
if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) {
/* it was not an IP address, try it as a name */
if ((hp = gethostbyname(remote_host)) == NULL) {
/* we have no idea what it is */
fprintf(where,
"establish_control: could not resolve the destination %s\n",
remote_host);
fflush(where);
exit(1);
}
else {
/* it was a valid remote_host */
bcopy(hp->h_addr,
(char *)&server.sin_addr,
hp->h_length);
server.sin_family = hp->h_addrtype;
}
}
else {
/* it was a valid IP address */
server.sin_addr.s_addr = addr;
server.sin_family = AF_INET;
}
if ( print_headers ) {
/* we want to have some additional, interesting information in */
/* the headers. we know some of it here, but not all, so we will */
/* only print the test title here and will print the results */
/* titles after the test is finished */
fprintf(where,"XTI TCP STREAM TEST");
fprintf(where," to %s", remote_host);
if (iteration_max > 1) {
fprintf(where,
" : +/-%3.1f%% @ %2d%% conf.",
interval/0.02,
confidence_level);
}
if (loc_nodelay || rem_nodelay) {
fprintf(where," : nodelay");
}
if (loc_sndavoid ||
loc_rcvavoid ||
rem_sndavoid ||
rem_rcvavoid) {
fprintf(where," : copy avoidance");
}
#ifdef WANT_HISTOGRAM
fprintf(where," : histogram");
#endif /* WANT_HISTOGRAM */
#ifdef WANT_INTERVALS
fprintf(where," : interval");
#endif /* WANT_INTERVALS */
#ifdef DIRTY
fprintf(where," : dirty data");
#endif /* DIRTY */
fprintf(where,"\n");
}
send_ring = NULL;
confidence_iteration = 1;
init_stat();
/* we have a great-big while loop which controls the number of times */
/* we run a particular test. this is for the calculation of a */
/* confidence interval (I really should have stayed awake during */
/* probstats :). If the user did not request confidence measurement */
/* (no confidence is the default) then we will only go though the */
/* loop once. the confidence stuff originates from the folks at IBM */
while (((confidence < 0) && (confidence_iteration < iteration_max)) ||
(confidence_iteration <= iteration_min)) {
/* initialize a few counters. we have to remember that we might be */
/* going through the loop more than once. */
nummessages = 0;
bytes_sent = 0.0;
times_up = 0;
/*set up the data socket */
send_socket = create_xti_endpoint(loc_xti_device);
if (send_socket == INVALID_SOCKET) {
perror("netperf: send_xti_tcp_stream: tcp stream data socket");
exit(1);
}
if (debug) {
fprintf(where,"send_xti_tcp_stream: send_socket obtained...\n");
}
/* it would seem that with XTI, there is no implicit bind on a */
/* connect, so we have to make a call to t_bind. this is not */
/* terribly convenient, but I suppose that "standard is better */
/* than better" :) raj 2/95 */
if (t_bind(send_socket, NULL, NULL) == SOCKET_ERROR) {
t_error("send_xti_tcp_stream: t_bind");
exit(1);
}
/* at this point, we have either retrieved the socket buffer sizes, */
/* or have tried to set them, so now, we may want to set the send */
/* size based on that (because the user either did not use a -m */
/* option, or used one with an argument of 0). If the socket buffer */
/* size is not available, we will set the send size to 4KB - no */
/* particular reason, just arbitrary... */
if (send_size == 0) {
if (lss_size > 0) {
send_size = lss_size;
}
else {
send_size = 4096;
}
}
/* set-up the data buffer ring with the requested alignment and offset. */
/* note also that we have allocated a quantity */
/* of memory that is at least one send-size greater than our socket */
/* buffer size. We want to be sure that there are at least two */
/* buffers allocated - this can be a bit of a problem when the */
/* send_size is bigger than the socket size, so we must check... the */
/* user may have wanted to explicitly set the "width" of our send */
/* buffers, we should respect that wish... */
if (send_width == 0) {
send_width = (lss_size/send_size) + 1;
if (send_width == 1) send_width++;
}
if (send_ring == NULL) {
/* only allocate the send ring once. this is a networking test, */
/* not a memory allocation test. this way, we do not need a */
/* deallocate_buffer_ring() routine, and I don't feel like */
/* writing one anyway :) raj 11/94 */
send_ring = allocate_buffer_ring(send_width,
send_size,
local_send_align,
local_send_offset);
}
/* If the user has requested cpu utilization measurements, we must */
/* calibrate the cpu(s). We will perform this task within the tests */
/* themselves. If the user has specified the cpu rate, then */
/* calibrate_local_cpu will return rather quickly as it will have */
/* nothing to do. If local_cpu_rate is zero, then we will go through */
/* all the "normal" calibration stuff and return the rate back. */
if (local_cpu_usage) {
local_cpu_rate = calibrate_local_cpu(local_cpu_rate);
}
/* Tell the remote end to do a listen. The server alters the socket */
/* paramters on the other side at this point, hence the reason for */
/* all the values being passed in the setup message. If the user did */
/* not specify any of the parameters, they will be passed as 0, which */
/* will indicate to the remote that no changes beyond the system's */
/* default should be used. Alignment is the exception, it will */
/* default to 1, which will be no alignment alterations. */
netperf_request.content.request_type = DO_XTI_TCP_STREAM;
xti_tcp_stream_request->send_buf_size = rss_size;
xti_tcp_stream_request->recv_buf_size = rsr_size;
xti_tcp_stream_request->receive_size = recv_size;
xti_tcp_stream_request->no_delay = rem_nodelay;
xti_tcp_stream_request->recv_alignment = remote_recv_align;
xti_tcp_stream_request->recv_offset = remote_recv_offset;
xti_tcp_stream_request->measure_cpu = remote_cpu_usage;
xti_tcp_stream_request->cpu_rate = remote_cpu_rate;
if (test_time) {
xti_tcp_stream_request->test_length = test_time;
}
else {
xti_tcp_stream_request->test_length = test_bytes;
}
xti_tcp_stream_request->so_rcvavoid = rem_rcvavoid;
xti_tcp_stream_request->so_sndavoid = rem_sndavoid;
strcpy(xti_tcp_stream_request->xti_device, rem_xti_device);
#ifdef __alpha
/* ok - even on a DEC box, strings are strings. I didn't really want */
/* to ntohl the words of a string. since I don't want to teach the */
/* send_ and recv_ _request and _response routines about the types, */
/* I will put "anti-ntohl" calls here. I imagine that the "pure" */
/* solution would be to use XDR, but I am still leary of being able */
/* to find XDR libs on all platforms I want running netperf. raj */
{
int *charword;
int *initword;
int *lastword;
initword = (int *) xti_tcp_stream_request->xti_device;
lastword = initword + ((strlen(rem_xti_device) + 3) / 4);
for (charword = initword;
charword < lastword;
charword++) {
*charword = ntohl(*charword);
}
}
#endif /* __alpha */
#ifdef DIRTY
xti_tcp_stream_request->dirty_count = rem_dirty_count;
xti_tcp_stream_request->clean_count = rem_clean_count;
#endif /* DIRTY */
if (debug > 1) {
fprintf(where,
"netperf: send_xti_tcp_stream: requesting TCP stream test\n");
}
send_request();
/* The response from the remote will contain all of the relevant */
/* socket parameters for this test type. We will put them back into */
/* the variables here so they can be displayed if desired. The */
/* remote will have calibrated CPU if necessary, and will have done */
/* all the needed set-up we will have calibrated the cpu locally */
/* before sending the request, and will grab the counter value right*/
/* after the connect returns. The remote will grab the counter right*/
/* after the accept call. This saves the hassle of extra messages */
/* being sent for the TCP tests. */
recv_response();
if (!netperf_response.content.serv_errno) {
if (debug)
fprintf(where,"remote listen done.\n");
rsr_size = xti_tcp_stream_response->recv_buf_size;
rss_size = xti_tcp_stream_response->send_buf_size;
rem_nodelay = xti_tcp_stream_response->no_delay;
remote_cpu_usage = xti_tcp_stream_response->measure_cpu;
remote_cpu_rate = xti_tcp_stream_response->cpu_rate;
/* we have to make sure that the server port number is in */
/* network order */
server.sin_port = (short)xti_tcp_stream_response->data_port_number;
server.sin_port = htons(server.sin_port);
rem_rcvavoid = xti_tcp_stream_response->so_rcvavoid;
rem_sndavoid = xti_tcp_stream_response->so_sndavoid;
}
else {
Set_errno(netperf_response.content.serv_errno);
perror("netperf: remote error");
exit(1);
}
/*Connect up to the remote port on the data socket */
memset (&server_call, 0, sizeof(server_call));
server_call.addr.maxlen = sizeof(struct sockaddr_in);
server_call.addr.len = sizeof(struct sockaddr_in);
server_call.addr.buf = (char *)&server;
if (t_connect(send_socket,
&server_call,
NULL) == INVALID_SOCKET){
t_error("netperf: send_xti_tcp_stream: data socket connect failed");
printf(" port: %d\n",ntohs(server.sin_port));
exit(1);
}
/* Data Socket set-up is finished. If there were problems, either */
/* the connect would have failed, or the previous response would */
/* have indicated a problem. I failed to see the value of the */
/* extra message after the accept on the remote. If it failed, */
/* we'll see it here. If it didn't, we might as well start pumping */
/* data. */
/* Set-up the test end conditions. For a stream test, they can be */
/* either time or byte-count based. */
if (test_time) {
/* The user wanted to end the test after a period of time. */
times_up = 0;
bytes_remaining = 0;
/* in previous revisions, we had the same code repeated throught */
/* all the test suites. this was unnecessary, and meant more */
/* work for me when I wanted to switch to POSIX signals, so I */
/* have abstracted this out into a routine in netlib.c. if you */
/* are experiencing signal problems, you might want to look */
/* there. raj 11/94 */
start_timer(test_time);
}
else {
/* The tester wanted to send a number of bytes. */
bytes_remaining = test_bytes;
times_up = 1;
}
/* The cpu_start routine will grab the current time and possibly */
/* value of the idle counter for later use in measuring cpu */
/* utilization and/or service demand and thruput. */
cpu_start(local_cpu_usage);
#ifdef WANT_INTERVALS
if ((interval_burst) || (demo_mode)) {
/* zero means that we never pause, so we never should need the */
/* interval timer, unless we are in demo_mode */
start_itimer(interval_wate);
}
interval_count = interval_burst;
/* get the signal set for the call to sigsuspend */
if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) {
fprintf(where,
"send_xti_tcp_stream: unable to get sigmask errno %d\n",
errno);
fflush(where);
exit(1);
}
#endif /* WANT_INTERVALS */
/* before we start, initialize a few variables */
/* We use an "OR" to control test execution. When the test is */
/* controlled by time, the byte count check will always return false. */
/* When the test is controlled by byte count, the time test will */
/* always return false. When the test is finished, the whole */
/* expression will go false and we will stop sending data. */
while ((!times_up) || (bytes_remaining > 0)) {
#ifdef DIRTY
/* we want to dirty some number of consecutive integers in the buffer */
/* we are about to send. we may also want to bring some number of */
/* them cleanly into the cache. The clean ones will follow any dirty */
/* ones into the cache. at some point, we might want to replace */
/* the rand() call with something from a table to reduce our call */
/* overhead during the test, but it is not a high priority item. */
access_buffer(send_ring->buffer_ptr,
send_size,
loc_dirty_count,
loc_clean_count);
#endif /* DIRTY */
#ifdef WANT_HISTOGRAM
/* timestamp just before we go into send and then again just after */
/* we come out raj 8/94 */
HIST_timestamp(&time_one);
#endif /* WANT_HISTOGRAM */
if((len=t_snd(send_socket,
send_ring->buffer_ptr,
send_size,
0)) != send_size) {
if ((len >=0) || (errno == EINTR)) {
/* the test was interrupted, must be the end of test */
break;
}
fprintf(where,
"send_xti_tcp_stream: t_snd: errno %d t_errno %d t_look 0x%.4x\n",
errno,
t_errno,
t_look(send_socket));
fflush(where);
exit(1);
}
#ifdef WANT_HISTOGRAM
/* timestamp the exit from the send call and update the histogram */
HIST_timestamp(&time_two);
HIST_add(time_hist,delta_micro(&time_one,&time_two));
#endif /* WANT_HISTOGRAM */
#ifdef WANT_INTERVALS
if (demo_mode) {
units_this_tick += send_size;
}
/* in this case, the interval count is the count-down couter */
/* to decide to sleep for a little bit */
if ((interval_burst) && (--interval_count == 0)) {
/* call sigsuspend and wait for the interval timer to get us */
/* out */
if (debug) {
fprintf(where,"about to suspend\n");
fflush(where);
}
if (sigsuspend(&signal_set) == EFAULT) {
fprintf(where,
"send_xti_tcp_stream: fault with signal set!\n");
fflush(where);
exit(1);
}
interval_count = interval_burst;
}
#endif /* WANT_INTERVALS */
/* now we want to move our pointer to the next position in the */
/* data buffer...we may also want to wrap back to the "beginning" */
/* of the bufferspace, so we will mod the number of messages sent */
/* by the send width, and use that to calculate the offset to add */
/* to the base pointer. */
nummessages++;
send_ring = send_ring->next;
if (bytes_remaining) {
bytes_remaining -= send_size;
}
}
/* The test is over. Flush the buffers to the remote end. We do a */
/* graceful release to insure that all data has been taken by the */
/* remote. */
/* but first, if the verbosity is greater than 1, find-out what */
/* the TCP maximum segment_size was (if possible) */
if (verbosity > 1) {
tcp_mss = -1;
get_xti_info(send_socket,info_struct);
}
if (t_sndrel(send_socket) == -1) {
t_error("netperf: cannot shutdown tcp stream socket");
exit(1);
}
/* hang a t_rcvrel() off the socket to block until the remote has */
/* brought all the data up into the application. it will do a */
/* t_sedrel to cause a FIN to be sent our way. We will assume that */
/* any exit from the t_rcvrel() call is good... raj 2/95 */
if (debug > 1) {
fprintf(where,"about to hang a receive for graceful release.\n");
fflush(where);
}
t_rcvrel(send_socket);
/* this call will always give us the elapsed time for the test, and */
/* will also store-away the necessaries for cpu utilization */
cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being */
/* measured and how */
/* long did we really */
/* run? */
/* Get the statistics from the remote end. The remote will have */
/* calculated service demand and all those interesting things. If it */
/* wasn't supposed to care, it will return obvious values. */
recv_response();
if (!netperf_response.content.serv_errno) {
if (debug)
fprintf(where,"remote results obtained\n");
}
else {
Set_errno(netperf_response.content.serv_errno);
perror("netperf: remote error");
exit(1);
}
/* We now calculate what our thruput was for the test. In the future, */
/* we may want to include a calculation of the thruput measured by */
/* the remote, but it should be the case that for a TCP stream test, */
/* that the two numbers should be *very* close... We calculate */
/* bytes_sent regardless of the way the test length was controlled. */
/* If it was time, we needed to, and if it was by bytes, the user may */
/* have specified a number of bytes that wasn't a multiple of the */
/* send_size, so we really didn't send what he asked for ;-) */
bytes_sent = xti_tcp_stream_result->bytes_received;
thruput = calc_thruput(bytes_sent);
if (local_cpu_usage || remote_cpu_usage) {
/* We must now do a little math for service demand and cpu */
/* utilization for the system(s) */
/* Of course, some of the information might be bogus because */
/* there was no idle counter in the kernel(s). We need to make */
/* a note of this for the user's benefit...*/
if (local_cpu_usage) {
local_cpu_utilization = calc_cpu_util(0.0);
local_service_demand = calc_service_demand(bytes_sent,
0.0,
0.0,
0);
}
else {
local_cpu_utilization = -1.0;
local_service_demand = -1.0;
}
if (remote_cpu_usage) {
remote_cpu_utilization = xti_tcp_stream_result->cpu_util;
remote_service_demand = calc_service_demand(bytes_sent,
0.0,
remote_cpu_utilization,
xti_tcp_stream_result->num_cpus);
}
else {
remote_cpu_utilization = -1.0;
remote_service_demand = -1.0;
}
}
else {
/* we were not measuring cpu, for the confidence stuff, we */
/* should make it -1.0 */
local_cpu_utilization = -1.0;
local_service_demand = -1.0;
remote_cpu_utilization = -1.0;
remote_service_demand = -1.0;
}
/* at this point, we want to calculate the confidence information. */
/* if debugging is on, calculate_confidence will print-out the */
/* parameters we pass it */
calculate_confidence(confidence_iteration,
elapsed_time,
thruput,
local_cpu_utilization,
remote_cpu_utilization,
local_service_demand,
remote_service_demand);
confidence_iteration++;
}
/* at this point, we have finished making all the runs that we */
/* will be making. so, we should extract what the calcuated values */
/* are for all the confidence stuff. we could make the values */
/* global, but that seemed a little messy, and it did not seem worth */
/* all the mucking with header files. so, we create a routine much */
/* like calcualte_confidence, which just returns the mean values. */
/* raj 11/94 */
retrieve_confident_values(&elapsed_time,
&thruput,
&local_cpu_utilization,
&remote_cpu_utilization,
&local_service_demand,
&remote_service_demand);
/* We are now ready to print all the information. If the user */
/* has specified zero-level verbosity, we will just print the */
/* local service demand, or the remote service demand. If the */
/* user has requested verbosity level 1, he will get the basic */
/* "streamperf" numbers. If the user has specified a verbosity */
/* of greater than 1, we will display a veritable plethora of */
/* background information from outside of this block as it it */
/* not cpu_measurement specific... */
if (confidence < 0) {
/* we did not hit confidence, but were we asked to look for it? */
if (iteration_max > 1) {
display_confidence();
}
}
if (local_cpu_usage || remote_cpu_usage) {
local_cpu_method = format_cpu_method(cpu_method);
remote_cpu_method = format_cpu_method(xti_tcp_stream_result->cpu_method);
switch (verbosity) {
case 0:
if (local_cpu_usage) {
fprintf(where,
cpu_fmt_0,
local_service_demand,
local_cpu_method);
}
else {
fprintf(where,
cpu_fmt_0,
remote_service_demand,
remote_cpu_method);
}
break;
case 1:
case 2:
if (print_headers) {
fprintf(where,
cpu_title,
format_units(),
local_cpu_method,
remote_cpu_method);
}
fprintf(where,
cpu_fmt_1, /* the format string */
rsr_size, /* remote recvbuf size */
lss_size, /* local sendbuf size */
send_size, /* how large were the sends */
elapsed_time, /* how long was the test */
thruput, /* what was the xfer rate */
local_cpu_utilization, /* local cpu */
remote_cpu_utilization, /* remote cpu */
local_service_demand, /* local service demand */
remote_service_demand); /* remote service demand */
break;
}
}
else {
/* The tester did not wish to measure service demand. */
switch (verbosity) {
case 0:
fprintf(where,
tput_fmt_0,
thruput);
break;
case 1:
case 2:
if (print_headers) {
fprintf(where,tput_title,format_units());
}
fprintf(where,
tput_fmt_1, /* the format string */
rsr_size, /* remote recvbuf size */
lss_size, /* local sendbuf size */
send_size, /* how large were the sends */
elapsed_time, /* how long did it take */
thruput);/* how fast did it go */
break;
}
}
/* it would be a good thing to include information about some of the */
