blob: b373f839eef7f03c48cf73b6c0ec02f97d5a2eaf [file] [log] [blame]
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cv.h"
/****************************************************************************************/
/* lightweight convolution with 3x3 kernel */
void icvSepConvSmall3_32f( float* src, int src_step, float* dst, int dst_step,
CvSize src_size, const float* kx, const float* ky, float* buffer )
{
int dst_width, buffer_step = 0;
int x, y;
assert( src && dst && src_size.width > 2 && src_size.height > 2 &&
(src_step & 3) == 0 && (dst_step & 3) == 0 &&
(kx || ky) && (buffer || !kx || !ky));
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
dst_width = src_size.width - 2;
if( !kx )
{
/* set vars, so that vertical convolution
will write results into destination ROI and
horizontal convolution won't run */
src_size.width = dst_width;
buffer_step = dst_step;
buffer = dst;
dst_width = 0;
}
assert( src_step >= src_size.width && dst_step >= dst_width );
src_size.height -= 3;
if( !ky )
{
/* set vars, so that vertical convolution won't run and
horizontal convolution will write results into destination ROI */
src_size.height += 3;
buffer_step = src_step;
buffer = src;
src_size.width = 0;
}
for( y = 0; y <= src_size.height; y++, src += src_step,
dst += dst_step,
buffer += buffer_step )
{
float* src2 = src + src_step;
float* src3 = src + src_step*2;
for( x = 0; x < src_size.width; x++ )
{
buffer[x] = (float)(ky[0]*src[x] + ky[1]*src2[x] + ky[2]*src3[x]);
}
for( x = 0; x < dst_width; x++ )
{
dst[x] = (float)(kx[0]*buffer[x] + kx[1]*buffer[x+1] + kx[2]*buffer[x+2]);
}
}
}
/****************************************************************************************\
Sobel & Scharr Derivative Filters
\****************************************************************************************/
/////////////////////////////// Old IPP derivative filters ///////////////////////////////
// still used in corner detectors (see cvcorner.cpp)
icvFilterSobelVert_8u16s_C1R_t icvFilterSobelVert_8u16s_C1R_p = 0;
icvFilterSobelHoriz_8u16s_C1R_t icvFilterSobelHoriz_8u16s_C1R_p = 0;
icvFilterSobelVertSecond_8u16s_C1R_t icvFilterSobelVertSecond_8u16s_C1R_p = 0;
icvFilterSobelHorizSecond_8u16s_C1R_t icvFilterSobelHorizSecond_8u16s_C1R_p = 0;
icvFilterSobelCross_8u16s_C1R_t icvFilterSobelCross_8u16s_C1R_p = 0;
icvFilterSobelVert_32f_C1R_t icvFilterSobelVert_32f_C1R_p = 0;
icvFilterSobelHoriz_32f_C1R_t icvFilterSobelHoriz_32f_C1R_p = 0;
icvFilterSobelVertSecond_32f_C1R_t icvFilterSobelVertSecond_32f_C1R_p = 0;
icvFilterSobelHorizSecond_32f_C1R_t icvFilterSobelHorizSecond_32f_C1R_p = 0;
icvFilterSobelCross_32f_C1R_t icvFilterSobelCross_32f_C1R_p = 0;
icvFilterScharrVert_8u16s_C1R_t icvFilterScharrVert_8u16s_C1R_p = 0;
icvFilterScharrHoriz_8u16s_C1R_t icvFilterScharrHoriz_8u16s_C1R_p = 0;
icvFilterScharrVert_32f_C1R_t icvFilterScharrVert_32f_C1R_p = 0;
icvFilterScharrHoriz_32f_C1R_t icvFilterScharrHoriz_32f_C1R_p = 0;