/* other parameters that may have been set for this test, but at the */
/* moment, I do not wish to figure-out all the formatting, so I will */
/* just put this comment here to help remind me that it is something */
/* that should be done at a later time. */
if (verbosity > 1) {
/* The user wanted to know it all, so we will give it to him. */
/* This information will include as much as we can find about */
/* TCP statistics, the alignments of the sends and receives */
/* and all that sort of rot... */
/* this stuff needs to be worked-out in the presence of confidence */
/* intervals and multiple iterations of the test... raj 11/94 */
fprintf(where,
ksink_fmt,
"Bytes",
"Bytes",
"Bytes",
local_send_align,
remote_recv_align,
local_send_offset,
remote_recv_offset,
bytes_sent,
bytes_sent / (double)nummessages,
nummessages,
bytes_sent / (double)xti_tcp_stream_result->recv_calls,
xti_tcp_stream_result->recv_calls);
fprintf(where,
ksink_fmt2,
tcp_mss);
fflush(where);
#ifdef WANT_HISTOGRAM
fprintf(where,"\n\nHistogram of time spent in send() call.\n");
fflush(where);
HIST_report(time_hist);
#endif /* WANT_HISTOGRAM */
}
}
/* This is the server-side routine for the tcp stream test. It is */
/* implemented as one routine. I could break things-out somewhat, but */
/* didn't feel it was necessary. */
void
recv_xti_tcp_stream()
{
struct sockaddr_in myaddr_in, peeraddr_in;
struct t_bind bind_req, bind_resp;
struct t_call call_req;
SOCKET s_listen,s_data;
int addrlen;
int len;
unsigned int receive_calls;
float elapsed_time;
double bytes_received;
struct ring_elt *recv_ring;
int *message_int_ptr;
int i;
struct xti_tcp_stream_request_struct *xti_tcp_stream_request;
struct xti_tcp_stream_response_struct *xti_tcp_stream_response;
struct xti_tcp_stream_results_struct *xti_tcp_stream_results;
xti_tcp_stream_request =
(struct xti_tcp_stream_request_struct *)netperf_request.content.test_specific_data;
xti_tcp_stream_response =
(struct xti_tcp_stream_response_struct *)netperf_response.content.test_specific_data;
xti_tcp_stream_results =
(struct xti_tcp_stream_results_struct *)netperf_response.content.test_specific_data;
if (debug) {
fprintf(where,"netserver: recv_xti_tcp_stream: entered...\n");
fflush(where);
}
/* We want to set-up the listen socket with all the desired */
/* parameters and then let the initiator know that all is ready. If */
/* socket size defaults are to be used, then the initiator will have */
/* sent us 0's. If the socket sizes cannot be changed, then we will */
/* send-back what they are. If that information cannot be determined, */
/* then we send-back -1's for the sizes. If things go wrong for any */
/* reason, we will drop back ten yards and punt. */
/* If anything goes wrong, we want the remote to know about it. It */
/* would be best if the error that the remote reports to the user is */
/* the actual error we encountered, rather than some bogus unexpected */
/* response type message. */
if (debug) {
fprintf(where,"recv_xti_tcp_stream: setting the response type...\n");
fflush(where);
}
netperf_response.content.response_type = XTI_TCP_STREAM_RESPONSE;
if (debug) {
fprintf(where,"recv_xti_tcp_stream: the response type is set...\n");
fflush(where);
}
/* We now alter the message_ptr variable to be at the desired */
/* alignment with the desired offset. */
if (debug) {
fprintf(where,"recv_xti_tcp_stream: requested alignment of %d\n",
xti_tcp_stream_request->recv_alignment);
fflush(where);
}
/* Let's clear-out our sockaddr for the sake of cleanlines. Then we */
/* can put in OUR values !-) At some point, we may want to nail this */
/* socket to a particular network-level address, but for now, */
/* INADDR_ANY should be just fine. */
bzero((char *)&myaddr_in,
sizeof(myaddr_in));
myaddr_in.sin_family = AF_INET;
myaddr_in.sin_addr.s_addr = INADDR_ANY;
myaddr_in.sin_port = 0;
/* Grab a socket to listen on, and then listen on it. */
if (debug) {
fprintf(where,"recv_xti_tcp_stream: grabbing a socket...\n");
fflush(where);
}
/* create_xti_endpoint expects to find some things in the global */
/* variables, so set the globals based on the values in the request. */
/* once the socket has been created, we will set the response values */
/* based on the updated value of those globals. raj 7/94 */
lss_size = xti_tcp_stream_request->send_buf_size;
lsr_size = xti_tcp_stream_request->recv_buf_size;
loc_nodelay = xti_tcp_stream_request->no_delay;
loc_rcvavoid = xti_tcp_stream_request->so_rcvavoid;
loc_sndavoid = xti_tcp_stream_request->so_sndavoid;
#ifdef __alpha
/* ok - even on a DEC box, strings are strings. I din't really want */
/* to ntohl the words of a string. since I don't want to teach the */
/* send_ and recv_ _request and _response routines about the types, */
/* I will put "anti-ntohl" calls here. I imagine that the "pure" */
/* solution would be to use XDR, but I am still leary of being able */
/* to find XDR libs on all platforms I want running netperf. raj */
{
int *charword;
int *initword;
int *lastword;
initword = (int *) xti_tcp_stream_request->xti_device;
lastword = initword + ((xti_tcp_stream_request->dev_name_len + 3) / 4);
for (charword = initword;
charword < lastword;
charword++) {
*charword = htonl(*charword);
}
}
#endif /* __alpha */
s_listen = create_xti_endpoint(xti_tcp_stream_request->xti_device);
if (s_listen == INVALID_SOCKET) {
netperf_response.content.serv_errno = errno;
send_response();
exit(1);
}
/* Let's get an address assigned to this socket so we can tell the */
/* initiator how to reach the data socket. There may be a desire to */
/* nail this socket to a specific IP address in a multi-homed, */
/* multi-connection situation, but for now, we'll ignore the issue */
/* and concentrate on single connection testing. */
bind_req.addr.maxlen = sizeof(struct sockaddr_in);
bind_req.addr.len = sizeof(struct sockaddr_in);
bind_req.addr.buf = (char *)&myaddr_in;
bind_req.qlen = 1;
bind_resp.addr.maxlen = sizeof(struct sockaddr_in);
bind_resp.addr.len = sizeof(struct sockaddr_in);
bind_resp.addr.buf = (char *)&myaddr_in;
bind_resp.qlen = 1;
if (t_bind(s_listen,
&bind_req,
&bind_resp) == SOCKET_ERROR) {
netperf_response.content.serv_errno = t_errno;
close(s_listen);
send_response();
exit(1);
}
if (debug) {
fprintf(where,
"recv_xti_tcp_stream: t_bind complete port %d\n",
ntohs(myaddr_in.sin_port));
fflush(where);
}
/* what sort of sizes did we end-up with? */
if (xti_tcp_stream_request->receive_size == 0) {
if (lsr_size > 0) {
recv_size = lsr_size;
}
else {
recv_size = 4096;
}
}
else {
recv_size = xti_tcp_stream_request->receive_size;
}
/* we want to set-up our recv_ring in a manner analagous to what we */
/* do on the sending side. this is more for the sake of symmetry */
/* than for the needs of say copy avoidance, but it might also be */
/* more realistic - this way one could conceivably go with a */
/* double-buffering scheme when taking the data an putting it into */
/* the filesystem or something like that. raj 7/94 */
if (recv_width == 0) {
recv_width = (lsr_size/recv_size) + 1;
if (recv_width == 1) recv_width++;
}
recv_ring = allocate_buffer_ring(recv_width,
recv_size,
xti_tcp_stream_request->recv_alignment,
xti_tcp_stream_request->recv_offset);
if (debug) {
fprintf(where,"recv_xti_tcp_stream: recv alignment and offset set...\n");
fflush(where);
}
/* Now myaddr_in contains the port and the internet address this is */
/* returned to the sender also implicitly telling the sender that the */
/* socket buffer sizing has been done. */
xti_tcp_stream_response->data_port_number =
(int) ntohs(myaddr_in.sin_port);
netperf_response.content.serv_errno = 0;
/* But wait, there's more. If the initiator wanted cpu measurements, */
/* then we must call the calibrate routine, which will return the max */
/* rate back to the initiator. If the CPU was not to be measured, or */
/* something went wrong with the calibration, we will return a -1 to */
/* the initiator. */
xti_tcp_stream_response->cpu_rate = 0.0; /* assume no cpu */
if (xti_tcp_stream_request->measure_cpu) {
xti_tcp_stream_response->measure_cpu = 1;
xti_tcp_stream_response->cpu_rate =
calibrate_local_cpu(xti_tcp_stream_request->cpu_rate);
}
else {
xti_tcp_stream_response->measure_cpu = 0;
}
/* before we send the response back to the initiator, pull some of */
/* the socket parms from the globals */
xti_tcp_stream_response->send_buf_size = lss_size;
xti_tcp_stream_response->recv_buf_size = lsr_size;
xti_tcp_stream_response->no_delay = loc_nodelay;
xti_tcp_stream_response->so_rcvavoid = loc_rcvavoid;
xti_tcp_stream_response->so_sndavoid = loc_sndavoid;
xti_tcp_stream_response->receive_size = recv_size;
send_response();
/* Now, let's set-up the socket to listen for connections. for xti, */
/* the t_listen call is blocking by default - this is different */
/* semantics from BSD - probably has to do with being able to reject */
/* a call before an accept */
call_req.addr.maxlen = sizeof(struct sockaddr_in);
call_req.addr.len = sizeof(struct sockaddr_in);
call_req.addr.buf = (char *)&peeraddr_in;
call_req.opt.maxlen = 0;
call_req.opt.len = 0;
call_req.opt.buf = NULL;
call_req.udata.maxlen= 0;
call_req.udata.len = 0;
call_req.udata.buf = 0;
if (t_listen(s_listen, &call_req) == -1) {
fprintf(where,
"recv_xti_tcp_stream: t_listen: errno %d t_errno %d\n",
errno,
t_errno);
fflush(where);
netperf_response.content.serv_errno = t_errno;
close(s_listen);
send_response();
exit(1);
}
if (debug) {
fprintf(where,
"recv_xti_tcp_stream: t_listen complete t_look 0x%.4x\n",
t_look(s_listen));
fflush(where);
}
/* now just rubber stamp the thing. we want to use the same fd? so */
/* we will just equate s_data with s_listen. this seems a little */
/* hokey to me, but then I'm a BSD biggot still. raj 2/95 */
s_data = s_listen;
if (t_accept(s_listen,
s_data,
&call_req) == -1) {
fprintf(where,
"recv_xti_tcp_stream: t_accept: errno %d t_errno %d\n",
errno,
t_errno);
fflush(where);
close(s_listen);
exit(1);
}
if (debug) {
fprintf(where,
"recv_xti_tcp_stream: t_accept complete t_look 0x%.4x\n",
t_look(s_data));
fprintf(where,
" remote is %s port %d\n",
inet_ntoa(*(struct in_addr *)&peeraddr_in.sin_addr),
ntohs(peeraddr_in.sin_port));
fflush(where);
}
/* Now it's time to start receiving data on the connection. We will */
/* first grab the apropriate counters and then start grabbing. */
cpu_start(xti_tcp_stream_request->measure_cpu);
/* The loop will exit when the sender does a t_sndrel, which will */
/* return T_LOOK error from the t_recv */
#ifdef DIRTY
/* we want to dirty some number of consecutive integers in the buffer */
/* we are about to recv. we may also want to bring some number of */
/* them cleanly into the cache. The clean ones will follow any dirty */
/* ones into the cache. */
access_buffer(recv_ring->buffer_ptr,
recv_size,
xti_tcp_stream_request->dirty_count,
xti_tcp_stream_request->clean_count);
#endif /* DIRTY */
bytes_received = 0;
receive_calls = 0;
while ((len = t_rcv(s_data,
recv_ring->buffer_ptr,
recv_size,
&xti_flags)) != -1) {
bytes_received += len;
receive_calls++;
/* more to the next buffer in the recv_ring */
recv_ring = recv_ring->next;
#ifdef DIRTY
access_buffer(recv_ring->buffer_ptr,
recv_size,
xti_tcp_stream_request->dirty_count,
xti_tcp_stream_request->clean_count);
#endif /* DIRTY */
}
if (t_look(s_data) == T_ORDREL) {
/* this is a normal exit path */
if (debug) {
fprintf(where,
"recv_xti_tcp_stream: t_rcv T_ORDREL indicated\n");
fflush(where);
}
}
else {
/* something went wrong */
fprintf(where,
"recv_xti_tcp_stream: t_rcv: errno %d t_errno %d len %d",
errno,
t_errno,
len);
fprintf(where,
" t_look 0x%.4x",
t_look(s_data));
fflush(where);
netperf_response.content.serv_errno = t_errno;
send_response();
exit(1);
}
/* receive the release and let the initiator know that we have */
/* received all the data. raj 3/95 */
if (t_rcvrel(s_data) == -1) {
netperf_response.content.serv_errno = errno;
send_response();
exit(1);
}
if (debug) {
fprintf(where,
"recv_xti_tcp_stream: t_rcvrel complete\n");
fflush(where);
}
if (t_sndrel(s_data) == -1) {
netperf_response.content.serv_errno = errno;
send_response();
exit(1);
}
if (debug) {
fprintf(where,
"recv_xti_tcp_stream: t_sndrel complete\n");
fflush(where);
}
cpu_stop(xti_tcp_stream_request->measure_cpu,&elapsed_time);
/* send the results to the sender */
if (debug) {
fprintf(where,
"recv_xti_tcp_stream: got %g bytes\n",
bytes_received);
fprintf(where,
"recv_xti_tcp_stream: got %d recvs\n",
receive_calls);
fflush(where);
}
xti_tcp_stream_results->bytes_received = bytes_received;
xti_tcp_stream_results->elapsed_time = elapsed_time;
xti_tcp_stream_results->recv_calls = receive_calls;
if (xti_tcp_stream_request->measure_cpu) {
xti_tcp_stream_results->cpu_util = calc_cpu_util(0.0);
};
if (debug) {
fprintf(where,
"recv_xti_tcp_stream: test complete, sending results.\n");
fprintf(where,
" bytes_received %g receive_calls %d\n",
bytes_received,
receive_calls);
fprintf(where,
" len %d\n",
len);
fflush(where);
}
xti_tcp_stream_results->cpu_method = cpu_method;
send_response();
/* we are now done with the socket */
t_close(s_data);
}
/* this routine implements the sending (netperf) side of the XTI_TCP_RR */
/* test. */
void
send_xti_tcp_rr(char remote_host[])
{
char *tput_title = "\
Local /Remote\n\
Socket Size Request Resp. Elapsed Trans.\n\
Send Recv Size Size Time Rate \n\
bytes Bytes bytes bytes secs. per sec \n\n";
char *tput_fmt_0 =
"%7.2f\n";
char *tput_fmt_1_line_1 = "\
%-6d %-6d %-6d %-6d %-6.2f %7.2f \n";
char *tput_fmt_1_line_2 = "\
%-6d %-6d\n";
char *cpu_title = "\
Local /Remote\n\
Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem\n\
Send Recv Size Size Time Rate local remote local remote\n\
bytes bytes bytes bytes secs. per sec %% %c %% %c us/Tr us/Tr\n\n";
char *cpu_fmt_0 =
"%6.3f %c\n";
char *cpu_fmt_1_line_1 = "\
%-6d %-6d %-6d %-6d %-6.2f %-6.2f %-6.2f %-6.2f %-6.3f %-6.3f\n";
char *cpu_fmt_1_line_2 = "\
%-6d %-6d\n";
char *ksink_fmt = "\
Alignment Offset\n\
Local Remote Local Remote\n\
Send Recv Send Recv\n\
%5d %5d %5d %5d\n";
int timed_out = 0;
float elapsed_time;
int len;
char *temp_message_ptr;
int nummessages;
SOCKET send_socket;
int trans_remaining;
double bytes_xferd;
struct ring_elt *send_ring;
struct ring_elt *recv_ring;
int rsp_bytes_left;
int rsp_bytes_recvd;
float local_cpu_utilization;
float local_service_demand;
float remote_cpu_utilization;
float remote_service_demand;
double thruput;
struct hostent *hp;
struct sockaddr_in server;
unsigned int addr;
struct t_call server_call;
struct xti_tcp_rr_request_struct *xti_tcp_rr_request;
struct xti_tcp_rr_response_struct *xti_tcp_rr_response;
struct xti_tcp_rr_results_struct *xti_tcp_rr_result;
#ifdef WANT_INTERVALS
int interval_count;
sigset_t signal_set;
#endif /* WANT_INTERVALS */
xti_tcp_rr_request =
(struct xti_tcp_rr_request_struct *)netperf_request.content.test_specific_data;
xti_tcp_rr_response=
(struct xti_tcp_rr_response_struct *)netperf_response.content.test_specific_data;
xti_tcp_rr_result =
(struct xti_tcp_rr_results_struct *)netperf_response.content.test_specific_data;
#ifdef WANT_HISTOGRAM
time_hist = HIST_new();
#endif /* WANT_HISTOGRAM */
/* since we are now disconnected from the code that established the */
/* control socket, and since we want to be able to use different */
/* protocols and such, we are passed the name of the remote host and */
/* must turn that into the test specific addressing information. */
bzero((char *)&server,
sizeof(server));
/* it would seem that while HP-UX will allow an IP address (as a */
/* string) in a call to gethostbyname, other, less enlightened */
/* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */
/* order changed to check for IP address first. raj 7/96 */
if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) {
/* it was not an IP address, try it as a name */
if ((hp = gethostbyname(remote_host)) == NULL) {
/* we have no idea what it is */
fprintf(where,
"establish_control: could not resolve the destination %s\n",
remote_host);
fflush(where);
exit(1);
}
else {
/* it was a valid remote_host */
bcopy(hp->h_addr,
(char *)&server.sin_addr,
hp->h_length);
server.sin_family = hp->h_addrtype;
}
}
else {
/* it was a valid IP address */
server.sin_addr.s_addr = addr;
server.sin_family = AF_INET;
}
if ( print_headers ) {
fprintf(where,"XTI TCP REQUEST/RESPONSE TEST");
fprintf(where," to %s", remote_host);
if (iteration_max > 1) {
fprintf(where,
" : +/-%3.1f%% @ %2d%% conf.",
interval/0.02,
confidence_level);
}
if (loc_nodelay || rem_nodelay) {
fprintf(where," : nodelay");
}
if (loc_sndavoid ||
loc_rcvavoid ||
rem_sndavoid ||
rem_rcvavoid) {
fprintf(where," : copy avoidance");
}
#ifdef WANT_HISTOGRAM
fprintf(where," : histogram");
#endif /* WANT_HISTOGRAM */
#ifdef WANT_INTERVALS
fprintf(where," : interval");
#endif /* WANT_INTERVALS */
#ifdef DIRTY
fprintf(where," : dirty data");
#endif /* DIRTY */
fprintf(where,"\n");
}
/* initialize a few counters */
send_ring = NULL;
recv_ring = NULL;
confidence_iteration = 1;
init_stat();
/* we have a great-big while loop which controls the number of times */
/* we run a particular test. this is for the calculation of a */
/* confidence interval (I really should have stayed awake during */
/* probstats :). If the user did not request confidence measurement */
/* (no confidence is the default) then we will only go though the */
/* loop once. the confidence stuff originates from the folks at IBM */
while (((confidence < 0) && (confidence_iteration < iteration_max)) ||
(confidence_iteration <= iteration_min)) {
/* initialize a few counters. we have to remember that we might be */
/* going through the loop more than once. */
nummessages = 0;
bytes_xferd = 0.0;
times_up = 0;
timed_out = 0;
trans_remaining = 0;
/* set-up the data buffers with the requested alignment and offset. */
/* since this is a request/response test, default the send_width and */
/* recv_width to 1 and not two raj 7/94 */
if (send_width == 0) send_width = 1;
if (recv_width == 0) recv_width = 1;
if (send_ring == NULL) {
send_ring = allocate_buffer_ring(send_width,
req_size,
local_send_align,
local_send_offset);
}
if (recv_ring == NULL) {
recv_ring = allocate_buffer_ring(recv_width,
rsp_size,
local_recv_align,
local_recv_offset);
}
/*set up the data socket */
send_socket = create_xti_endpoint(loc_xti_device);
if (send_socket == INVALID_SOCKET){
perror("netperf: send_xti_tcp_rr: tcp stream data socket");
exit(1);
}
if (debug) {
fprintf(where,"send_xti_tcp_rr: send_socket obtained...\n");
}
/* it would seem that with XTI, there is no implicit bind on a */
/* connect, so we have to make a call to t_bind. this is not */
/* terribly convenient, but I suppose that "standard is better */
/* than better" :) raj 2/95 */
if (t_bind(send_socket, NULL, NULL) == SOCKET_ERROR) {
t_error("send_xti_tcp_stream: t_bind");
exit(1);
}
/* If the user has requested cpu utilization measurements, we must */
/* calibrate the cpu(s). We will perform this task within the tests */
/* themselves. If the user has specified the cpu rate, then */
/* calibrate_local_cpu will return rather quickly as it will have */
/* nothing to do. If local_cpu_rate is zero, then we will go through */
/* all the "normal" calibration stuff and return the rate back.*/
if (local_cpu_usage) {
local_cpu_rate = calibrate_local_cpu(local_cpu_rate);
}
/* Tell the remote end to do a listen. The server alters the socket */
/* paramters on the other side at this point, hence the reason for */
/* all the values being passed in the setup message. If the user did */
/* not specify any of the parameters, they will be passed as 0, which */
/* will indicate to the remote that no changes beyond the system's */
/* default should be used. Alignment is the exception, it will */
/* default to 8, which will be no alignment alterations. */
netperf_request.content.request_type = DO_XTI_TCP_RR;
xti_tcp_rr_request->recv_buf_size = rsr_size;
xti_tcp_rr_request->send_buf_size = rss_size;
xti_tcp_rr_request->recv_alignment = remote_recv_align;
xti_tcp_rr_request->recv_offset = remote_recv_offset;
xti_tcp_rr_request->send_alignment = remote_send_align;
xti_tcp_rr_request->send_offset = remote_send_offset;
xti_tcp_rr_request->request_size = req_size;
xti_tcp_rr_request->response_size = rsp_size;
xti_tcp_rr_request->no_delay = rem_nodelay;
xti_tcp_rr_request->measure_cpu = remote_cpu_usage;
xti_tcp_rr_request->cpu_rate = remote_cpu_rate;
xti_tcp_rr_request->so_rcvavoid = rem_rcvavoid;
xti_tcp_rr_request->so_sndavoid = rem_sndavoid;
if (test_time) {
xti_tcp_rr_request->test_length = test_time;
}
else {
xti_tcp_rr_request->test_length = test_trans * -1;
}
strcpy(xti_tcp_rr_request->xti_device, rem_xti_device);
#ifdef __alpha
/* ok - even on a DEC box, strings are strings. I didn't really want */
/* to ntohl the words of a string. since I don't want to teach the */
/* send_ and recv_ _request and _response routines about the types, */
/* I will put "anti-ntohl" calls here. I imagine that the "pure" */
/* solution would be to use XDR, but I am still leary of being able */
/* to find XDR libs on all platforms I want running netperf. raj */
{
int *charword;
int *initword;
int *lastword;
initword = (int *) xti_tcp_rr_request->xti_device;
lastword = initword + ((strlen(rem_xti_device) + 3) / 4);
for (charword = initword;
charword < lastword;
charword++) {
*charword = ntohl(*charword);
}
}
#endif /* __alpha */
if (debug > 1) {
fprintf(where,"netperf: send_xti_tcp_rr: requesting TCP rr test\n");
}
send_request();
/* The response from the remote will contain all of the relevant */
/* socket parameters for this test type. We will put them back into */
/* the variables here so they can be displayed if desired. The */
/* remote will have calibrated CPU if necessary, and will have done */
/* all the needed set-up we will have calibrated the cpu locally */
/* before sending the request, and will grab the counter value right*/
/* after the connect returns. The remote will grab the counter right*/
/* after the accept call. This saves the hassle of extra messages */
/* being sent for the TCP tests. */
recv_response();
if (!netperf_response.content.serv_errno) {
if (debug)
fprintf(where,"remote listen done.\n");
rsr_size = xti_tcp_rr_response->recv_buf_size;
rss_size = xti_tcp_rr_response->send_buf_size;
rem_nodelay = xti_tcp_rr_response->no_delay;
remote_cpu_usage = xti_tcp_rr_response->measure_cpu;
remote_cpu_rate = xti_tcp_rr_response->cpu_rate;
/* make sure that port numbers are in network order */
server.sin_port = (short)xti_tcp_rr_response->data_port_number;
server.sin_port = htons(server.sin_port);
}
else {
Set_errno(netperf_response.content.serv_errno);
perror("netperf: remote error");
exit(1);
}
/*Connect up to the remote port on the data socket */
memset (&server_call, 0, sizeof(server_call));
server_call.addr.maxlen = sizeof(struct sockaddr_in);
server_call.addr.len = sizeof(struct sockaddr_in);
server_call.addr.buf = (char *)&server;
if (t_connect(send_socket,
&server_call,
NULL) == INVALID_SOCKET){
t_error("netperf: send_xti_tcp_rr: data socket connect failed");
printf(" port: %d\n",ntohs(server.sin_port));
exit(1);
}
/* Data Socket set-up is finished. If there were problems, either the */
/* connect would have failed, or the previous response would have */
/* indicated a problem. I failed to see the value of the extra */
/* message after the accept on the remote. If it failed, we'll see it */
/* here. If it didn't, we might as well start pumping data. */
/* Set-up the test end conditions. For a request/response test, they */
/* can be either time or transaction based. */
if (test_time) {
/* The user wanted to end the test after a period of time. */
times_up = 0;
trans_remaining = 0;
start_timer(test_time);
}
else {
/* The tester wanted to send a number of bytes. */
trans_remaining = test_bytes;
times_up = 1;
}
/* The cpu_start routine will grab the current time and possibly */
/* value of the idle counter for later use in measuring cpu */
/* utilization and/or service demand and thruput. */
cpu_start(local_cpu_usage);
#ifdef WANT_INTERVALS
if ((interval_burst) || (demo_mode)) {
/* zero means that we never pause, so we never should need the */
/* interval timer, unless we are in demo_mode */
start_itimer(interval_wate);
}
interval_count = interval_burst;
/* get the signal set for the call to sigsuspend */
if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) {
fprintf(where,
"send_xti_tcp_rr: unable to get sigmask errno %d\n",
errno);
fflush(where);
exit(1);
}
#endif /* WANT_INTERVALS */
/* We use an "OR" to control test execution. When the test is */
/* controlled by time, the byte count check will always return false. */
/* When the test is controlled by byte count, the time test will */
/* always return false. When the test is finished, the whole */
/* expression will go false and we will stop sending data. I think I */
/* just arbitrarily decrement trans_remaining for the timed test, but */
/* will not do that just yet... One other question is whether or not */
/* the send buffer and the receive buffer should be the same buffer. */
while ((!times_up) || (trans_remaining > 0)) {
/* send the request. we assume that if we use a blocking socket, */
/* the request will be sent at one shot. */
#ifdef WANT_HISTOGRAM
/* timestamp just before our call to send, and then again just */
/* after the receive raj 8/94 */
HIST_timestamp(&time_one);
#endif /* WANT_HISTOGRAM */
if((len=t_snd(send_socket,
send_ring->buffer_ptr,
req_size,
0)) != req_size) {
if ((errno == EINTR) || (errno == 0)) {
/* we hit the end of a */
/* timed test. */
timed_out = 1;
break;
}
fprintf(where,
"send_xti_tcp_rr: t_snd: errno %d t_errno %d t_look 0x%.4x\n",
errno,
t_errno,
t_look(send_socket));
fflush(where);
exit(1);
}
send_ring = send_ring->next;
/* receive the response */
rsp_bytes_left = rsp_size;
temp_message_ptr = recv_ring->buffer_ptr;
while(rsp_bytes_left > 0) {
if((rsp_bytes_recvd=t_rcv(send_socket,
temp_message_ptr,
rsp_bytes_left,
&xti_flags)) == SOCKET_ERROR) {
if (errno == EINTR) {
/* We hit the end of a timed test. */
timed_out = 1;
break;
}
fprintf(where,
"send_xti_tcp_rr: t_rcv: errno %d t_errno %d t_look 0x%x\n",
errno,
t_errno,
t_look(send_socket));
fflush(where);
exit(1);
}
rsp_bytes_left -= rsp_bytes_recvd;
temp_message_ptr += rsp_bytes_recvd;
}
recv_ring = recv_ring->next;
if (timed_out) {
/* we may have been in a nested while loop - we need */
/* another call to break. */
break;
}
#ifdef WANT_HISTOGRAM
HIST_timestamp(&time_two);
HIST_add(time_hist,delta_micro(&time_one,&time_two));
#endif /* WANT_HISTOGRAM */
#ifdef WANT_INTERVALS
if (demo_mode) {
units_this_tick += 1;
}
/* in this case, the interval count is the count-down couter */
/* to decide to sleep for a little bit */
if ((interval_burst) && (--interval_count == 0)) {
/* call sigsuspend and wait for the interval timer to get us */
/* out */
if (debug) {
fprintf(where,"about to suspend\n");
fflush(where);
}
if (sigsuspend(&signal_set) == EFAULT) {
fprintf(where,
"send_xti_udp_rr: fault with signal set!\n");
fflush(where);
exit(1);
}
interval_count = interval_burst;
}
#endif /* WANT_INTERVALS */
nummessages++;
if (trans_remaining) {
trans_remaining--;
}
if (debug > 3) {
if ((nummessages % 100) == 0) {
fprintf(where,
"Transaction %d completed\n",
nummessages);
fflush(where);
}
}
}
/* this call will always give us the elapsed time for the test, and */
/* will also store-away the necessaries for cpu utilization */
cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being */
/* measured? how long */
/* did we really run? */
/* Get the statistics from the remote end. The remote will have */
/* calculated service demand and all those interesting things. If it */
/* wasn't supposed to care, it will return obvious values. */
recv_response();
if (!netperf_response.content.serv_errno) {
if (debug)
fprintf(where,"remote results obtained\n");
}
else {
Set_errno(netperf_response.content.serv_errno);
perror("netperf: remote error");
exit(1);
}
/* We now calculate what our thruput was for the test. */
bytes_xferd = (req_size * nummessages) + (rsp_size * nummessages);
thruput = nummessages/elapsed_time;
if (local_cpu_usage || remote_cpu_usage) {
/* We must now do a little math for service demand and cpu */
/* utilization for the system(s) */
/* Of course, some of the information might be bogus because */
/* there was no idle counter in the kernel(s). We need to make */
/* a note of this for the user's benefit...*/
if (local_cpu_usage) {
local_cpu_utilization = calc_cpu_util(0.0);
/* since calc_service demand is doing ms/Kunit we will */
/* multiply the number of transaction by 1024 to get */
/* "good" numbers */
local_service_demand = calc_service_demand((double) nummessages*1024,
0.0,
0.0,
0);
}
else {
local_cpu_utilization = -1.0;
local_service_demand = -1.0;
}
if (remote_cpu_usage) {
remote_cpu_utilization = xti_tcp_rr_result->cpu_util;
/* since calc_service demand is doing ms/Kunit we will */
/* multiply the number of transaction by 1024 to get */
/* "good" numbers */
remote_service_demand = calc_service_demand((double) nummessages*1024,
0.0,
remote_cpu_utilization,
xti_tcp_rr_result->num_cpus);
}
else {
remote_cpu_utilization = -1.0;
remote_service_demand = -1.0;
}
}
else {
/* we were not measuring cpu, for the confidence stuff, we */
/* should make it -1.0 */
local_cpu_utilization = -1.0;
local_service_demand = -1.0;
remote_cpu_utilization = -1.0;
remote_service_demand = -1.0;
}
/* at this point, we want to calculate the confidence information. */
/* if debugging is on, calculate_confidence will print-out the */
/* parameters we pass it */
calculate_confidence(confidence_iteration,
elapsed_time,
thruput,
local_cpu_utilization,
remote_cpu_utilization,
local_service_demand,
remote_service_demand);
confidence_iteration++;
/* we are now done with the socket, so close it */
t_close(send_socket);
}
retrieve_confident_values(&elapsed_time,
&thruput,
&local_cpu_utilization,
&remote_cpu_utilization,
&local_service_demand,
&remote_service_demand);
/* We are now ready to print all the information. If the user */
/* has specified zero-level verbosity, we will just print the */
/* local service demand, or the remote service demand. If the */
/* user has requested verbosity level 1, he will get the basic */
/* "streamperf" numbers. If the user has specified a verbosity */
/* of greater than 1, we will display a veritable plethora of */
/* background information from outside of this block as it it */
/* not cpu_measurement specific... */
if (confidence < 0) {
/* we did not hit confidence, but were we asked to look for it? */
if (iteration_max > 1) {
display_confidence();
}
}
if (local_cpu_usage || remote_cpu_usage) {
local_cpu_method = format_cpu_method(cpu_method);
remote_cpu_method = format_cpu_method(xti_tcp_rr_result->cpu_method);
switch (verbosity) {
case 0:
if (local_cpu_usage) {
fprintf(where,
cpu_fmt_0,
local_service_demand,
local_cpu_method);
}
else {
fprintf(where,
cpu_fmt_0,
remote_service_demand,
remote_cpu_method);
}
break;
case 1:
case 2:
if (print_headers) {
fprintf(where,
cpu_title,
local_cpu_method,
remote_cpu_method);
}
fprintf(where,
cpu_fmt_1_line_1, /* the format string */
lss_size, /* local sendbuf size */
lsr_size,
req_size, /* how large were the requests */
rsp_size, /* guess */
elapsed_time, /* how long was the test */
thruput,
local_cpu_utilization, /* local cpu */
remote_cpu_utilization, /* remote cpu */
local_service_demand, /* local service demand */
remote_service_demand); /* remote service demand */
fprintf(where,
cpu_fmt_1_line_2,
rss_size,
rsr_size);
break;
}
}
else {
/* The tester did not wish to measure service demand. */
switch (verbosity) {
case 0:
fprintf(where,
tput_fmt_0,
thruput);
break;
case 1:
case 2:
if (print_headers) {
fprintf(where,tput_title,format_units());
}
fprintf(where,
tput_fmt_1_line_1, /* the format string */
lss_size,
lsr_size,
req_size, /* how large were the requests */
rsp_size, /* how large were the responses */
elapsed_time, /* how long did it take */
thruput);
fprintf(where,
tput_fmt_1_line_2,
rss_size, /* remote recvbuf size */
rsr_size);
break;
}
}
/* it would be a good thing to include information about some of the */
/* other parameters that may have been set for this test, but at the */
/* moment, I do not wish to figure-out all the formatting, so I will */
/* just put this comment here to help remind me that it is something */
/* that should be done at a later time. */
/* how to handle the verbose information in the presence of */
/* confidence intervals is yet to be determined... raj 11/94 */
if (verbosity > 1) {
/* The user wanted to know it all, so we will give it to him. */
/* This information will include as much as we can find about */
/* TCP statistics, the alignments of the sends and receives */
/* and all that sort of rot... */
fprintf(where,
ksink_fmt,
local_send_align,
remote_recv_offset,
local_send_offset,
remote_recv_offset);
#ifdef WANT_HISTOGRAM
fprintf(where,"\nHistogram of request/response times\n");
fflush(where);
HIST_report(time_hist);
#endif /* WANT_HISTOGRAM */
}
}
void
send_xti_udp_stream(char remote_host[])
{
/**********************************************************************/
/* */
/* UDP Unidirectional Send Test */
/* */
/**********************************************************************/
char *tput_title = "\
Socket Message Elapsed Messages \n\
Size Size Time Okay Errors Throughput\n\
bytes bytes secs # # %s/sec\n\n";
char *tput_fmt_0 =
"%7.2f\n";
char *tput_fmt_1 = "\
%6d %6d %-7.2f %7d %6d %7.2f\n\
%6d %-7.2f %7d %7.2f\n\n";
char *cpu_title = "\
Socket Message Elapsed Messages CPU Service\n\
Size Size Time Okay Errors Throughput Util Demand\n\
bytes bytes secs # # %s/sec %% %c%c us/KB\n\n";
char *cpu_fmt_0 =
"%6.2f %c\n";
char *cpu_fmt_1 = "\
%6d %6d %-7.2f %7d %6d %7.1f %-6.2f %-6.3f\n\
%6d %-7.2f %7d %7.1f %-6.2f %-6.3f\n\n";
unsigned int messages_recvd;
unsigned int messages_sent;
unsigned int failed_sends;
float elapsed_time,
recv_elapsed,
local_cpu_utilization,
remote_cpu_utilization;
float local_service_demand, remote_service_demand;
double local_thruput, remote_thruput;
double bytes_sent;
double bytes_recvd;
int len;
int *message_int_ptr;
struct ring_elt *send_ring;
SOCKET data_socket;
unsigned int sum_messages_sent;
unsigned int sum_messages_recvd;
unsigned int sum_failed_sends;
double sum_local_thruput;
#ifdef WANT_INTERVALS
int interval_count;
sigset_t signal_set;
#endif /* WANT_INTERVALS */
struct hostent *hp;
struct sockaddr_in server;
unsigned int addr;
struct t_unitdata unitdata;
struct xti_udp_stream_request_struct *xti_udp_stream_request;
struct xti_udp_stream_response_struct *xti_udp_stream_response;
struct xti_udp_stream_results_struct *xti_udp_stream_results;
xti_udp_stream_request =
(struct xti_udp_stream_request_struct *)netperf_request.content.test_specific_data;
xti_udp_stream_response =
(struct xti_udp_stream_response_struct *)netperf_response.content.test_specific_data;
xti_udp_stream_results =
(struct xti_udp_stream_results_struct *)netperf_response.content.test_specific_data;
#ifdef WANT_HISTOGRAM
time_hist = HIST_new();
#endif /* WANT_HISTOGRAM */
/* since we are now disconnected from the code that established the */
/* control socket, and since we want to be able to use different */
/* protocols and such, we are passed the name of the remote host and */
/* must turn that into the test specific addressing information. */
bzero((char *)&server,
sizeof(server));
/* it would seem that while HP-UX will allow an IP address (as a */
/* string) in a call to gethostbyname, other, less enlightened */
/* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */
/* order changed to check for IP address first. raj 7/96 */
if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) {
/* it was not an IP address, try it as a name */
if ((hp = gethostbyname(remote_host)) == NULL) {
/* we have no idea what it is */
fprintf(where,
"establish_control: could not resolve the destination %s\n",
remote_host);
fflush(where);
exit(1);
}
else {
/* it was a valid remote_host */
bcopy(hp->h_addr,
(char *)&server.sin_addr,
hp->h_length);
server.sin_family = hp->h_addrtype;
}
}
else {
/* it was a valid IP address */
server.sin_addr.s_addr = addr;
server.sin_family = AF_INET;
}
if ( print_headers ) {
fprintf(where,"UDP UNIDIRECTIONAL SEND TEST");
fprintf(where," to %s", remote_host);
if (iteration_max > 1) {
fprintf(where,
" : +/-%3.1f%% @ %2d%% conf.",
interval/0.02,
confidence_level);
}
if (loc_sndavoid ||
loc_rcvavoid ||
rem_sndavoid ||
rem_rcvavoid) {
fprintf(where," : copy avoidance");
}
#ifdef WANT_HISTOGRAM
fprintf(where," : histogram");
#endif /* WANT_HISTOGRAM */
#ifdef WANT_INTERVALS
fprintf(where," : interval");
#endif /* WANT_INTERVALS */
#ifdef DIRTY
fprintf(where," : dirty data");
#endif /* DIRTY */
fprintf(where,"\n");
}
send_ring = NULL;
confidence_iteration = 1;
init_stat();
sum_messages_sent = 0;
sum_messages_recvd = 0;
sum_failed_sends = 0;
sum_local_thruput = 0.0;
/* we have a great-big while loop which controls the number of times */
/* we run a particular test. this is for the calculation of a */
/* confidence interval (I really should have stayed awake during */
/* probstats :). If the user did not request confidence measurement */
/* (no confidence is the default) then we will only go though the */
/* loop once. the confidence stuff originates from the folks at IBM */
while (((confidence < 0) && (confidence_iteration < iteration_max)) ||
(confidence_iteration <= iteration_min)) {
/* initialize a few counters. we have to remember that we might be */
/* going through the loop more than once. */
messages_sent = 0;
messages_recvd = 0;
failed_sends = 0;
times_up = 0;
/*set up the data socket */
data_socket = create_xti_endpoint(loc_xti_device);
if (data_socket == INVALID_SOCKET) {
perror("send_xti_udp_stream: create_xti_endpoint");
exit(1);
}
if (t_bind(data_socket, NULL, NULL) == SOCKET_ERROR) {
t_error("send_xti_udp_stream: t_bind");
exit(1);
}
/* now, we want to see if we need to set the send_size */
if (send_size == 0) {
if (lss_size > 0) {
send_size = lss_size;
}
else {
send_size = 4096;
}
}
/* set-up the data buffer with the requested alignment and offset, */
/* most of the numbers here are just a hack to pick something nice */
/* and big in an attempt to never try to send a buffer a second time */
/* before it leaves the node...unless the user set the width */
/* explicitly. */
if (send_width == 0) send_width = 32;
if (send_ring == NULL ) {
send_ring = allocate_buffer_ring(send_width,
send_size,