///////////////////////////////// New IPP derivative filters /////////////////////////////
#define IPCV_FILTER_PTRS( name ) \
icvFilter##name##GetBufSize_8u16s_C1R_t \
icvFilter##name##GetBufSize_8u16s_C1R_p = 0; \
icvFilter##name##Border_8u16s_C1R_t \
icvFilter##name##Border_8u16s_C1R_p = 0; \
icvFilter##name##GetBufSize_32f_C1R_t \
icvFilter##name##GetBufSize_32f_C1R_p = 0; \
icvFilter##name##Border_32f_C1R_t \
icvFilter##name##Border_32f_C1R_p = 0;
IPCV_FILTER_PTRS( ScharrHoriz )
IPCV_FILTER_PTRS( ScharrVert )
IPCV_FILTER_PTRS( SobelHoriz )
IPCV_FILTER_PTRS( SobelNegVert )
IPCV_FILTER_PTRS( SobelHorizSecond )
IPCV_FILTER_PTRS( SobelVertSecond )
IPCV_FILTER_PTRS( SobelCross )
IPCV_FILTER_PTRS( Laplacian )
typedef CvStatus (CV_STDCALL * CvDeriv3x3GetBufSizeIPPFunc)
( CvSize roi, int* bufsize );
typedef CvStatus (CV_STDCALL * CvDerivGetBufSizeIPPFunc)
( CvSize roi, int masksize, int* bufsize );
typedef CvStatus (CV_STDCALL * CvDeriv3x3IPPFunc_8u )
( const void* src, int srcstep, void* dst, int dststep,
CvSize size, int bordertype, uchar bordervalue, void* buffer );
typedef CvStatus (CV_STDCALL * CvDeriv3x3IPPFunc_32f )
( const void* src, int srcstep, void* dst, int dststep,
CvSize size, int bordertype, float bordervalue, void* buffer );
typedef CvStatus (CV_STDCALL * CvDerivIPPFunc_8u )
( const void* src, int srcstep, void* dst, int dststep,
CvSize size, int masksize, int bordertype,
uchar bordervalue, void* buffer );
typedef CvStatus (CV_STDCALL * CvDerivIPPFunc_32f )
( const void* src, int srcstep, void* dst, int dststep,
CvSize size, int masksize, int bordertype,
float bordervalue, void* buffer );
//////////////////////////////////////////////////////////////////////////////////////////
CV_IMPL void
cvSobel( const void* srcarr, void* dstarr, int dx, int dy, int aperture_size )
{
CvSepFilter filter;
void* buffer = 0;
int local_alloc = 0;
CV_FUNCNAME( "cvSobel" );
__BEGIN__;
int origin = 0;
int src_type, dst_type;
CvMat srcstub, *src = (CvMat*)srcarr;
CvMat dststub, *dst = (CvMat*)dstarr;
if( !CV_IS_MAT(src) )
CV_CALL( src = cvGetMat( src, &srcstub ));
if( !CV_IS_MAT(dst) )
CV_CALL( dst = cvGetMat( dst, &dststub ));
if( CV_IS_IMAGE_HDR( srcarr ))
origin = ((IplImage*)srcarr)->origin;
src_type = CV_MAT_TYPE( src->type );
dst_type = CV_MAT_TYPE( dst->type );
if( !CV_ARE_SIZES_EQ( src, dst ))
CV_ERROR( CV_StsBadArg, "src and dst have different sizes" );
if( ((aperture_size == CV_SCHARR || aperture_size == 3 || aperture_size == 5) &&
dx <= 2 && dy <= 2 && dx + dy <= 2 && icvFilterSobelNegVertBorder_8u16s_C1R_p) &&
(src_type == CV_8UC1 && dst_type == CV_16SC1/* ||
src_type == CV_32FC1 && dst_type == CV_32FC1*/) )
{
CvDerivGetBufSizeIPPFunc ipp_sobel_getbufsize_func = 0;
CvDerivIPPFunc_8u ipp_sobel_func_8u = 0;
CvDerivIPPFunc_32f ipp_sobel_func_32f = 0;
CvDeriv3x3GetBufSizeIPPFunc ipp_scharr_getbufsize_func = 0;
CvDeriv3x3IPPFunc_8u ipp_scharr_func_8u = 0;
CvDeriv3x3IPPFunc_32f ipp_scharr_func_32f = 0;