local_send_align,
local_send_offset);
}
/* if the user supplied a cpu rate, this call will complete rather */
/* quickly, otherwise, the cpu rate will be retured to us for */
/* possible display. The Library will keep it's own copy of this data */
/* for use elsewhere. We will only display it. (Does that make it */
/* "opaque" to us?) */
if (local_cpu_usage)
local_cpu_rate = calibrate_local_cpu(local_cpu_rate);
/* Tell the remote end to set up the data connection. The server */
/* sends back the port number and alters the socket parameters there. */
/* Of course this is a datagram service so no connection is actually */
/* set up, the server just sets up the socket and binds it. */
netperf_request.content.request_type = DO_XTI_UDP_STREAM;
xti_udp_stream_request->recv_buf_size = rsr_size;
xti_udp_stream_request->message_size = send_size;
xti_udp_stream_request->recv_alignment = remote_recv_align;
xti_udp_stream_request->recv_offset = remote_recv_offset;
xti_udp_stream_request->measure_cpu = remote_cpu_usage;
xti_udp_stream_request->cpu_rate = remote_cpu_rate;
xti_udp_stream_request->test_length = test_time;
xti_udp_stream_request->so_rcvavoid = rem_rcvavoid;
xti_udp_stream_request->so_sndavoid = rem_sndavoid;
strcpy(xti_udp_stream_request->xti_device, rem_xti_device);
#ifdef __alpha
/* ok - even on a DEC box, strings are strings. I didn't really want */
/* to ntohl the words of a string. since I don't want to teach the */
/* send_ and recv_ _request and _response routines about the types, */
/* I will put "anti-ntohl" calls here. I imagine that the "pure" */
/* solution would be to use XDR, but I am still leary of being able */
/* to find XDR libs on all platforms I want running netperf. raj */
{
int *charword;
int *initword;
int *lastword;
initword = (int *) xti_udp_stream_request->xti_device;
lastword = initword + ((strlen(rem_xti_device) + 3) / 4);
for (charword = initword;
charword < lastword;
charword++) {
*charword = ntohl(*charword);
}
}
#endif /* __alpha */
send_request();
recv_response();
if (!netperf_response.content.serv_errno) {
if (debug)
fprintf(where,"send_xti_udp_stream: remote data connection done.\n");
}
else {
Set_errno(netperf_response.content.serv_errno);
perror("send_xti_udp_stream: error on remote");
exit(1);
}
/* Place the port number returned by the remote into the sockaddr */
/* structure so our sends can be sent to the correct place. Also get */
/* some of the returned socket buffer information for user display. */
/* make sure that port numbers are in the proper order */
server.sin_port = (short)xti_udp_stream_response->data_port_number;
server.sin_port = htons(server.sin_port);
rsr_size = xti_udp_stream_response->recv_buf_size;
rss_size = xti_udp_stream_response->send_buf_size;
remote_cpu_rate = xti_udp_stream_response->cpu_rate;
/* it would seem that XTI does not allow the expedient of */
/* "connecting" a UDP end-point the way BSD does. so, we will do */
/* everything with t_sndudata and t_rcvudata. Our "virtual" */
/* connect here will be to assign the destination portion of the */
/* t_unitdata struct here, where we would have otherwise called */
/* t_connect() raj 3/95 */
memset (&unitdata, 0, sizeof(unitdata));
unitdata.addr.maxlen = sizeof(struct sockaddr_in);
unitdata.addr.len = sizeof(struct sockaddr_in);
unitdata.addr.buf = (char *)&server;
/* we don't use any options, so might as well set that part here */
/* too */
unitdata.opt.maxlen = 0;
unitdata.opt.len = 0;
unitdata.opt.buf = NULL;
/* we need to initialize the send buffer for the first time as */
/* well since we move to the next pointer after the send call. */
unitdata.udata.maxlen = send_size;
unitdata.udata.len = send_size;
unitdata.udata.buf = send_ring->buffer_ptr;
/* set up the timer to call us after test_time. one of these days, */
/* it might be nice to figure-out a nice reliable way to have the */
/* test controlled by a byte count as well, but since UDP is not */
/* reliable, that could prove difficult. so, in the meantime, we */
/* only allow a XTI_UDP_STREAM test to be a timed test. */
if (test_time) {
times_up = 0;
start_timer(test_time);
}
else {
fprintf(where,"Sorry, XTI_UDP_STREAM tests must be timed.\n");
fflush(where);
exit(1);
}
/* Get the start count for the idle counter and the start time */
cpu_start(local_cpu_usage);
#ifdef WANT_INTERVALS
if ((interval_burst) || (demo_mode)) {
/* zero means that we never pause, so we never should need the */
/* interval timer, unless we are in demo_mode */
start_itimer(interval_wate);
}
interval_count = interval_burst;
/* get the signal set for the call to sigsuspend */
if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) {
fprintf(where,
"send_xti_udp_stream: unable to get sigmask errno %d\n",
errno);
fflush(where);
exit(1);
}
#endif /* WANT_INTERVALS */
/* Send datagrams like there was no tomorrow. at somepoint it might */
/* be nice to set this up so that a quantity of bytes could be sent, */
/* but we still need some sort of end of test trigger on the receive */
/* side. that could be a select with a one second timeout, but then */
/* if there is a test where none of the data arrives for awile and */
/* then starts again, we would end the test too soon. something to */
/* think about... */
while (!times_up) {
#ifdef DIRTY
/* we want to dirty some number of consecutive integers in the buffer */
/* we are about to send. we may also want to bring some number of */
/* them cleanly into the cache. The clean ones will follow any dirty */
/* ones into the cache. */
access_buffer(send_ring->buffer_ptr,
send_size,
loc_dirty_count,
loc_clean_count);
#endif /* DIRTY */
#ifdef WANT_HISTOGRAM
HIST_timestamp(&time_one);
#endif /* WANT_HISTOGRAM */
if ((t_sndudata(data_socket,
&unitdata)) != 0) {
if (errno == EINTR)
break;
if (errno == ENOBUFS) {
failed_sends++;
continue;
}
perror("xti_udp_send: data send error");
t_error("xti_udp_send: data send error");
exit(1);
}
messages_sent++;
/* now we want to move our pointer to the next position in the */
/* data buffer...and update the unitdata structure */
send_ring = send_ring->next;
unitdata.udata.buf = send_ring->buffer_ptr;
#ifdef WANT_HISTOGRAM
/* get the second timestamp */
HIST_timestamp(&time_two);
HIST_add(time_hist,delta_micro(&time_one,&time_two));
#endif /* WANT_HISTOGRAM */
#ifdef WANT_INTERVALS
if (demo_mode) {
units_this_tick += send_size;
}
/* in this case, the interval count is the count-down couter */
/* to decide to sleep for a little bit */
if ((interval_burst) && (--interval_count == 0)) {
/* call sigsuspend and wait for the interval timer to get us */
/* out */
if (debug) {
fprintf(where,"about to suspend\n");
fflush(where);
}
if (sigsuspend(&signal_set) == EFAULT) {
fprintf(where,
"send_xti_udp_stream: fault with signal set!\n");
fflush(where);
exit(1);
}
interval_count = interval_burst;
}
#endif /* WANT_INTERVALS */
}
/* This is a timed test, so the remote will be returning to us after */
/* a time. We should not need to send any "strange" messages to tell */
/* the remote that the test is completed, unless we decide to add a */
/* number of messages to the test. */
/* the test is over, so get stats and stuff */
cpu_stop(local_cpu_usage,
&elapsed_time);
/* Get the statistics from the remote end */
recv_response();
if (!netperf_response.content.serv_errno) {
if (debug)
fprintf(where,"send_xti_udp_stream: remote results obtained\n");
}
else {
Set_errno(netperf_response.content.serv_errno);
perror("send_xti_udp_stream: error on remote");
exit(1);
}
bytes_sent = (double) send_size * (double) messages_sent;
local_thruput = calc_thruput(bytes_sent);
messages_recvd = xti_udp_stream_results->messages_recvd;
bytes_recvd = (double) send_size * (double) messages_recvd;
/* we asume that the remote ran for as long as we did */
remote_thruput = calc_thruput(bytes_recvd);
/* print the results for this socket and message size */
if (local_cpu_usage || remote_cpu_usage) {
/* We must now do a little math for service demand and cpu */
/* utilization for the system(s) We pass zeros for the local */
/* cpu utilization and elapsed time to tell the routine to use */
/* the libraries own values for those. */
if (local_cpu_usage) {
local_cpu_utilization = calc_cpu_util(0.0);
/* shouldn't this really be based on bytes_recvd, since that is */
/* the effective throughput of the test? I think that it should, */
/* so will make the change raj 11/94 */
local_service_demand = calc_service_demand(bytes_recvd,
0.0,
0.0,
0);
}
else {
local_cpu_utilization = -1.0;
local_service_demand = -1.0;
}
/* The local calculations could use variables being kept by */
/* the local netlib routines. The remote calcuations need to */
/* have a few things passed to them. */
if (remote_cpu_usage) {
remote_cpu_utilization = xti_udp_stream_results->cpu_util;
remote_service_demand = calc_service_demand(bytes_recvd,
0.0,
remote_cpu_utilization,
xti_udp_stream_results->num_cpus);
}
else {
remote_cpu_utilization = -1.0;
remote_service_demand = -1.0;
}
}
else {
/* we were not measuring cpu, for the confidence stuff, we */
/* should make it -1.0 */
local_cpu_utilization = -1.0;
local_service_demand = -1.0;
remote_cpu_utilization = -1.0;
remote_service_demand = -1.0;
}
/* at this point, we want to calculate the confidence information. */
/* if debugging is on, calculate_confidence will print-out the */
/* parameters we pass it */
calculate_confidence(confidence_iteration,
elapsed_time,
remote_thruput,
local_cpu_utilization,
remote_cpu_utilization,
local_service_demand,
remote_service_demand);
/* since the routine calculate_confidence is rather generic, and */
/* we have a few other parms of interest, we will do a little work */
/* here to caclulate their average. */
sum_messages_sent += messages_sent;
sum_messages_recvd += messages_recvd;
sum_failed_sends += failed_sends;
sum_local_thruput += local_thruput;
confidence_iteration++;
/* this datapoint is done, so we don't need the socket any longer */
close(data_socket);
}
/* we should reach this point once the test is finished */
retrieve_confident_values(&elapsed_time,
&remote_thruput,
&local_cpu_utilization,
&remote_cpu_utilization,
&local_service_demand,
&remote_service_demand);
/* some of the interesting values aren't covered by the generic */
/* confidence routine */
messages_sent = sum_messages_sent / (confidence_iteration -1);
messages_recvd = sum_messages_recvd / (confidence_iteration -1);
failed_sends = sum_failed_sends / (confidence_iteration -1);
local_thruput = sum_local_thruput / (confidence_iteration -1);
/* We are now ready to print all the information. If the user */
/* has specified zero-level verbosity, we will just print the */
/* local service demand, or the remote service demand. If the */
/* user has requested verbosity level 1, he will get the basic */
/* "streamperf" numbers. If the user has specified a verbosity */
/* of greater than 1, we will display a veritable plethora of */
/* background information from outside of this block as it it */
/* not cpu_measurement specific... */
if (confidence < 0) {
/* we did not hit confidence, but were we asked to look for it? */
if (iteration_max > 1) {
display_confidence();
}
}
if (local_cpu_usage || remote_cpu_usage) {
local_cpu_method = format_cpu_method(cpu_method);
remote_cpu_method = format_cpu_method(xti_udp_stream_results->cpu_method);
switch (verbosity) {
case 0:
if (local_cpu_usage) {
fprintf(where,
cpu_fmt_0,
local_service_demand,
local_cpu_method);
}
else {
fprintf(where,
cpu_fmt_0,
remote_service_demand,
local_cpu_method);
}
break;
case 1:
case 2:
if (print_headers) {
fprintf(where,
cpu_title,
format_units(),
local_cpu_method,
remote_cpu_method);
}
fprintf(where,
cpu_fmt_1, /* the format string */
lss_size, /* local sendbuf size */
send_size, /* how large were the sends */
elapsed_time, /* how long was the test */
messages_sent,
failed_sends,
local_thruput, /* what was the xfer rate */
local_cpu_utilization, /* local cpu */
local_service_demand, /* local service demand */
rsr_size,
elapsed_time,
messages_recvd,
remote_thruput,
remote_cpu_utilization, /* remote cpu */
remote_service_demand); /* remote service demand */
break;
}
}
else {
/* The tester did not wish to measure service demand. */
switch (verbosity) {
case 0:
fprintf(where,
tput_fmt_0,
local_thruput);
break;
case 1:
case 2:
if (print_headers) {
fprintf(where,tput_title,format_units());
}
fprintf(where,
tput_fmt_1, /* the format string */
lss_size, /* local sendbuf size */
send_size, /* how large were the sends */
elapsed_time, /* how long did it take */
messages_sent,
failed_sends,
local_thruput,
rsr_size, /* remote recvbuf size */
elapsed_time,
messages_recvd,
remote_thruput);
break;
}
}
fflush(where);
#ifdef WANT_HISTOGRAM
if (verbosity > 1) {
fprintf(where,"\nHistogram of time spent in send() call\n");
fflush(where);
HIST_report(time_hist);
}
#endif /* WANT_HISTOGRAM */
}
/* this routine implements the receive side (netserver) of the */
/* XTI_UDP_STREAM performance test. */
void
recv_xti_udp_stream()
{
struct ring_elt *recv_ring;
struct t_bind bind_req, bind_resp;
struct t_unitdata unitdata;
int flags = 0;
struct sockaddr_in myaddr_in;
struct sockaddr_in fromaddr_in;
SOCKET s_data;
int addrlen;
unsigned int bytes_received = 0;
float elapsed_time;
unsigned int message_size;
unsigned int messages_recvd = 0;
struct xti_udp_stream_request_struct *xti_udp_stream_request;
struct xti_udp_stream_response_struct *xti_udp_stream_response;
struct xti_udp_stream_results_struct *xti_udp_stream_results;
xti_udp_stream_request =
(struct xti_udp_stream_request_struct *)netperf_request.content.test_specific_data;
xti_udp_stream_response =
(struct xti_udp_stream_response_struct *)netperf_response.content.test_specific_data;
xti_udp_stream_results =
(struct xti_udp_stream_results_struct *)netperf_response.content.test_specific_data;
if (debug) {
fprintf(where,"netserver: recv_xti_udp_stream: entered...\n");
fflush(where);
}
/* We want to set-up the listen socket with all the desired */
/* parameters and then let the initiator know that all is ready. If */
/* socket size defaults are to be used, then the initiator will have */
/* sent us 0's. If the socket sizes cannot be changed, then we will */
/* send-back what they are. If that information cannot be determined, */
/* then we send-back -1's for the sizes. If things go wrong for any */
/* reason, we will drop back ten yards and punt. */
/* If anything goes wrong, we want the remote to know about it. It */
/* would be best if the error that the remote reports to the user is */
/* the actual error we encountered, rather than some bogus unexpected */
/* response type message. */
if (debug > 1) {
fprintf(where,"recv_xti_udp_stream: setting the response type...\n");
fflush(where);
}
netperf_response.content.response_type = XTI_UDP_STREAM_RESPONSE;
if (debug > 2) {
fprintf(where,"recv_xti_udp_stream: the response type is set...\n");
fflush(where);
}
/* We now alter the message_ptr variable to be at the desired */
/* alignment with the desired offset. */
if (debug > 1) {
fprintf(where,"recv_xti_udp_stream: requested alignment of %d\n",
xti_udp_stream_request->recv_alignment);
fflush(where);
}
if (recv_width == 0) recv_width = 1;
recv_ring = allocate_buffer_ring(recv_width,
xti_udp_stream_request->message_size,
xti_udp_stream_request->recv_alignment,
xti_udp_stream_request->recv_offset);
if (debug > 1) {
fprintf(where,"recv_xti_udp_stream: receive alignment and offset set...\n");
fflush(where);
}
/* Let's clear-out our sockaddr for the sake of cleanlines. Then we */
/* can put in OUR values !-) At some point, we may want to nail this */
/* socket to a particular network-level address, but for now, */
/* INADDR_ANY should be just fine. */
bzero((char *)&myaddr_in,
sizeof(myaddr_in));
myaddr_in.sin_family = AF_INET;
myaddr_in.sin_addr.s_addr = INADDR_ANY;
myaddr_in.sin_port = 0;
/* Grab a socket to listen on, and then listen on it. */
if (debug > 1) {
fprintf(where,"recv_xti_udp_stream: grabbing a socket...\n");
fflush(where);
}
/* create_xti_endpoint expects to find some things in the global */
/* variables, so set the globals based on the values in the request. */
/* once the socket has been created, we will set the response values */
/* based on the updated value of those globals. raj 7/94 */
lsr_size = xti_udp_stream_request->recv_buf_size;
loc_rcvavoid = xti_udp_stream_request->so_rcvavoid;
loc_sndavoid = xti_udp_stream_request->so_sndavoid;
#ifdef __alpha
/* ok - even on a DEC box, strings are strings. I din't really want */
/* to ntohl the words of a string. since I don't want to teach the */
/* send_ and recv_ _request and _response routines about the types, */
/* I will put "anti-ntohl" calls here. I imagine that the "pure" */
/* solution would be to use XDR, but I am still leary of being able */
/* to find XDR libs on all platforms I want running netperf. raj */
{
int *charword;
int *initword;
int *lastword;
initword = (int *) xti_udp_stream_request->xti_device;
lastword = initword + ((xti_udp_stream_request->dev_name_len + 3) / 4);
for (charword = initword;
charword < lastword;
charword++) {
*charword = htonl(*charword);
}
}
#endif /* __alpha */
s_data = create_xti_endpoint(xti_udp_stream_request->xti_device);
if (s_data == INVALID_SOCKET) {
netperf_response.content.serv_errno = errno;
send_response();
exit(1);
}
/* Let's get an address assigned to this socket so we can tell the */
/* initiator how to reach the data socket. There may be a desire to */
/* nail this socket to a specific IP address in a multi-homed, */
/* multi-connection situation, but for now, we'll ignore the issue */
/* and concentrate on single connection testing. */
bind_req.addr.maxlen = sizeof(struct sockaddr_in);
bind_req.addr.len = sizeof(struct sockaddr_in);
bind_req.addr.buf = (char *)&myaddr_in;
bind_req.qlen = 1;
bind_resp.addr.maxlen = sizeof(struct sockaddr_in);
bind_resp.addr.len = sizeof(struct sockaddr_in);
bind_resp.addr.buf = (char *)&myaddr_in;
bind_resp.qlen = 1;
if (t_bind(s_data,
&bind_req,
&bind_resp) == SOCKET_ERROR) {
netperf_response.content.serv_errno = t_errno;
send_response();
exit(1);
}
xti_udp_stream_response->test_length =
xti_udp_stream_request->test_length;
/* Now myaddr_in contains the port and the internet address this is */
/* returned to the sender also implicitly telling the sender that the */
/* socket buffer sizing has been done. */
xti_udp_stream_response->data_port_number =
(int) ntohs(myaddr_in.sin_port);
netperf_response.content.serv_errno = 0;
/* But wait, there's more. If the initiator wanted cpu measurements, */
/* then we must call the calibrate routine, which will return the max */
/* rate back to the initiator. If the CPU was not to be measured, or */
/* something went wrong with the calibration, we will return a -1 to */
/* the initiator. */
xti_udp_stream_response->cpu_rate = 0.0; /* assume no cpu */
xti_udp_stream_response->measure_cpu = 0;
if (xti_udp_stream_request->measure_cpu) {
/* We will pass the rate into the calibration routine. If the */
/* user did not specify one, it will be 0.0, and we will do a */
/* "real" calibration. Otherwise, all it will really do is */
/* store it away... */
xti_udp_stream_response->measure_cpu = 1;
xti_udp_stream_response->cpu_rate =
calibrate_local_cpu(xti_udp_stream_request->cpu_rate);
}
message_size = xti_udp_stream_request->message_size;
test_time = xti_udp_stream_request->test_length;
/* before we send the response back to the initiator, pull some of */
/* the socket parms from the globals */
xti_udp_stream_response->send_buf_size = lss_size;
xti_udp_stream_response->recv_buf_size = lsr_size;
xti_udp_stream_response->so_rcvavoid = loc_rcvavoid;
xti_udp_stream_response->so_sndavoid = loc_sndavoid;
/* since we are going to call t_rcvudata() instead of t_rcv() we */
/* need to init the unitdata structure raj 3/95 */
unitdata.addr.maxlen = sizeof(fromaddr_in);
unitdata.addr.len = sizeof(fromaddr_in);
unitdata.addr.buf = (char *)&fromaddr_in;
unitdata.opt.maxlen = 0;
unitdata.opt.len = 0;
unitdata.opt.buf = NULL;
unitdata.udata.maxlen = xti_udp_stream_request->message_size;
unitdata.udata.len = xti_udp_stream_request->message_size;
unitdata.udata.buf = recv_ring->buffer_ptr;
send_response();
/* Now it's time to start receiving data on the connection. We will */
/* first grab the apropriate counters and then start grabbing. */
cpu_start(xti_udp_stream_request->measure_cpu);
/* The loop will exit when the timer pops, or if we happen to recv a */
/* message of less than send_size bytes... */
times_up = 0;
start_timer(test_time + PAD_TIME);
if (debug) {
fprintf(where,"recv_xti_udp_stream: about to enter inner sanctum.\n");
fflush(where);
}
while (!times_up) {
#ifdef RAJ_DEBUG
if (debug) {
fprintf(where,"t_rcvudata, errno %d, t_errno %d",
errno,
t_errno);
fprintf(where," after %d messages\n",messages_recvd);
fprintf(where,"addrmax %d addrlen %d addrbuf %x\n",
unitdata.addr.maxlen,
unitdata.addr.len,
unitdata.addr.buf);
fprintf(where,"optmax %d optlen %d optbuf %x\n",
unitdata.opt.maxlen,
unitdata.opt.len,
unitdata.opt.buf);
fprintf(where,"udatamax %d udatalen %d udatabuf %x\n",
unitdata.udata.maxlen,
unitdata.udata.len,
unitdata.udata.buf);
fflush(where);
}
#endif /* RAJ_DEBUG */
if (t_rcvudata(s_data,
&unitdata,
&flags) != 0) {
if (errno == TNODATA) {
continue;
}
if (errno != EINTR) {
netperf_response.content.serv_errno = t_errno;
send_response();
exit(1);
}
break;
}
messages_recvd++;
recv_ring = recv_ring->next;
unitdata.udata.buf = recv_ring->buffer_ptr;
}
if (debug) {
fprintf(where,"recv_xti_udp_stream: got %d messages.\n",messages_recvd);
fflush(where);
}
/* The loop now exits due timer or < send_size bytes received. */
cpu_stop(xti_udp_stream_request->measure_cpu,&elapsed_time);
if (times_up) {
/* we ended on a timer, subtract the PAD_TIME */
elapsed_time -= (float)PAD_TIME;
}
else {
stop_timer();
}
if (debug) {
fprintf(where,"recv_xti_udp_stream: test ended in %f seconds.\n",elapsed_time);
fflush(where);
}
bytes_received = (messages_recvd * message_size);
/* send the results to the sender */
if (debug) {
fprintf(where,
"recv_xti_udp_stream: got %d bytes\n",
bytes_received);
fflush(where);
}
netperf_response.content.response_type = XTI_UDP_STREAM_RESULTS;
xti_udp_stream_results->bytes_received = bytes_received;
xti_udp_stream_results->messages_recvd = messages_recvd;
xti_udp_stream_results->elapsed_time = elapsed_time;
xti_udp_stream_results->cpu_method = cpu_method;
if (xti_udp_stream_request->measure_cpu) {
xti_udp_stream_results->cpu_util = calc_cpu_util(elapsed_time);
}
else {
xti_udp_stream_results->cpu_util = -1.0;
}
if (debug > 1) {
fprintf(where,
"recv_xti_udp_stream: test complete, sending results.\n");
fflush(where);
}
send_response();
}
void send_xti_udp_rr(char remote_host[])
{
char *tput_title = "\
Local /Remote\n\
Socket Size Request Resp. Elapsed Trans.\n\
Send Recv Size Size Time Rate \n\
bytes Bytes bytes bytes secs. per sec \n\n";
char *tput_fmt_0 =
"%7.2f\n";
char *tput_fmt_1_line_1 = "\
%-6d %-6d %-6d %-6d %-6.2f %7.2f \n";
char *tput_fmt_1_line_2 = "\
%-6d %-6d\n";
char *cpu_title = "\
Local /Remote\n\
Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem\n\
Send Recv Size Size Time Rate local remote local remote\n\
bytes bytes bytes bytes secs. per sec %% %c %% %c us/Tr us/Tr\n\n";
char *cpu_fmt_0 =
"%6.3f %c\n";
char *cpu_fmt_1_line_1 = "\
%-6d %-6d %-6d %-6d %-6.2f %-6.2f %-6.2f %-6.2f %-6.3f %-6.3f\n";
char *cpu_fmt_1_line_2 = "\
%-6d %-6d\n";
char *ksink_fmt = "\
Alignment Offset\n\
Local Remote Local Remote\n\
Send Recv Send Recv\n\
%5d %5d %5d %5d\n";
float elapsed_time;
struct ring_elt *send_ring;
struct ring_elt *recv_ring;
struct t_bind bind_req, bind_resp;
struct t_unitdata unitdata;
struct t_unitdata send_unitdata;
struct t_unitdata recv_unitdata;
int flags = 0;
int len;
int nummessages;
SOCKET send_socket;
int trans_remaining;
int bytes_xferd;
int rsp_bytes_recvd;
float local_cpu_utilization;
float local_service_demand;
float remote_cpu_utilization;
float remote_service_demand;
double thruput;
struct hostent *hp;
struct sockaddr_in server, myaddr_in;
unsigned int addr;
int addrlen;
struct xti_udp_rr_request_struct *xti_udp_rr_request;
struct xti_udp_rr_response_struct *xti_udp_rr_response;
struct xti_udp_rr_results_struct *xti_udp_rr_result;
#ifdef WANT_INTERVALS
int interval_count;
sigset_t signal_set;
#endif /* WANT_INTERVALS */
xti_udp_rr_request =
(struct xti_udp_rr_request_struct *)netperf_request.content.test_specific_data;
xti_udp_rr_response =
(struct xti_udp_rr_response_struct *)netperf_response.content.test_specific_data;
xti_udp_rr_result =
(struct xti_udp_rr_results_struct *)netperf_response.content.test_specific_data;
#ifdef WANT_HISTOGRAM
time_hist = HIST_new();
#endif
/* since we are now disconnected from the code that established the */
/* control socket, and since we want to be able to use different */
/* protocols and such, we are passed the name of the remote host and */
/* must turn that into the test specific addressing information. */
bzero((char *)&server,
sizeof(server));
/* it would seem that while HP-UX will allow an IP address (as a */
/* string) in a call to gethostbyname, other, less enlightened */
/* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */
/* order changed to check for IP address first. raj 7/96 */
if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) {
/* it was not an IP address, try it as a name */
if ((hp = gethostbyname(remote_host)) == NULL) {
/* we have no idea what it is */
fprintf(where,
"establish_control: could not resolve the destination %s\n",
remote_host);
fflush(where);
exit(1);
}
else {
/* it was a valid remote_host */
bcopy(hp->h_addr,
(char *)&server.sin_addr,
hp->h_length);
server.sin_family = hp->h_addrtype;
}
}
else {
/* it was a valid IP address */
server.sin_addr.s_addr = addr;
server.sin_family = AF_INET;
}
if ( print_headers ) {
fprintf(where,"XTI UDP REQUEST/RESPONSE TEST");
fprintf(where," to %s", remote_host);
if (iteration_max > 1) {
fprintf(where,
" : +/-%3.1f%% @ %2d%% conf.",
interval/0.02,
confidence_level);
}
if (loc_sndavoid ||
loc_rcvavoid ||
rem_sndavoid ||
rem_rcvavoid) {
fprintf(where," : copy avoidance");
}
#ifdef WANT_HISTOGRAM
fprintf(where," : histogram");
#endif /* WANT_HISTOGRAM */
#ifdef WANT_INTERVALS
fprintf(where," : interval");
#endif /* WANT_INTERVALS */
#ifdef DIRTY
fprintf(where," : dirty data");
#endif /* DIRTY */
fprintf(where,"\n");
}
/* initialize a few counters */
send_ring = NULL;
recv_ring = NULL;
nummessages = 0;
bytes_xferd = 0;
times_up = 0;
confidence_iteration = 1;
init_stat();
/* we have a great-big while loop which controls the number of times */
/* we run a particular test. this is for the calculation of a */
/* confidence interval (I really should have stayed awake during */
/* probstats :). If the user did not request confidence measurement */
/* (no confidence is the default) then we will only go though the */
/* loop once. the confidence stuff originates from the folks at IBM */
while (((confidence < 0) && (confidence_iteration < iteration_max)) ||
(confidence_iteration <= iteration_min)) {
nummessages = 0;
bytes_xferd = 0.0;
times_up = 0;
trans_remaining = 0;
/* set-up the data buffers with the requested alignment and offset */
if (send_width == 0) send_width = 1;
if (recv_width == 0) recv_width = 1;
if (send_ring == NULL) {
send_ring = allocate_buffer_ring(send_width,
req_size,
local_send_align,
local_send_offset);
}
if (recv_ring == NULL) {
recv_ring = allocate_buffer_ring(recv_width,
rsp_size,
local_recv_align,
local_recv_offset);
}
/* since we are going to call t_rcvudata() instead of t_rcv() we */
/* need to init the unitdata structure raj 8/95 */
memset (&recv_unitdata, 0, sizeof(recv_unitdata));
recv_unitdata.addr.maxlen = sizeof(struct sockaddr_in);
recv_unitdata.addr.len = sizeof(struct sockaddr_in);
recv_unitdata.addr.buf = (char *)&server;
recv_unitdata.opt.maxlen = 0;
recv_unitdata.opt.len = 0;
recv_unitdata.opt.buf = NULL;
recv_unitdata.udata.maxlen = rsp_size;
recv_unitdata.udata.len = rsp_size;
recv_unitdata.udata.buf = recv_ring->buffer_ptr;
/* since we are going to call t_sndudata() instead of t_snd() we */
/* need to init the unitdata structure raj 8/95 */
memset (&send_unitdata, 0, sizeof(send_unitdata));
send_unitdata.addr.maxlen = sizeof(struct sockaddr_in);
send_unitdata.addr.len = sizeof(struct sockaddr_in);
send_unitdata.addr.buf = (char *)&server;
send_unitdata.opt.maxlen = 0;
send_unitdata.opt.len = 0;
send_unitdata.opt.buf = NULL;
send_unitdata.udata.maxlen = req_size;
send_unitdata.udata.len = req_size;
send_unitdata.udata.buf = send_ring->buffer_ptr;
/*set up the data socket */
send_socket = create_xti_endpoint(loc_xti_device);
if (send_socket == INVALID_SOCKET){
perror("netperf: send_xti_udp_rr: udp rr data socket");
exit(1);
}
if (debug) {
fprintf(where,"send_xti_udp_rr: send_socket obtained...\n");
}
/* it would seem that with XTI, there is no implicit bind */
/* so we have to make a call to t_bind. this is not */
/* terribly convenient, but I suppose that "standard is better */
/* than better" :) raj 2/95 */
if (t_bind(send_socket, NULL, NULL) == SOCKET_ERROR) {
t_error("send_xti_tcp_stream: t_bind");
exit(1);
}
/* If the user has requested cpu utilization measurements, we must */
/* calibrate the cpu(s). We will perform this task within the tests */
/* themselves. If the user has specified the cpu rate, then */
/* calibrate_local_cpu will return rather quickly as it will have */
/* nothing to do. If local_cpu_rate is zero, then we will go through */
/* all the "normal" calibration stuff and return the rate back. If */
/* there is no idle counter in the kernel idle loop, the */
/* local_cpu_rate will be set to -1. */
if (local_cpu_usage) {
local_cpu_rate = calibrate_local_cpu(local_cpu_rate);
}
/* Tell the remote end to do a listen. The server alters the socket */
/* paramters on the other side at this point, hence the reason for */
/* all the values being passed in the setup message. If the user did */
/* not specify any of the parameters, they will be passed as 0, which */
/* will indicate to the remote that no changes beyond the system's */
/* default should be used. Alignment is the exception, it will */
/* default to 8, which will be no alignment alterations. */
netperf_request.content.request_type = DO_XTI_UDP_RR;
xti_udp_rr_request->recv_buf_size = rsr_size;
xti_udp_rr_request->send_buf_size = rss_size;
xti_udp_rr_request->recv_alignment = remote_recv_align;
xti_udp_rr_request->recv_offset = remote_recv_offset;
xti_udp_rr_request->send_alignment = remote_send_align;
xti_udp_rr_request->send_offset = remote_send_offset;
xti_udp_rr_request->request_size = req_size;
xti_udp_rr_request->response_size = rsp_size;
xti_udp_rr_request->measure_cpu = remote_cpu_usage;
xti_udp_rr_request->cpu_rate = remote_cpu_rate;
xti_udp_rr_request->so_rcvavoid = rem_rcvavoid;
xti_udp_rr_request->so_sndavoid = rem_sndavoid;
if (test_time) {
xti_udp_rr_request->test_length = test_time;
}
else {
xti_udp_rr_request->test_length = test_trans * -1;
}
strcpy(xti_udp_rr_request->xti_device, rem_xti_device);
#ifdef __alpha
/* ok - even on a DEC box, strings are strings. I didn't really want */
/* to ntohl the words of a string. since I don't want to teach the */
/* send_ and recv_ _request and _response routines about the types, */
/* I will put "anti-ntohl" calls here. I imagine that the "pure" */
/* solution would be to use XDR, but I am still leary of being able */
/* to find XDR libs on all platforms I want running netperf. raj */
{
int *charword;
int *initword;
int *lastword;
initword = (int *) xti_udp_rr_request->xti_device;
lastword = initword + ((strlen(rem_xti_device) + 3) / 4);
for (charword = initword;
charword < lastword;
charword++) {
*charword = ntohl(*charword);
}
}
#endif /* __alpha */
if (debug > 1) {
fprintf(where,"netperf: send_xti_udp_rr: requesting UDP r/r test\n");
}
send_request();
/* The response from the remote will contain all of the relevant */
/* socket parameters for this test type. We will put them back into */
/* the variables here so they can be displayed if desired. The */
/* remote will have calibrated CPU if necessary, and will have done */
/* all the needed set-up we will have calibrated the cpu locally */
/* before sending the request, and will grab the counter value right*/
/* after the connect returns. The remote will grab the counter right*/
/* after the accept call. This saves the hassle of extra messages */
/* being sent for the UDP tests. */
recv_response();
if (!netperf_response.content.serv_errno) {
if (debug)
fprintf(where,"remote listen done.\n");
rsr_size = xti_udp_rr_response->recv_buf_size;
rss_size = xti_udp_rr_response->send_buf_size;
remote_cpu_usage = xti_udp_rr_response->measure_cpu;
remote_cpu_rate = xti_udp_rr_response->cpu_rate;
/* port numbers in proper order */
server.sin_port = (short)xti_udp_rr_response->data_port_number;
server.sin_port = htons(server.sin_port);
}
else {
Set_errno(netperf_response.content.serv_errno);
perror("netperf: remote error");
exit(1);
}
/* Data Socket set-up is finished. If there were problems, either the */
/* connect would have failed, or the previous response would have */
/* indicated a problem. I failed to see the value of the extra */
/* message after the accept on the remote. If it failed, we'll see it */
/* here. If it didn't, we might as well start pumping data. */
/* Set-up the test end conditions. For a request/response test, they */
/* can be either time or transaction based. */
if (test_time) {
/* The user wanted to end the test after a period of time. */
times_up = 0;
trans_remaining = 0;
start_timer(test_time);
}
else {
/* The tester wanted to send a number of bytes. */
trans_remaining = test_bytes;
times_up = 1;
}
/* The cpu_start routine will grab the current time and possibly */
/* value of the idle counter for later use in measuring cpu */
/* utilization and/or service demand and thruput. */
cpu_start(local_cpu_usage);
#ifdef WANT_INTERVALS
if ((interval_burst) || (demo_mode)) {
/* zero means that we never pause, so we never should need the */
/* interval timer, unless we are in demo_mode */
start_itimer(interval_wate);
}
interval_count = interval_burst;
/* get the signal set for the call to sigsuspend */
if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) {
fprintf(where,
"send_xti_udp_rr: unable to get sigmask errno %d\n",
errno);
fflush(where);
exit(1);
}
#endif /* WANT_INTERVALS */
/* We use an "OR" to control test execution. When the test is */
/* controlled by time, the byte count check will always return */
/* false. When the test is controlled by byte count, the time test */
/* will always return false. When the test is finished, the whole */
/* expression will go false and we will stop sending data. I think */
/* I just arbitrarily decrement trans_remaining for the timed */
/* test, but will not do that just yet... One other question is */
/* whether or not the send buffer and the receive buffer should be */
/* the same buffer. */
while ((!times_up) || (trans_remaining > 0)) {
/* send the request */
#ifdef WANT_HISTOGRAM
HIST_timestamp(&time_one);
#endif
if((t_sndudata(send_socket,
&send_unitdata)) != 0) {
if (errno == EINTR) {
/* We likely hit */
/* test-end time. */
break;
}
fprintf(where,
"send_xti_udp_rr: t_sndudata: errno %d t_errno %d t_look 0x%.4x\n",
errno,
t_errno,
t_look(send_socket));
fflush(where);
exit(1);
}
send_ring = send_ring->next;
/* receive the response. with UDP we will get it all, or nothing */
if((t_rcvudata(send_socket,
&recv_unitdata,
&flags)) != 0) {
if (errno == TNODATA) {
continue;
}
if (errno == EINTR) {
/* Again, we have likely hit test-end time */
break;
}
fprintf(where,
"send_xti_udp_rr: t_rcvudata: errno %d t_errno %d t_look 0x%x\n",
errno,
t_errno,
t_look(send_socket));
fprintf(where,
"recv_unitdata.udata.buf %x\n",recv_unitdata.udata.buf);
fprintf(where,
"recv_unitdata.udata.maxlen %x\n",recv_unitdata.udata.maxlen);
fprintf(where,
"recv_unitdata.udata.len %x\n",recv_unitdata.udata.len);
fprintf(where,
"recv_unitdata.addr.buf %x\n",recv_unitdata.addr.buf);
fprintf(where,
"recv_unitdata.addr.maxlen %x\n",recv_unitdata.addr.maxlen);
fprintf(where,
"recv_unitdata.addr.len %x\n",recv_unitdata.addr.len);
fflush(where);
exit(1);
}
recv_ring = recv_ring->next;
#ifdef WANT_HISTOGRAM
HIST_timestamp(&time_two);
HIST_add(time_hist,delta_micro(&time_one,&time_two));
/* at this point, we may wish to sleep for some period of */
/* time, so we see how long that last transaction just took, */
/* and sleep for the difference of that and the interval. We */
/* will not sleep if the time would be less than a */
/* millisecond. */
#endif
#ifdef WANT_INTERVALS
if (demo_mode) {
units_this_tick += 1;
}
/* in this case, the interval count is the count-down couter */
/* to decide to sleep for a little bit */
if ((interval_burst) && (--interval_count == 0)) {
/* call sigsuspend and wait for the interval timer to get us */
/* out */
if (debug) {
fprintf(where,"about to suspend\n");
fflush(where);
}
if (sigsuspend(&signal_set) == EFAULT) {
fprintf(where,
"send_xti_udp_rr: fault with signal set!\n");
fflush(where);
exit(1);
}
interval_count = interval_burst;
}
#endif /* WANT_INTERVALS */
nummessages++;
if (trans_remaining) {
trans_remaining--;
}
if (debug > 3) {
if ((nummessages % 100) == 0) {
fprintf(where,"Transaction %d completed\n",nummessages);
fflush(where);
}
}
}
/* this call will always give us the elapsed time for the test, and */
/* will also store-away the necessaries for cpu utilization */
cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being */
/* measured? how long */
/* did we really run? */
/* Get the statistics from the remote end. The remote will have */
/* calculated service demand and all those interesting things. If */
/* it wasn't supposed to care, it will return obvious values. */
recv_response();
if (!netperf_response.content.serv_errno) {
if (debug)
fprintf(where,"remote results obtained\n");
}
else {
Set_errno(netperf_response.content.serv_errno);
perror("netperf: remote error");
exit(1);
}
/* We now calculate what our thruput was for the test. In the */
/* future, we may want to include a calculation of the thruput */
/* measured by the remote, but it should be the case that for a */
/* UDP rr test, that the two numbers should be *very* close... */
/* We calculate bytes_sent regardless of the way the test length */
/* was controlled. */
bytes_xferd = (req_size * nummessages) + (rsp_size * nummessages);
thruput = nummessages / elapsed_time;