if( aperture_size == CV_SCHARR )
{
if( dx == 1 && dy == 0 )
{
if( src_type == CV_8U )
ipp_scharr_func_8u = icvFilterScharrVertBorder_8u16s_C1R_p,
ipp_scharr_getbufsize_func = icvFilterScharrVertGetBufSize_8u16s_C1R_p;
else
ipp_scharr_func_32f = icvFilterScharrVertBorder_32f_C1R_p,
ipp_scharr_getbufsize_func = icvFilterScharrVertGetBufSize_32f_C1R_p;
}
else if( dx == 0 && dy == 1 )
{
if( src_type == CV_8U )
ipp_scharr_func_8u = icvFilterScharrHorizBorder_8u16s_C1R_p,
ipp_scharr_getbufsize_func = icvFilterScharrHorizGetBufSize_8u16s_C1R_p;
else
ipp_scharr_func_32f = icvFilterScharrHorizBorder_32f_C1R_p,
ipp_scharr_getbufsize_func = icvFilterScharrHorizGetBufSize_32f_C1R_p;
}
else
CV_ERROR( CV_StsBadArg, "Scharr filter can only be used to compute 1st image derivatives" );
}
else
{
if( dx == 1 && dy == 0 )
{
if( src_type == CV_8U )
ipp_sobel_func_8u = icvFilterSobelNegVertBorder_8u16s_C1R_p,
ipp_sobel_getbufsize_func = icvFilterSobelNegVertGetBufSize_8u16s_C1R_p;
else
ipp_sobel_func_32f = icvFilterSobelNegVertBorder_32f_C1R_p,
ipp_sobel_getbufsize_func = icvFilterSobelNegVertGetBufSize_32f_C1R_p;
}
else if( dx == 0 && dy == 1 )
{
if( src_type == CV_8U )
ipp_sobel_func_8u = icvFilterSobelHorizBorder_8u16s_C1R_p,
ipp_sobel_getbufsize_func = icvFilterSobelHorizGetBufSize_8u16s_C1R_p;
else
ipp_sobel_func_32f = icvFilterSobelHorizBorder_32f_C1R_p,
ipp_sobel_getbufsize_func = icvFilterSobelHorizGetBufSize_32f_C1R_p;
}
else if( dx == 2 && dy == 0 )
{
if( src_type == CV_8U )
ipp_sobel_func_8u = icvFilterSobelVertSecondBorder_8u16s_C1R_p,
ipp_sobel_getbufsize_func = icvFilterSobelVertSecondGetBufSize_8u16s_C1R_p;
else
ipp_sobel_func_32f = icvFilterSobelVertSecondBorder_32f_C1R_p,
ipp_sobel_getbufsize_func = icvFilterSobelVertSecondGetBufSize_32f_C1R_p;
}
else if( dx == 0 && dy == 2 )
{
if( src_type == CV_8U )
ipp_sobel_func_8u = icvFilterSobelHorizSecondBorder_8u16s_C1R_p,
ipp_sobel_getbufsize_func = icvFilterSobelHorizSecondGetBufSize_8u16s_C1R_p;
else
ipp_sobel_func_32f = icvFilterSobelHorizSecondBorder_32f_C1R_p,
ipp_sobel_getbufsize_func = icvFilterSobelHorizSecondGetBufSize_32f_C1R_p;
}
else if( dx == 1 && dy == 1 )
{
if( src_type == CV_8U )
ipp_sobel_func_8u = icvFilterSobelCrossBorder_8u16s_C1R_p,
ipp_sobel_getbufsize_func = icvFilterSobelCrossGetBufSize_8u16s_C1R_p;
else
ipp_sobel_func_32f = icvFilterSobelCrossBorder_32f_C1R_p,
ipp_sobel_getbufsize_func = icvFilterSobelCrossGetBufSize_32f_C1R_p;
}
}
if( ((ipp_sobel_func_8u || ipp_sobel_func_32f) && ipp_sobel_getbufsize_func) ||
((ipp_scharr_func_8u || ipp_scharr_func_32f) && ipp_scharr_getbufsize_func) )
{
int bufsize = 0, masksize = aperture_size == 3 ? 33 : 55;
CvSize size = cvGetMatSize( src );
uchar* src_ptr = src->data.ptr;
uchar* dst_ptr = dst->data.ptr;
int src_step = src->step ? src->step : CV_STUB_STEP;
int dst_step = dst->step ? dst->step : CV_STUB_STEP;
const int bordertype = 1; // replication border
CvStatus status;
status = ipp_sobel_getbufsize_func ?