if (local_cpu_usage || remote_cpu_usage) {
/* We must now do a little math for service demand and cpu */
/* utilization for the system(s) Of course, some of the */
/* information might be bogus because there was no idle counter */
/* in the kernel(s). We need to make a note of this for the */
/* user's benefit by placing a code for the metod used in the */
/* test banner */
if (local_cpu_usage) {
local_cpu_utilization = calc_cpu_util(0.0);
/* since calc_service demand is doing ms/Kunit we will */
/* multiply the number of transaction by 1024 to get */
/* "good" numbers */
local_service_demand = calc_service_demand((double) nummessages*1024,
0.0,
0.0,
0);
}
else {
local_cpu_utilization = -1.0;
local_service_demand = -1.0;
}
if (remote_cpu_usage) {
remote_cpu_utilization = xti_udp_rr_result->cpu_util;
/* since calc_service demand is doing ms/Kunit we will */
/* multiply the number of transaction by 1024 to get */
/* "good" numbers */
remote_service_demand = calc_service_demand((double) nummessages*1024,
0.0,
remote_cpu_utilization,
xti_udp_rr_result->num_cpus);
}
else {
remote_cpu_utilization = -1.0;
remote_service_demand = -1.0;
}
}
else {
/* we were not measuring cpu, for the confidence stuff, we */
/* should make it -1.0 */
local_cpu_utilization = -1.0;
local_service_demand = -1.0;
remote_cpu_utilization = -1.0;
remote_service_demand = -1.0;
}
/* at this point, we want to calculate the confidence information. */
/* if debugging is on, calculate_confidence will print-out the */
/* parameters we pass it */
calculate_confidence(confidence_iteration,
elapsed_time,
thruput,
local_cpu_utilization,
remote_cpu_utilization,
local_service_demand,
remote_service_demand);
confidence_iteration++;
/* we are done with the socket */
t_close(send_socket);
}
/* at this point, we have made all the iterations we are going to */
/* make. */
retrieve_confident_values(&elapsed_time,
&thruput,
&local_cpu_utilization,
&remote_cpu_utilization,
&local_service_demand,
&remote_service_demand);
/* We are now ready to print all the information. If the user */
/* has specified zero-level verbosity, we will just print the */
/* local service demand, or the remote service demand. If the */
/* user has requested verbosity level 1, he will get the basic */
/* "streamperf" numbers. If the user has specified a verbosity */
/* of greater than 1, we will display a veritable plethora of */
/* background information from outside of this block as it it */
/* not cpu_measurement specific... */
if (confidence < 0) {
/* we did not hit confidence, but were we asked to look for it? */
if (iteration_max > 1) {
display_confidence();
}
}
if (local_cpu_usage || remote_cpu_usage) {
local_cpu_method = format_cpu_method(cpu_method);
remote_cpu_method = format_cpu_method(xti_udp_rr_result->cpu_method);
switch (verbosity) {
case 0:
if (local_cpu_usage) {
fprintf(where,
cpu_fmt_0,
local_service_demand,
local_cpu_method);
}
else {
fprintf(where,
cpu_fmt_0,
remote_service_demand,
remote_cpu_method);
}
break;
case 1:
case 2:
if (print_headers) {
fprintf(where,
cpu_title,
local_cpu_method,
remote_cpu_method);
}
fprintf(where,
cpu_fmt_1_line_1, /* the format string */
lss_size, /* local sendbuf size */
lsr_size,
req_size, /* how large were the requests */
rsp_size, /* guess */
elapsed_time, /* how long was the test */
nummessages/elapsed_time,
local_cpu_utilization, /* local cpu */
remote_cpu_utilization, /* remote cpu */
local_service_demand, /* local service demand */
remote_service_demand); /* remote service demand */
fprintf(where,
cpu_fmt_1_line_2,
rss_size,
rsr_size);
break;
}
}
else {
/* The tester did not wish to measure service demand. */
switch (verbosity) {
case 0:
fprintf(where,
tput_fmt_0,
nummessages/elapsed_time);
break;
case 1:
case 2:
if (print_headers) {
fprintf(where,tput_title,format_units());
}
fprintf(where,
tput_fmt_1_line_1, /* the format string */
lss_size,
lsr_size,
req_size, /* how large were the requests */
rsp_size, /* how large were the responses */
elapsed_time, /* how long did it take */
nummessages/elapsed_time);
fprintf(where,
tput_fmt_1_line_2,
rss_size, /* remote recvbuf size */
rsr_size);
break;
}
}
fflush(where);
/* it would be a good thing to include information about some of the */
/* other parameters that may have been set for this test, but at the */
/* moment, I do not wish to figure-out all the formatting, so I will */
/* just put this comment here to help remind me that it is something */
/* that should be done at a later time. */
/* how to handle the verbose information in the presence of */
/* confidence intervals is yet to be determined... raj 11/94 */
if (verbosity > 1) {
/* The user wanted to know it all, so we will give it to him. */
/* This information will include as much as we can find about */
/* UDP statistics, the alignments of the sends and receives */
/* and all that sort of rot... */
#ifdef WANT_HISTOGRAM
fprintf(where,"\nHistogram of request/reponse times.\n");
fflush(where);
HIST_report(time_hist);
#endif /* WANT_HISTOGRAM */
}
}
/* this routine implements the receive side (netserver) of a XTI_UDP_RR */
/* test. */
void
recv_xti_udp_rr()
{
struct ring_elt *recv_ring;
struct ring_elt *send_ring;
struct t_bind bind_req, bind_resp;
struct t_unitdata send_unitdata;
struct t_unitdata recv_unitdata;
int flags = 0;
struct sockaddr_in myaddr_in, peeraddr_in;
SOCKET s_data;
int addrlen;
int trans_received;
int trans_remaining;
float elapsed_time;
struct xti_udp_rr_request_struct *xti_udp_rr_request;
struct xti_udp_rr_response_struct *xti_udp_rr_response;
struct xti_udp_rr_results_struct *xti_udp_rr_results;
/* a little variable initialization */
memset (&myaddr_in, 0, sizeof(struct sockaddr_in));
myaddr_in.sin_family = AF_INET;
myaddr_in.sin_addr.s_addr = INADDR_ANY;
myaddr_in.sin_port = 0;
memset (&peeraddr_in, 0, sizeof(struct sockaddr_in));
/* and some not so paranoid :) */
xti_udp_rr_request =
(struct xti_udp_rr_request_struct *)netperf_request.content.test_specific_data;
xti_udp_rr_response =
(struct xti_udp_rr_response_struct *)netperf_response.content.test_specific_data;
xti_udp_rr_results =
(struct xti_udp_rr_results_struct *)netperf_response.content.test_specific_data;
if (debug) {
fprintf(where,"netserver: recv_xti_udp_rr: entered...\n");
fflush(where);
}
/* We want to set-up the listen socket with all the desired */
/* parameters and then let the initiator know that all is ready. If */
/* socket size defaults are to be used, then the initiator will have */
/* sent us 0's. If the socket sizes cannot be changed, then we will */
/* send-back what they are. If that information cannot be determined, */
/* then we send-back -1's for the sizes. If things go wrong for any */
/* reason, we will drop back ten yards and punt. */
/* If anything goes wrong, we want the remote to know about it. It */
/* would be best if the error that the remote reports to the user is */
/* the actual error we encountered, rather than some bogus unexpected */
/* response type message. */
if (debug) {
fprintf(where,"recv_xti_udp_rr: setting the response type...\n");
fflush(where);
}
netperf_response.content.response_type = XTI_UDP_RR_RESPONSE;
if (debug) {
fprintf(where,"recv_xti_udp_rr: the response type is set...\n");
fflush(where);
}
/* We now alter the message_ptr variables to be at the desired */
/* alignments with the desired offsets. */
if (debug) {
fprintf(where,"recv_xti_udp_rr: requested recv alignment of %d offset %d\n",
xti_udp_rr_request->recv_alignment,
xti_udp_rr_request->recv_offset);
fprintf(where,"recv_xti_udp_rr: requested send alignment of %d offset %d\n",
xti_udp_rr_request->send_alignment,
xti_udp_rr_request->send_offset);
fflush(where);
}
if (send_width == 0) send_width = 1;
if (recv_width == 0) recv_width = 1;
recv_ring = allocate_buffer_ring(recv_width,
xti_udp_rr_request->request_size,
xti_udp_rr_request->recv_alignment,
xti_udp_rr_request->recv_offset);
send_ring = allocate_buffer_ring(send_width,
xti_udp_rr_request->response_size,
xti_udp_rr_request->send_alignment,
xti_udp_rr_request->send_offset);
if (debug) {
fprintf(where,"recv_xti_udp_rr: receive alignment and offset set...\n");
fflush(where);
}
/* create_xti_endpoint expects to find some things in the global */
/* variables, so set the globals based on the values in the request. */
/* once the socket has been created, we will set the response values */
/* based on the updated value of those globals. raj 7/94 */
lss_size = xti_udp_rr_request->send_buf_size;
lsr_size = xti_udp_rr_request->recv_buf_size;
loc_rcvavoid = xti_udp_rr_request->so_rcvavoid;
loc_sndavoid = xti_udp_rr_request->so_sndavoid;
#ifdef __alpha
/* ok - even on a DEC box, strings are strings. I din't really want */
/* to ntohl the words of a string. since I don't want to teach the */
/* send_ and recv_ _request and _response routines about the types, */
/* I will put "anti-ntohl" calls here. I imagine that the "pure" */
/* solution would be to use XDR, but I am still leary of being able */
/* to find XDR libs on all platforms I want running netperf. raj */
{
int *charword;
int *initword;
int *lastword;
initword = (int *) xti_udp_rr_request->xti_device;
lastword = initword + ((xti_udp_rr_request->dev_name_len + 3) / 4);
for (charword = initword;
charword < lastword;
charword++) {
*charword = htonl(*charword);
}
}
#endif /* __alpha */
s_data = create_xti_endpoint(xti_udp_rr_request->xti_device);
if (s_data == INVALID_SOCKET) {
netperf_response.content.serv_errno = errno;
send_response();
exit(1);
}
if (debug) {
fprintf(where,"recv_xti_udp_rr: endpoint created...\n");
fflush(where);
}
/* Let's get an address assigned to this socket so we can tell the */
/* initiator how to reach the data socket. There may be a desire to */
/* nail this socket to a specific IP address in a multi-homed, */
/* multi-connection situation, but for now, we'll ignore the issue */
/* and concentrate on single connection testing. */
bind_req.addr.maxlen = sizeof(struct sockaddr_in);
bind_req.addr.len = sizeof(struct sockaddr_in);
bind_req.addr.buf = (char *)&myaddr_in;
bind_req.qlen = 1;
bind_resp.addr.maxlen = sizeof(struct sockaddr_in);
bind_resp.addr.len = sizeof(struct sockaddr_in);
bind_resp.addr.buf = (char *)&myaddr_in;
bind_resp.qlen = 1;
if (t_bind(s_data,
&bind_req,
&bind_resp) == SOCKET_ERROR) {
if (debug) {
fprintf(where,
"recv_xti_udp_rr: t_bind failed, t_errno %d errno %d\n",
t_errno,
errno);
fflush(where);
}
netperf_response.content.serv_errno = t_errno;
send_response();
exit(1);
}
if (debug) {
fprintf(where,
"recv_xti_udp_rr: endpoint bound to port %d...\n",
ntohs(myaddr_in.sin_port));
fflush(where);
}
xti_udp_rr_response->test_length =
xti_udp_rr_request->test_length;
/* Now myaddr_in contains the port and the internet address this is */
/* returned to the sender also implicitly telling the sender that the */
/* socket buffer sizing has been done. */
xti_udp_rr_response->data_port_number = (int) ntohs(myaddr_in.sin_port);
netperf_response.content.serv_errno = 0;
fprintf(where,"recv port number %d\n",myaddr_in.sin_port);
fflush(where);
/* But wait, there's more. If the initiator wanted cpu measurements, */
/* then we must call the calibrate routine, which will return the max */
/* rate back to the initiator. If the CPU was not to be measured, or */
/* something went wrong with the calibration, we will return a 0.0 to */
/* the initiator. */
xti_udp_rr_response->cpu_rate = 0.0; /* assume no cpu */
xti_udp_rr_response->measure_cpu = 0;
if (xti_udp_rr_request->measure_cpu) {
xti_udp_rr_response->measure_cpu = 1;
xti_udp_rr_response->cpu_rate =
calibrate_local_cpu(xti_udp_rr_request->cpu_rate);
}
/* before we send the response back to the initiator, pull some of */
/* the socket parms from the globals */
xti_udp_rr_response->send_buf_size = lss_size;
xti_udp_rr_response->recv_buf_size = lsr_size;
xti_udp_rr_response->so_rcvavoid = loc_rcvavoid;
xti_udp_rr_response->so_sndavoid = loc_sndavoid;
/* since we are going to call t_rcvudata() instead of t_rcv() we */
/* need to init the unitdata structure raj 3/95 */
memset (&recv_unitdata, 0, sizeof(recv_unitdata));
recv_unitdata.addr.maxlen = sizeof(struct sockaddr_in);
recv_unitdata.addr.len = sizeof(struct sockaddr_in);
recv_unitdata.addr.buf = (char *)&peeraddr_in;
recv_unitdata.opt.maxlen = 0;
recv_unitdata.opt.len = 0;
recv_unitdata.opt.buf = NULL;
recv_unitdata.udata.maxlen = xti_udp_rr_request->request_size;
recv_unitdata.udata.len = xti_udp_rr_request->request_size;
recv_unitdata.udata.buf = recv_ring->buffer_ptr;
/* since we are going to call t_sndudata() instead of t_snd() we */
/* need to init the unitdata structure raj 8/95 */
memset (&send_unitdata, 0, sizeof(send_unitdata));
send_unitdata.addr.maxlen = sizeof(struct sockaddr_in);
send_unitdata.addr.len = sizeof(struct sockaddr_in);
send_unitdata.addr.buf = (char *)&peeraddr_in;
send_unitdata.opt.maxlen = 0;
send_unitdata.opt.len = 0;
send_unitdata.opt.buf = NULL;
send_unitdata.udata.maxlen = xti_udp_rr_request->response_size;
send_unitdata.udata.len = xti_udp_rr_request->response_size;
send_unitdata.udata.buf = send_ring->buffer_ptr;
send_response();
/* Now it's time to start receiving data on the connection. We will */
/* first grab the apropriate counters and then start grabbing. */
cpu_start(xti_udp_rr_request->measure_cpu);
if (xti_udp_rr_request->test_length > 0) {
times_up = 0;
trans_remaining = 0;
start_timer(xti_udp_rr_request->test_length + PAD_TIME);
}
else {
times_up = 1;
trans_remaining = xti_udp_rr_request->test_length * -1;
}
addrlen = sizeof(peeraddr_in);
bzero((char *)&peeraddr_in, addrlen);
trans_received = 0;
while ((!times_up) || (trans_remaining > 0)) {
/* receive the request from the other side */
if (t_rcvudata(s_data,
&recv_unitdata,
&flags) != 0) {
if (errno == TNODATA) {
continue;
}
if (errno == EINTR) {
/* we must have hit the end of test time. */
break;
}
if (debug) {
fprintf(where,
"recv_xti_udp_rr: t_rcvudata failed, t_errno %d errno %d\n",
t_errno,
errno);
fflush(where);
}
netperf_response.content.serv_errno = t_errno;
send_response();
exit(1);
}
recv_ring = recv_ring->next;
recv_unitdata.udata.buf = recv_ring->buffer_ptr;
/* Now, send the response to the remote */
if (t_sndudata(s_data,
&send_unitdata) != 0) {
if (errno == EINTR) {
/* we have hit end of test time. */
break;
}
if (debug) {
fprintf(where,
"recv_xti_udp_rr: t_sndudata failed, t_errno %d errno %d\n",
t_errno,
errno);
fflush(where);
}
netperf_response.content.serv_errno = errno;
send_response();
exit(1);
}
send_ring = send_ring->next;
send_unitdata.udata.buf = send_ring->buffer_ptr;
trans_received++;
if (trans_remaining) {
trans_remaining--;
}
if (debug) {
fprintf(where,
"recv_xti_udp_rr: Transaction %d complete.\n",
trans_received);
fflush(where);
}
}
/* The loop now exits due to timeout or transaction count being */
/* reached */
cpu_stop(xti_udp_rr_request->measure_cpu,&elapsed_time);
if (times_up) {
/* we ended the test by time, which was at least 2 seconds */
/* longer than we wanted to run. so, we want to subtract */
/* PAD_TIME from the elapsed_time. */
elapsed_time -= PAD_TIME;
}
/* send the results to the sender */
if (debug) {
fprintf(where,
"recv_xti_udp_rr: got %d transactions\n",
trans_received);
fflush(where);
}
xti_udp_rr_results->bytes_received = (trans_received *
(xti_udp_rr_request->request_size +
xti_udp_rr_request->response_size));
xti_udp_rr_results->trans_received = trans_received;
xti_udp_rr_results->elapsed_time = elapsed_time;
xti_udp_rr_results->cpu_method = cpu_method;
if (xti_udp_rr_request->measure_cpu) {
xti_udp_rr_results->cpu_util = calc_cpu_util(elapsed_time);
}
if (debug) {
fprintf(where,
"recv_xti_udp_rr: test complete, sending results.\n");
fflush(where);
}
send_response();
/* we are done with the socket now */
close(s_data);
}
/* this routine implements the receive (netserver) side of a XTI_TCP_RR */
/* test */
void
recv_xti_tcp_rr()
{
struct ring_elt *send_ring;
struct ring_elt *recv_ring;
struct sockaddr_in myaddr_in, peeraddr_in;
struct t_bind bind_req, bind_resp;
struct t_call call_req;
SOCKET s_listen,s_data;
int addrlen;
char *temp_message_ptr;
int trans_received;
int trans_remaining;
int bytes_sent;
int request_bytes_recvd;
int request_bytes_remaining;
int timed_out = 0;
float elapsed_time;
struct xti_tcp_rr_request_struct *xti_tcp_rr_request;
struct xti_tcp_rr_response_struct *xti_tcp_rr_response;
struct xti_tcp_rr_results_struct *xti_tcp_rr_results;
xti_tcp_rr_request =
(struct xti_tcp_rr_request_struct *)netperf_request.content.test_specific_data;
xti_tcp_rr_response =
(struct xti_tcp_rr_response_struct *)netperf_response.content.test_specific_data;
xti_tcp_rr_results =
(struct xti_tcp_rr_results_struct *)netperf_response.content.test_specific_data;
if (debug) {
fprintf(where,"netserver: recv_xti_tcp_rr: entered...\n");
fflush(where);
}
/* We want to set-up the listen socket with all the desired */
/* parameters and then let the initiator know that all is ready. If */
/* socket size defaults are to be used, then the initiator will have */
/* sent us 0's. If the socket sizes cannot be changed, then we will */
/* send-back what they are. If that information cannot be determined, */
/* then we send-back -1's for the sizes. If things go wrong for any */
/* reason, we will drop back ten yards and punt. */
/* If anything goes wrong, we want the remote to know about it. It */
/* would be best if the error that the remote reports to the user is */
/* the actual error we encountered, rather than some bogus unexpected */
/* response type message. */
if (debug) {
fprintf(where,"recv_xti_tcp_rr: setting the response type...\n");
fflush(where);
}
netperf_response.content.response_type = XTI_TCP_RR_RESPONSE;
if (debug) {
fprintf(where,"recv_xti_tcp_rr: the response type is set...\n");
fflush(where);
}
/* allocate the recv and send rings with the requested alignments */
/* and offsets. raj 7/94 */
if (debug) {
fprintf(where,"recv_xti_tcp_rr: requested recv alignment of %d offset %d\n",
xti_tcp_rr_request->recv_alignment,
xti_tcp_rr_request->recv_offset);
fprintf(where,"recv_xti_tcp_rr: requested send alignment of %d offset %d\n",
xti_tcp_rr_request->send_alignment,
xti_tcp_rr_request->send_offset);
fflush(where);
}
/* at some point, these need to come to us from the remote system */
if (send_width == 0) send_width = 1;
if (recv_width == 0) recv_width = 1;
send_ring = allocate_buffer_ring(send_width,
xti_tcp_rr_request->response_size,
xti_tcp_rr_request->send_alignment,
xti_tcp_rr_request->send_offset);
recv_ring = allocate_buffer_ring(recv_width,
xti_tcp_rr_request->request_size,
xti_tcp_rr_request->recv_alignment,
xti_tcp_rr_request->recv_offset);
/* Let's clear-out our sockaddr for the sake of cleanlines. Then we */
/* can put in OUR values !-) At some point, we may want to nail this */
/* socket to a particular network-level address, but for now, */
/* INADDR_ANY should be just fine. */
bzero((char *)&myaddr_in,
sizeof(myaddr_in));
myaddr_in.sin_family = AF_INET;
myaddr_in.sin_addr.s_addr = INADDR_ANY;
myaddr_in.sin_port = 0;
/* Grab a socket to listen on, and then listen on it. */
if (debug) {
fprintf(where,"recv_xti_tcp_rr: grabbing a socket...\n");
fflush(where);
}
/* create_xti_endpoint expects to find some things in the global */
/* variables, so set the globals based on the values in the request. */
/* once the socket has been created, we will set the response values */
/* based on the updated value of those globals. raj 7/94 */
lss_size = xti_tcp_rr_request->send_buf_size;
lsr_size = xti_tcp_rr_request->recv_buf_size;
loc_nodelay = xti_tcp_rr_request->no_delay;
loc_rcvavoid = xti_tcp_rr_request->so_rcvavoid;
loc_sndavoid = xti_tcp_rr_request->so_sndavoid;
#ifdef __alpha
/* ok - even on a DEC box, strings are strings. I din't really want */
/* to ntohl the words of a string. since I don't want to teach the */
/* send_ and recv_ _request and _response routines about the types, */
/* I will put "anti-ntohl" calls here. I imagine that the "pure" */
/* solution would be to use XDR, but I am still leary of being able */
/* to find XDR libs on all platforms I want running netperf. raj */
{
int *charword;
int *initword;
int *lastword;
initword = (int *) xti_tcp_rr_request->xti_device;
lastword = initword + ((xti_tcp_rr_request->dev_name_len + 3) / 4);
for (charword = initword;
charword < lastword;
charword++) {
*charword = htonl(*charword);
}
}
#endif /* __alpha */
s_listen = create_xti_endpoint(xti_tcp_rr_request->xti_device);
if (s_listen == INVALID_SOCKET) {
netperf_response.content.serv_errno = errno;
send_response();
exit(1);
}
/* Let's get an address assigned to this socket so we can tell the */
/* initiator how to reach the data socket. There may be a desire to */
/* nail this socket to a specific IP address in a multi-homed, */
/* multi-connection situation, but for now, we'll ignore the issue */
/* and concentrate on single connection testing. */
bind_req.addr.maxlen = sizeof(struct sockaddr_in);
bind_req.addr.len = sizeof(struct sockaddr_in);
bind_req.addr.buf = (char *)&myaddr_in;
bind_req.qlen = 1;
bind_resp.addr.maxlen = sizeof(struct sockaddr_in);
bind_resp.addr.len = sizeof(struct sockaddr_in);
bind_resp.addr.buf = (char *)&myaddr_in;
bind_resp.qlen = 1;
if (t_bind(s_listen,
&bind_req,
&bind_resp) == SOCKET_ERROR) {
netperf_response.content.serv_errno = t_errno;
close(s_listen);
send_response();
exit(1);
}
if (debug) {
fprintf(where,
"recv_xti_tcp_rr: t_bind complete port %d\n",
ntohs(myaddr_in.sin_port));
fflush(where);
}
/* Now myaddr_in contains the port and the internet address this is */
/* returned to the sender also implicitly telling the sender that the */
/* socket buffer sizing has been done. */
xti_tcp_rr_response->data_port_number = (int) ntohs(myaddr_in.sin_port);
netperf_response.content.serv_errno = 0;
/* But wait, there's more. If the initiator wanted cpu measurements, */
/* then we must call the calibrate routine, which will return the max */
/* rate back to the initiator. If the CPU was not to be measured, or */
/* something went wrong with the calibration, we will return a 0.0 to */
/* the initiator. */
xti_tcp_rr_response->cpu_rate = 0.0; /* assume no cpu */
xti_tcp_rr_response->measure_cpu = 0;
if (xti_tcp_rr_request->measure_cpu) {
xti_tcp_rr_response->measure_cpu = 1;
xti_tcp_rr_response->cpu_rate = calibrate_local_cpu(xti_tcp_rr_request->cpu_rate);
}
/* before we send the response back to the initiator, pull some of */
/* the socket parms from the globals */
xti_tcp_rr_response->send_buf_size = lss_size;
xti_tcp_rr_response->recv_buf_size = lsr_size;
xti_tcp_rr_response->no_delay = loc_nodelay;
xti_tcp_rr_response->so_rcvavoid = loc_rcvavoid;
xti_tcp_rr_response->so_sndavoid = loc_sndavoid;
xti_tcp_rr_response->test_length = xti_tcp_rr_request->test_length;
send_response();
/* Now, let's set-up the socket to listen for connections. for xti, */
/* the t_listen call is blocking by default - this is different */
/* semantics from BSD - probably has to do with being able to reject */
/* a call before an accept */
call_req.addr.maxlen = sizeof(struct sockaddr_in);
call_req.addr.len = sizeof(struct sockaddr_in);
call_req.addr.buf = (char *)&peeraddr_in;
call_req.opt.maxlen = 0;
call_req.opt.len = 0;
call_req.opt.buf = NULL;
call_req.udata.maxlen= 0;
call_req.udata.len = 0;
call_req.udata.buf = 0;
if (t_listen(s_listen, &call_req) == -1) {
fprintf(where,
"recv_xti_tcp_rr: t_listen: errno %d t_errno %d\n",
errno,
t_errno);
fflush(where);
netperf_response.content.serv_errno = t_errno;
close(s_listen);
send_response();
exit(1);
}
if (debug) {
fprintf(where,
"recv_xti_tcp_rr: t_listen complete t_look 0x%.4x\n",
t_look(s_listen));
fflush(where);
}
/* now just rubber stamp the thing. we want to use the same fd? so */
/* we will just equate s_data with s_listen. this seems a little */
/* hokey to me, but then I'm a BSD biggot still. raj 2/95 */
s_data = s_listen;
if (t_accept(s_listen,
s_data,
&call_req) == -1) {
fprintf(where,
"recv_xti_tcp_rr: t_accept: errno %d t_errno %d\n",
errno,
t_errno);
fflush(where);
close(s_listen);
exit(1);
}
if (debug) {
fprintf(where,
"recv_xti_tcp_rr: t_accept complete t_look 0x%.4x",
t_look(s_data));
fprintf(where,
" remote is %s port %d\n",
inet_ntoa(*(struct in_addr *)&peeraddr_in.sin_addr),
ntohs(peeraddr_in.sin_port));
fflush(where);
}
/* Now it's time to start receiving data on the connection. We will */
/* first grab the apropriate counters and then start grabbing. */
cpu_start(xti_tcp_rr_request->measure_cpu);
if (xti_tcp_rr_request->test_length > 0) {
times_up = 0;
trans_remaining = 0;
start_timer(xti_tcp_rr_request->test_length + PAD_TIME);
}
else {
times_up = 1;
trans_remaining = xti_tcp_rr_request->test_length * -1;
}
trans_received = 0;
while ((!times_up) || (trans_remaining > 0)) {
temp_message_ptr = recv_ring->buffer_ptr;
request_bytes_remaining = xti_tcp_rr_request->request_size;
while(request_bytes_remaining > 0) {
if((request_bytes_recvd=t_rcv(s_data,
temp_message_ptr,
request_bytes_remaining,
&xti_flags)) == SOCKET_ERROR) {
if (errno == EINTR) {
/* the timer popped */
timed_out = 1;
break;
}
fprintf(where,
"recv_xti_tcp_rr: t_rcv: errno %d t_errno %d len %d",
errno,
t_errno,
request_bytes_recvd);
fprintf(where,
" t_look 0x%x",
t_look(s_data));
fflush(where);
netperf_response.content.serv_errno = t_errno;
send_response();
exit(1);
}
else {
request_bytes_remaining -= request_bytes_recvd;
temp_message_ptr += request_bytes_recvd;
}
}
recv_ring = recv_ring->next;
if (timed_out) {
/* we hit the end of the test based on time - lets */
/* bail out of here now... */
if (debug) {
fprintf(where,"yo5\n");
fflush(where);
}
break;
}
/* Now, send the response to the remote */
if((bytes_sent=t_snd(s_data,
send_ring->buffer_ptr,
xti_tcp_rr_request->response_size,
0)) == -1) {
if (errno == EINTR) {
/* the test timer has popped */
timed_out = 1;
if (debug) {
fprintf(where,"yo6\n");
fflush(where);
}
break;
}
fprintf(where,
"recv_xti_tcp_rr: t_rcv: errno %d t_errno %d len %d",
errno,
t_errno,
bytes_sent);
fprintf(where,
" t_look 0x%x",
t_look(s_data));
fflush(where);
netperf_response.content.serv_errno = t_errno;
send_response();
exit(1);
}
send_ring = send_ring->next;
trans_received++;
if (trans_remaining) {
trans_remaining--;
}
}
/* The loop now exits due to timeout or transaction count being */
/* reached */
cpu_stop(xti_tcp_rr_request->measure_cpu,&elapsed_time);
stop_timer(); /* this is probably unnecessary, but it shouldn't hurt */
if (timed_out) {
/* we ended the test by time, which was at least 2 seconds */
/* longer than we wanted to run. so, we want to subtract */
/* PAD_TIME from the elapsed_time. */
elapsed_time -= PAD_TIME;
}
/* send the results to the sender */
if (debug) {
fprintf(where,
"recv_xti_tcp_rr: got %d transactions\n",
trans_received);
fflush(where);
}
xti_tcp_rr_results->bytes_received = (trans_received *
(xti_tcp_rr_request->request_size +
xti_tcp_rr_request->response_size));
xti_tcp_rr_results->trans_received = trans_received;
xti_tcp_rr_results->elapsed_time = elapsed_time;
xti_tcp_rr_results->cpu_method = cpu_method;
if (xti_tcp_rr_request->measure_cpu) {
xti_tcp_rr_results->cpu_util = calc_cpu_util(elapsed_time);
}
if (debug) {
fprintf(where,
"recv_xti_tcp_rr: test complete, sending results.\n");
fflush(where);
}
/* we are done with the socket, free it */
t_close(s_data);
send_response();
}
/* this test is intended to test the performance of establishing a */
/* connection, exchanging a request/response pair, and repeating. it */
/* is expected that this would be a good starting-point for */
/* comparision of T/TCP with classic TCP for transactional workloads. */
/* it will also look (can look) much like the communication pattern */
/* of http for www access. */
void
send_xti_tcp_conn_rr(char remote_host[])
{
char *tput_title = "\
Local /Remote\n\
Socket Size Request Resp. Elapsed Trans.\n\
Send Recv Size Size Time Rate \n\
bytes Bytes bytes bytes secs. per sec \n\n";
char *tput_fmt_0 =
"%7.2f\n";
char *tput_fmt_1_line_1 = "\
%-6d %-6d %-6d %-6d %-6.2f %7.2f \n";
char *tput_fmt_1_line_2 = "\
%-6d %-6d\n";
char *cpu_title = "\
Local /Remote\n\
Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem\n\
Send Recv Size Size Time Rate local remote local remote\n\
bytes bytes bytes bytes secs. per sec %% %% us/Tr us/Tr\n\n";
char *cpu_fmt_0 =
"%6.3f\n";
char *cpu_fmt_1_line_1 = "\
%-6d %-6d %-6d %-6d %-6.2f %-6.2f %-6.2f %-6.2f %-6.3f %-6.3f\n";
char *cpu_fmt_1_line_2 = "\
%-6d %-6d\n";
char *ksink_fmt = "\
Alignment Offset\n\
Local Remote Local Remote\n\
Send Recv Send Recv\n\
%5d %5d %5d %5d\n";
int one = 1;
int timed_out = 0;
float elapsed_time;
int len;
struct ring_elt *send_ring;
struct ring_elt *recv_ring;
char *temp_message_ptr;
int nummessages;
SOCKET send_socket;
int trans_remaining;
double bytes_xferd;
int sock_opt_len = sizeof(int);
int rsp_bytes_left;
int rsp_bytes_recvd;
float local_cpu_utilization;
float local_service_demand;
float remote_cpu_utilization;
float remote_service_demand;
double thruput;
struct hostent *hp;
struct sockaddr_in server;
struct sockaddr_in *myaddr;
unsigned int addr;
int myport;
struct xti_tcp_conn_rr_request_struct *xti_tcp_conn_rr_request;
struct xti_tcp_conn_rr_response_struct *xti_tcp_conn_rr_response;
struct xti_tcp_conn_rr_results_struct *xti_tcp_conn_rr_result;
xti_tcp_conn_rr_request =
(struct xti_tcp_conn_rr_request_struct *)netperf_request.content.test_specific_data;
xti_tcp_conn_rr_response =
(struct xti_tcp_conn_rr_response_struct *)netperf_response.content.test_specific_data;
xti_tcp_conn_rr_result =
(struct xti_tcp_conn_rr_results_struct *)netperf_response.content.test_specific_data;
/* since we are now disconnected from the code that established the */
/* control socket, and since we want to be able to use different */
/* protocols and such, we are passed the name of the remote host and */
/* must turn that into the test specific addressing information. */
myaddr = (struct sockaddr_in *)malloc(sizeof(struct sockaddr_in));
if (myaddr == NULL) {
printf("malloc(%d) failed!\n", sizeof(struct sockaddr_in));
exit(1);
}
bzero((char *)&server,
sizeof(server));
bzero((char *)myaddr,
sizeof(struct sockaddr_in));
myaddr->sin_family = AF_INET;
/* it would seem that while HP-UX will allow an IP address (as a */
/* string) in a call to gethostbyname, other, less enlightened */
/* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */
/* order changed to check for IP address first. raj 7/96 */
if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) {
/* it was not an IP address, try it as a name */
if ((hp = gethostbyname(remote_host)) == NULL) {
/* we have no idea what it is */
fprintf(where,
"establish_control: could not resolve the destination %s\n",
remote_host);
fflush(where);
exit(1);
}
else {
/* it was a valid remote_host */
bcopy(hp->h_addr,
(char *)&server.sin_addr,
hp->h_length);
server.sin_family = hp->h_addrtype;
}
}
else {
/* it was a valid IP address */
server.sin_addr.s_addr = addr;
server.sin_family = AF_INET;
}
if ( print_headers ) {
fprintf(where,"TCP Connect/Request/Response Test\n");
if (local_cpu_usage || remote_cpu_usage)
fprintf(where,cpu_title,format_units());
else
fprintf(where,tput_title,format_units());
}
/* initialize a few counters */
nummessages = 0;
bytes_xferd = 0.0;
times_up = 0;
/* set-up the data buffers with the requested alignment and offset */
if (send_width == 0) send_width = 1;
if (recv_width == 0) recv_width = 1;
send_ring = allocate_buffer_ring(send_width,
req_size,
local_send_align,
local_send_offset);
recv_ring = allocate_buffer_ring(recv_width,
rsp_size,
local_recv_align,
local_recv_offset);
if (debug) {
fprintf(where,"send_xti_tcp_conn_rr: send_socket obtained...\n");
}
/* If the user has requested cpu utilization measurements, we must */
/* calibrate the cpu(s). We will perform this task within the tests */
/* themselves. If the user has specified the cpu rate, then */
/* calibrate_local_cpu will return rather quickly as it will have */
/* nothing to do. If local_cpu_rate is zero, then we will go through */
/* all the "normal" calibration stuff and return the rate back.*/
if (local_cpu_usage) {
local_cpu_rate = calibrate_local_cpu(local_cpu_rate);
}
/* Tell the remote end to do a listen. The server alters the socket */
/* paramters on the other side at this point, hence the reason for */
/* all the values being passed in the setup message. If the user did */
/* not specify any of the parameters, they will be passed as 0, which */
/* will indicate to the remote that no changes beyond the system's */
/* default should be used. Alignment is the exception, it will */
/* default to 8, which will be no alignment alterations. */
netperf_request.content.request_type = DO_XTI_TCP_CRR;
xti_tcp_conn_rr_request->recv_buf_size = rsr_size;
xti_tcp_conn_rr_request->send_buf_size = rss_size;
xti_tcp_conn_rr_request->recv_alignment = remote_recv_align;
xti_tcp_conn_rr_request->recv_offset = remote_recv_offset;
xti_tcp_conn_rr_request->send_alignment = remote_send_align;
xti_tcp_conn_rr_request->send_offset = remote_send_offset;
xti_tcp_conn_rr_request->request_size = req_size;
xti_tcp_conn_rr_request->response_size = rsp_size;
xti_tcp_conn_rr_request->no_delay = rem_nodelay;
xti_tcp_conn_rr_request->measure_cpu = remote_cpu_usage;
xti_tcp_conn_rr_request->cpu_rate = remote_cpu_rate;
xti_tcp_conn_rr_request->so_rcvavoid = rem_rcvavoid;
xti_tcp_conn_rr_request->so_sndavoid = rem_sndavoid;
if (test_time) {
xti_tcp_conn_rr_request->test_length = test_time;
}
else {
xti_tcp_conn_rr_request->test_length = test_trans * -1;
}
if (debug > 1) {
fprintf(where,"netperf: send_xti_tcp_conn_rr: requesting TCP crr test\n");
}
send_request();
/* The response from the remote will contain all of the relevant */
/* socket parameters for this test type. We will put them back into */
/* the variables here so they can be displayed if desired. The */
/* remote will have calibrated CPU if necessary, and will have done */
/* all the needed set-up we will have calibrated the cpu locally */
/* before sending the request, and will grab the counter value right */
/* after the connect returns. The remote will grab the counter right */
/* after the accept call. This saves the hassle of extra messages */
/* being sent for the TCP tests. */
recv_response();
if (!netperf_response.content.serv_errno) {
rsr_size = xti_tcp_conn_rr_response->recv_buf_size;
rss_size = xti_tcp_conn_rr_response->send_buf_size;
rem_nodelay = xti_tcp_conn_rr_response->no_delay;
remote_cpu_usage= xti_tcp_conn_rr_response->measure_cpu;
remote_cpu_rate = xti_tcp_conn_rr_response->cpu_rate;
/* make sure that port numbers are in network order */
server.sin_port = (short)xti_tcp_conn_rr_response->data_port_number;
server.sin_port = htons(server.sin_port);
if (debug) {
fprintf(where,"remote listen done.\n");
fprintf(where,"remote port is %d\n",ntohs(server.sin_port));
fflush(where);
}
}
else {
Set_errno(netperf_response.content.serv_errno);
perror("netperf: remote error");
exit(1);
}
/* Set-up the test end conditions. For a request/response test, they */
/* can be either time or transaction based. */
if (test_time) {
/* The user wanted to end the test after a period of time. */
times_up = 0;
trans_remaining = 0;
start_timer(test_time);
}
else {
/* The tester wanted to send a number of bytes. */
trans_remaining = test_bytes;
times_up = 1;
}
/* The cpu_start routine will grab the current time and possibly */
/* value of the idle counter for later use in measuring cpu */
/* utilization and/or service demand and thruput. */
cpu_start(local_cpu_usage);
/* We use an "OR" to control test execution. When the test is */
/* controlled by time, the byte count check will always return false. */
/* When the test is controlled by byte count, the time test will */
/* always return false. When the test is finished, the whole */
/* expression will go false and we will stop sending data. I think I */
/* just arbitrarily decrement trans_remaining for the timed test, but */
/* will not do that just yet... One other question is whether or not */
/* the send buffer and the receive buffer should be the same buffer. */
/* just for grins, start the port numbers at 65530. this should */
/* quickly flush-out those broken implementations of TCP which treat */
/* the port number as a signed 16 bit quantity. */
myport = 65530;
myaddr->sin_port = htons(myport);
while ((!times_up) || (trans_remaining > 0)) {
/* set up the data socket */
send_socket = create_xti_endpoint(loc_xti_device);
if (send_socket == INVALID_SOCKET) {
perror("netperf: send_xti_tcp_conn_rr: tcp stream data socket");
exit(1);
}
/* we set SO_REUSEADDR on the premis that no unreserved port */
/* number on the local system is going to be already connected to */
/* the remote netserver's port number. we might still have a */
/* problem if there is a port in the unconnected state. In that */
/* case, we might want to throw-in a goto to the point where we */
/* increment the port number by one and try again. of course, this */
/* could lead to a big load of spinning. one thing that I might */
/* try later is to have the remote actually allocate a couple of */
/* port numbers and cycle through those as well. depends on if we */
/* can get through all the unreserved port numbers in less than */
/* the length of the TIME_WAIT state raj 8/94 */
one = 1;
if(setsockopt(send_socket, SOL_SOCKET, SO_REUSEADDR,
(char *)&one, sock_opt_len) == SOCKET_ERROR) {
perror("netperf: send_xti_tcp_conn_rr: so_reuseaddr");
exit(1);
}
/* we want to bind our socket to a particular port number. */
if (bind(send_socket,
(struct sockaddr *)myaddr,
sizeof(struct sockaddr_in)) == SOCKET_ERROR) {
printf("netperf: send_xti_tcp_conn_rr: tried to bind to port %d\n",
ntohs(myaddr->sin_port));
perror("netperf: send_xti_tcp_conn_rr: bind");
exit(1);
}
/* Connect up to the remote port on the data socket */
if (connect(send_socket,
(struct sockaddr *)&server,
sizeof(server)) == INVALID_SOCKET){
if (errno == EINTR) {
/* we hit the end of a */
/* timed test. */
timed_out = 1;
break;
}
perror("netperf: data socket connect failed");
printf("\tattempted to connect on socket %d to port %d",
send_socket,
ntohs(server.sin_port));
printf(" from port %d \n",ntohs(myaddr->sin_port));
exit(1);
}
/* send the request */
if((len=send(send_socket,
send_ring->buffer_ptr,
req_size,
0)) != req_size) {
if (errno == EINTR) {
/* we hit the end of a */
/* timed test. */
timed_out = 1;
break;
}
perror("send_xti_tcp_conn_rr: data send error");
exit(1);
}
send_ring = send_ring->next;
/* receive the response */
rsp_bytes_left = rsp_size;
temp_message_ptr = recv_ring->buffer_ptr;
while(rsp_bytes_left > 0) {
if((rsp_bytes_recvd=recv(send_socket,
temp_message_ptr,
rsp_bytes_left,
0)) == SOCKET_ERROR) {
if (errno == EINTR) {
/* We hit the end of a timed test. */
timed_out = 1;
break;
}
perror("send_xti_tcp_conn_rr: data recv error");
exit(1);
}
rsp_bytes_left -= rsp_bytes_recvd;
temp_message_ptr += rsp_bytes_recvd;
}
recv_ring = recv_ring->next;
if (timed_out) {
/* we may have been in a nested while loop - we need */
/* another call to break. */
break;
}
close(send_socket);
nummessages++;
if (trans_remaining) {
trans_remaining--;
}
if (debug > 3) {
fprintf(where,
"Transaction %d completed on local port %d\n",
nummessages,
ntohs(myaddr->sin_port));
fflush(where);
}
newport:
/* pick a new port number */
myport = ntohs(myaddr->sin_port);
myport++;
/* we do not want to use the port number that the server is */
/* sitting at - this would cause us to fail in a loopback test */
if (myport == ntohs(server.sin_port)) myport++;
/* wrap the port number when we get to 65535. NOTE, some broken */
/* TCP's might treat the port number as a signed 16 bit quantity. */
/* we aren't interested in testing such broekn implementations :) */
/* raj 8/94 */
if (myport == 65535) {
myport = 5000;
}
myaddr->sin_port = htons(myport);
if (debug) {
if ((myport % 1000) == 0) {
printf("port %d\n",myport);
}
}
}
/* this call will always give us the elapsed time for the test, and */
/* will also store-away the necessaries for cpu utilization */
cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being measured? */
/* how long did we really run? */
/* Get the statistics from the remote end. The remote will have */
/* calculated service demand and all those interesting things. If it */
/* wasn't supposed to care, it will return obvious values. */
recv_response();
if (!netperf_response.content.serv_errno) {
if (debug)
fprintf(where,"remote results obtained\n");
}
else {
Set_errno(netperf_response.content.serv_errno);
perror("netperf: remote error");
exit(1);
}
/* We now calculate what our thruput was for the test. In the future, */
/* we may want to include a calculation of the thruput measured by */
/* the remote, but it should be the case that for a TCP stream test, */
/* that the two numbers should be *very* close... We calculate */
/* bytes_sent regardless of the way the test length was controlled. */
/* If it was time, we needed to, and if it was by bytes, the user may */
/* have specified a number of bytes that wasn't a multiple of the */
/* send_size, so we really didn't send what he asked for ;-) We use */
/* Kbytes/s as the units of thruput for a TCP stream test, where K = */
/* 1024. A future enhancement *might* be to choose from a couple of */
/* unit selections. */
bytes_xferd = (req_size * nummessages) + (rsp_size * nummessages);
thruput = calc_thruput(bytes_xferd);
if (local_cpu_usage || remote_cpu_usage) {
/* We must now do a little math for service demand and cpu */
/* utilization for the system(s) */
/* Of course, some of the information might be bogus because */
/* there was no idle counter in the kernel(s). We need to make */
/* a note of this for the user's benefit...*/
if (local_cpu_usage) {
if (local_cpu_rate == 0.0) {
fprintf(where,"WARNING WARNING WARNING WARNING WARNING WARNING WARNING!\n");
fprintf(where,"Local CPU usage numbers based on process information only!\n");
fflush(where);
}
local_cpu_utilization = calc_cpu_util(0.0);
/* since calc_service demand is doing ms/Kunit we will */
/* multiply the number of transaction by 1024 to get */
/* "good" numbers */
local_service_demand = calc_service_demand((double) nummessages*1024,
0.0,
0.0,
0);
}
else {
local_cpu_utilization = -1.0;
local_service_demand = -1.0;
}
if (remote_cpu_usage) {
if (remote_cpu_rate == 0.0) {
fprintf(where,"DANGER DANGER DANGER DANGER DANGER DANGER DANGER!\n");
fprintf(where,"Remote CPU usage numbers based on process information only!\n");
fflush(where);
}
remote_cpu_utilization = xti_tcp_conn_rr_result->cpu_util;
/* since calc_service demand is doing ms/Kunit we will */
/* multiply the number of transaction by 1024 to get */
/* "good" numbers */
remote_service_demand = calc_service_demand((double) nummessages*1024,
0.0,
remote_cpu_utilization,
xti_tcp_conn_rr_result->num_cpus);
}
else {
remote_cpu_utilization = -1.0;
remote_service_demand = -1.0;
}
/* We are now ready to print all the information. If the user */
/* has specified zero-level verbosity, we will just print the */
/* local service demand, or the remote service demand. If the */
/* user has requested verbosity level 1, he will get the basic */
/* "streamperf" numbers. If the user has specified a verbosity */
/* of greater than 1, we will display a veritable plethora of */
/* background information from outside of this block as it it */
/* not cpu_measurement specific... */
switch (verbosity) {
case 0:
if (local_cpu_usage) {
fprintf(where,
cpu_fmt_0,
local_service_demand);
}
else {
fprintf(where,
cpu_fmt_0,
remote_service_demand);
}
break;
case 1:
fprintf(where,
cpu_fmt_1_line_1, /* the format string */
lss_size, /* local sendbuf size */
lsr_size,
req_size, /* how large were the requests */
rsp_size, /* guess */
elapsed_time, /* how long was the test */
nummessages/elapsed_time,
local_cpu_utilization, /* local cpu */
remote_cpu_utilization, /* remote cpu */
local_service_demand, /* local service demand */
remote_service_demand); /* remote service demand */
fprintf(where,
cpu_fmt_1_line_2,
rss_size,
rsr_size);
break;
}
}
else {
/* The tester did not wish to measure service demand. */
switch (verbosity) {
case 0:
fprintf(where,
tput_fmt_0,
nummessages/elapsed_time);
break;
case 1:
fprintf(where,
tput_fmt_1_line_1, /* the format string */
lss_size,
lsr_size,
req_size, /* how large were the requests */
rsp_size, /* how large were the responses */
elapsed_time, /* how long did it take */
nummessages/elapsed_time);
fprintf(where,
tput_fmt_1_line_2,
rss_size, /* remote recvbuf size */
rsr_size);
break;
}
}
/* it would be a good thing to include information about some of the */
/* other parameters that may have been set for this test, but at the */
/* moment, I do not wish to figure-out all the formatting, so I will */
/* just put this comment here to help remind me that it is something */
/* that should be done at a later time. */
if (verbosity > 1) {
/* The user wanted to know it all, so we will give it to him. */
/* This information will include as much as we can find about */
/* TCP statistics, the alignments of the sends and receives */
/* and all that sort of rot... */
fprintf(where,
ksink_fmt);
}
}
void
recv_xti_tcp_conn_rr()
{
char *message;
struct sockaddr_in myaddr_in,
peeraddr_in;
SOCKET s_listen,s_data;
int addrlen;
char *recv_message_ptr;
char *send_message_ptr;
char *temp_message_ptr;
int trans_received;
int trans_remaining;
int bytes_sent;
int request_bytes_recvd;
int request_bytes_remaining;
int timed_out = 0;
float elapsed_time;
struct xti_tcp_conn_rr_request_struct *xti_tcp_conn_rr_request;
struct xti_tcp_conn_rr_response_struct *xti_tcp_conn_rr_response;
struct xti_tcp_conn_rr_results_struct *xti_tcp_conn_rr_results;
xti_tcp_conn_rr_request =
(struct xti_tcp_conn_rr_request_struct *)netperf_request.content.test_specific_data;
xti_tcp_conn_rr_response =
(struct xti_tcp_conn_rr_response_struct *)netperf_response.content.test_specific_data;
xti_tcp_conn_rr_results =
(struct xti_tcp_conn_rr_results_struct *)netperf_response.content.test_specific_data;
if (debug) {
fprintf(where,"netserver: recv_xti_tcp_conn_rr: entered...\n");
fflush(where);
}
/* We want to set-up the listen socket with all the desired */
/* parameters and then let the initiator know that all is ready. If */
/* socket size defaults are to be used, then the initiator will have */
/* sent us 0's. If the socket sizes cannot be changed, then we will */
/* send-back what they are. If that information cannot be determined, */
/* then we send-back -1's for the sizes. If things go wrong for any */
/* reason, we will drop back ten yards and punt. */
/* If anything goes wrong, we want the remote to know about it. It */
/* would be best if the error that the remote reports to the user is */
/* the actual error we encountered, rather than some bogus unexpected */
/* response type message. */
if (debug) {
fprintf(where,"recv_xti_tcp_conn_rr: setting the response type...\n");
fflush(where);
}
netperf_response.content.response_type = XTI_TCP_CRR_RESPONSE;
if (debug) {
fprintf(where,"recv_xti_tcp_conn_rr: the response type is set...\n");
fflush(where);
}
/* set-up the data buffer with the requested alignment and offset */
message = (char *)malloc(DATABUFFERLEN);
if (message == NULL) {
printf("malloc(%d) failed!\n", DATABUFFERLEN);
exit(1);
}
/* We now alter the message_ptr variables to be at the desired */
/* alignments with the desired offsets. */
if (debug) {
fprintf(where,
"recv_xti_tcp_conn_rr: requested recv alignment of %d offset %d\n",
xti_tcp_conn_rr_request->recv_alignment,
xti_tcp_conn_rr_request->recv_offset);
fprintf(where,
"recv_xti_tcp_conn_rr: requested send alignment of %d offset %d\n",
xti_tcp_conn_rr_request->send_alignment,
xti_tcp_conn_rr_request->send_offset);
fflush(where);
}
recv_message_ptr = ALIGN_BUFFER(message, xti_tcp_conn_rr_request->recv_alignment, xti_tcp_conn_rr_request->recv_offset);
send_message_ptr = ALIGN_BUFFER(message, xti_tcp_conn_rr_request->send_alignment, xti_tcp_conn_rr_request->send_offset);
if (debug) {
fprintf(where,"recv_xti_tcp_conn_rr: receive alignment and offset set...\n");
fflush(where);
}
/* Let's clear-out our sockaddr for the sake of cleanlines. Then we */
/* can put in OUR values !-) At some point, we may want to nail this */
/* socket to a particular network-level address, but for now, */
/* INADDR_ANY should be just fine. */
bzero((char *)&myaddr_in,
sizeof(myaddr_in));
myaddr_in.sin_family = AF_INET;
myaddr_in.sin_addr.s_addr = INADDR_ANY;
myaddr_in.sin_port = 0;
/* Grab a socket to listen on, and then listen on it. */
if (debug) {
fprintf(where,"recv_xti_tcp_conn_rr: grabbing a socket...\n");
fflush(where);
}
/* create_xti_endpoint expects to find some things in the global */
/* variables, so set the globals based on the values in the request. */
/* once the socket has been created, we will set the response values */
/* based on the updated value of those globals. raj 7/94 */
lss_size = xti_tcp_conn_rr_request->send_buf_size;
lsr_size = xti_tcp_conn_rr_request->recv_buf_size;
loc_nodelay = xti_tcp_conn_rr_request->no_delay;
loc_rcvavoid = xti_tcp_conn_rr_request->so_rcvavoid;
loc_sndavoid = xti_tcp_conn_rr_request->so_sndavoid;
s_listen = create_xti_endpoint(loc_xti_device);
if (s_listen == INVALID_SOCKET) {
netperf_response.content.serv_errno = errno;
send_response();
if (debug) {
fprintf(where,"could not create data socket\n");
fflush(where);
}
exit(1);
}
/* Let's get an address assigned to this socket so we can tell the */
/* initiator how to reach the data socket. There may be a desire to */
/* nail this socket to a specific IP address in a multi-homed, */
/* multi-connection situation, but for now, we'll ignore the issue */
/* and concentrate on single connection testing. */
if (bind(s_listen,
(struct sockaddr *)&myaddr_in,
sizeof(myaddr_in)) == SOCKET_ERROR) {
netperf_response.content.serv_errno = errno;
close(s_listen);
send_response();
if (debug) {
fprintf(where,"could not bind\n");
fflush(where);
}
exit(1);
}
/* Now, let's set-up the socket to listen for connections */
if (listen(s_listen, 5) == SOCKET_ERROR) {
netperf_response.content.serv_errno = errno;
close(s_listen);
send_response();
if (debug) {
fprintf(where,"could not listen\n");
fflush(where);
}
exit(1);
}
/* now get the port number assigned by the system */
addrlen = sizeof(myaddr_in);
if (getsockname(s_listen,
(struct sockaddr *)&myaddr_in,
&addrlen) == SOCKET_ERROR){
netperf_response.content.serv_errno = errno;
close(s_listen);
send_response();
if (debug) {
fprintf(where,"could not geetsockname\n");
fflush(where);
}
exit(1);
}
/* Now myaddr_in contains the port and the internet address this is */
/* returned to the sender also implicitly telling the sender that the */
/* socket buffer sizing has been done. */
xti_tcp_conn_rr_response->data_port_number = (int) ntohs(myaddr_in.sin_port);
if (debug) {
fprintf(where,"telling the remote to call me at %d\n",
xti_tcp_conn_rr_response->data_port_number);
fflush(where);
}
netperf_response.content.serv_errno = 0;
/* But wait, there's more. If the initiator wanted cpu measurements, */
/* then we must call the calibrate routine, which will return the max */
/* rate back to the initiator. If the CPU was not to be measured, or */
/* something went wrong with the calibration, we will return a 0.0 to */
/* the initiator. */
xti_tcp_conn_rr_response->cpu_rate = 0.0; /* assume no cpu */
if (xti_tcp_conn_rr_request->measure_cpu) {
xti_tcp_conn_rr_response->measure_cpu = 1;
xti_tcp_conn_rr_response->cpu_rate =
calibrate_local_cpu(xti_tcp_conn_rr_request->cpu_rate);
}
/* before we send the response back to the initiator, pull some of */
/* the socket parms from the globals */
xti_tcp_conn_rr_response->send_buf_size = lss_size;
xti_tcp_conn_rr_response->recv_buf_size = lsr_size;
xti_tcp_conn_rr_response->no_delay = loc_nodelay;
xti_tcp_conn_rr_response->so_rcvavoid = loc_rcvavoid;
xti_tcp_conn_rr_response->so_sndavoid = loc_sndavoid;
send_response();
addrlen = sizeof(peeraddr_in);
/* Now it's time to start receiving data on the connection. We will */
/* first grab the apropriate counters and then start grabbing. */
cpu_start(xti_tcp_conn_rr_request->measure_cpu);
/* The loop will exit when the sender does a shutdown, which will */
/* return a length of zero */
if (xti_tcp_conn_rr_request->test_length > 0) {
times_up = 0;
trans_remaining = 0;
start_timer(xti_tcp_conn_rr_request->test_length + PAD_TIME);
}
else {
times_up = 1;
trans_remaining = xti_tcp_conn_rr_request->test_length * -1;
}
trans_received = 0;
while ((!times_up) || (trans_remaining > 0)) {
/* accept a connection from the remote */
if ((s_data=accept(s_listen,
(struct sockaddr *)&peeraddr_in,
&addrlen)) == INVALID_SOCKET) {
if (errno == EINTR) {
/* the timer popped */
timed_out = 1;
break;
}
fprintf(where,"recv_xti_tcp_conn_rr: accept: errno = %d\n",errno);
fflush(where);
close(s_listen);
exit(1);
}
if (debug) {
fprintf(where,"recv_xti_tcp_conn_rr: accepted data connection.\n");
fflush(where);
}
temp_message_ptr = recv_message_ptr;
request_bytes_remaining = xti_tcp_conn_rr_request->request_size;
/* receive the request from the other side */
while(request_bytes_remaining > 0) {
if((request_bytes_recvd=recv(s_data,
temp_message_ptr,
request_bytes_remaining,
0)) == SOCKET_ERROR) {
if (errno == EINTR) {
/* the timer popped */
timed_out = 1;
break;
}
netperf_response.content.serv_errno = errno;
send_response();
exit(1);
}
else {
request_bytes_remaining -= request_bytes_recvd;
temp_message_ptr += request_bytes_recvd;
}
}
if (timed_out) {
/* we hit the end of the test based on time - lets */
/* bail out of here now... */
fprintf(where,"yo5\n");
fflush(where);
break;
}
/* Now, send the response to the remote */
if((bytes_sent=send(s_data,
send_message_ptr,
xti_tcp_conn_rr_request->response_size,
0)) == SOCKET_ERROR) {
if (errno == EINTR) {
/* the test timer has popped */
timed_out = 1;
fprintf(where,"yo6\n");
fflush(where);
break;
}
netperf_response.content.serv_errno = 99;
send_response();
exit(1);
}
trans_received++;
if (trans_remaining) {
trans_remaining--;
}
if (debug) {
fprintf(where,
"recv_xti_tcp_conn_rr: Transaction %d complete\n",
trans_received);
fflush(where);
}
/* close the connection */
close(s_data);
}
/* The loop now exits due to timeout or transaction count being */
/* reached */
cpu_stop(xti_tcp_conn_rr_request->measure_cpu,&elapsed_time);
if (timed_out) {
/* we ended the test by time, which was at least 2 seconds */
/* longer than we wanted to run. so, we want to subtract */
/* PAD_TIME from the elapsed_time. */
elapsed_time -= PAD_TIME;
}
/* send the results to the sender */
if (debug) {
fprintf(where,
"recv_xti_tcp_conn_rr: got %d transactions\n",
trans_received);
fflush(where);
}
xti_tcp_conn_rr_results->bytes_received = (trans_received *
(xti_tcp_conn_rr_request->request_size +
xti_tcp_conn_rr_request->response_size));
xti_tcp_conn_rr_results->trans_received = trans_received;
xti_tcp_conn_rr_results->elapsed_time = elapsed_time;
if (xti_tcp_conn_rr_request->measure_cpu) {
xti_tcp_conn_rr_results->cpu_util = calc_cpu_util(elapsed_time);
}
if (debug) {
fprintf(where,
"recv_xti_tcp_conn_rr: test complete, sending results.\n");
fflush(where);
}
send_response();
}
void
print_xti_usage()
{
fwrite(xti_usage, sizeof(char), strlen(xti_usage), stdout);
exit(1);
}
void
scan_xti_args(int argc, char *argv[])
{
#define XTI_ARGS "Dhm:M:r:s:S:Vw:W:X:"
extern int optind, opterrs; /* index of first unused arg */
extern char *optarg; /* pointer to option string */
int c;
char
arg1[BUFSIZ], /* argument holders */
arg2[BUFSIZ];
if (no_control) {
fprintf(where,
"The XTI tests do not know how to run with no control connection\n");
exit(-1);
}
/* Go through all the command line arguments and break them */
/* out. For those options that take two parms, specifying only */
/* the first will set both to that value. Specifying only the */
/* second will leave the first untouched. To change only the */
/* first, use the form "first," (see the routine break_args.. */
while ((c= getopt(argc, argv, XTI_ARGS)) != EOF) {
switch (c) {
case '?':
case 'h':
print_xti_usage();
exit(1);
case 'D':
/* set the TCP nodelay flag */
loc_nodelay = 1;
rem_nodelay = 1;
break;
case 's':
/* set local socket sizes */
break_args(optarg,arg1,arg2);
if (arg1[0])
lss_size = convert(arg1);
if (arg2[0])
lsr_size = convert(arg2);
break;
case 'S':
/* set remote socket sizes */
break_args(optarg,arg1,arg2);
if (arg1[0])
rss_size = convert(arg1);
if (arg2[0])
rsr_size = convert(arg2);
break;
case 'r':
/* set the request/response sizes */
break_args(optarg,arg1,arg2);
if (arg1[0])
req_size = convert(arg1);
if (arg2[0])
rsp_size = convert(arg2);
break;
case 'm':
/* set the send size */
send_size = convert(optarg);
break;
case 'M':
/* set the recv size */
recv_size = convert(optarg);
break;
case 'W':
/* set the "width" of the user space data */
/* buffer. This will be the number of */
/* send_size buffers malloc'd in the */
/* *_STREAM test. It may be enhanced to set */
/* both send and receive "widths" but for now */
/* it is just the sending *_STREAM. */
send_width = convert(optarg);
break;
case 'V' :
/* we want to do copy avoidance and will set */
/* it for everything, everywhere, if we really */
/* can. of course, we don't know anything */
/* about the remote... */
#ifdef SO_SND_COPYAVOID
loc_sndavoid = 1;
#else
loc_sndavoid = 0;
printf("Local send copy avoidance not available.\n");
#endif
#ifdef SO_RCV_COPYAVOID
loc_rcvavoid = 1;
#else
loc_rcvavoid = 0;
printf("Local recv copy avoidance not available.\n");
#endif
rem_sndavoid = 1;
rem_rcvavoid = 1;
break;
case 'X':
/* set the xti device file name(s) */
break_args(optarg,arg1,arg2);
if (arg1[0])
strcpy(loc_xti_device,arg1);
if (arg2[0])
strcpy(rem_xti_device,arg2);
break;
};
}
}
#endif /* WANT_XTI */