ipp_sobel_getbufsize_func( size, masksize, &bufsize ) :
ipp_scharr_getbufsize_func( size, &bufsize );
if( status >= 0 )
{
if( bufsize <= CV_MAX_LOCAL_SIZE )
{
buffer = cvStackAlloc( bufsize );
local_alloc = 1;
}
else
CV_CALL( buffer = cvAlloc( bufsize ));
status =
ipp_sobel_func_8u ? ipp_sobel_func_8u( src_ptr, src_step, dst_ptr, dst_step,
size, masksize, bordertype, 0, buffer ) :
ipp_sobel_func_32f ? ipp_sobel_func_32f( src_ptr, src_step, dst_ptr, dst_step,
size, masksize, bordertype, 0, buffer ) :
ipp_scharr_func_8u ? ipp_scharr_func_8u( src_ptr, src_step, dst_ptr, dst_step,
size, bordertype, 0, buffer ) :
ipp_scharr_func_32f ? ipp_scharr_func_32f( src_ptr, src_step, dst_ptr, dst_step,
size, bordertype, 0, buffer ) :
CV_NOTDEFINED_ERR;
}
if( status >= 0 &&
((dx == 0 && dy == 1 && origin) || (dx == 1 && dy == 1 && !origin))) // negate the output
cvSubRS( dst, cvScalarAll(0), dst );
if( status >= 0 )
EXIT;
}
}
CV_CALL( filter.init_deriv( src->cols, src_type, dst_type, dx, dy,
aperture_size, origin ? CvSepFilter::FLIP_KERNEL : 0));
CV_CALL( filter.process( src, dst ));
__END__;
if( buffer && !local_alloc )
cvFree( &buffer );
}
/****************************************************************************************\
Laplacian Filter
\****************************************************************************************/
static void icvLaplaceRow_8u32s( const uchar* src, int* dst, void* params );
static void icvLaplaceRow_8u32f( const uchar* src, float* dst, void* params );
static void icvLaplaceRow_32f( const float* src, float* dst, void* params );
static void icvLaplaceCol_32s16s( const int** src, short* dst, int dst_step,
int count, void* params );
static void icvLaplaceCol_32f( const float** src, float* dst, int dst_step,
int count, void* params );
CvLaplaceFilter::CvLaplaceFilter()
{
normalized = basic_laplacian = false;
}
CvLaplaceFilter::CvLaplaceFilter( int _max_width, int _src_type, int _dst_type, bool _normalized,
int _ksize, int _border_mode, CvScalar _border_value )
{
normalized = basic_laplacian = false;
init( _max_width, _src_type, _dst_type, _normalized, _ksize, _border_mode, _border_value );
}
CvLaplaceFilter::~CvLaplaceFilter()
{
clear();
}
void CvLaplaceFilter::get_work_params()
{
int min_rows = max_ky*2 + 3, rows = MAX(min_rows,10), row_sz;
int width = max_width, trow_sz = 0;
int dst_depth = CV_MAT_DEPTH(dst_type);
int work_depth = dst_depth < CV_32F ? CV_32S : CV_32F;
work_type = CV_MAKETYPE( work_depth, CV_MAT_CN(dst_type)*2 );
trow_sz = cvAlign( (max_width + ksize.width - 1)*CV_ELEM_SIZE(src_type), ALIGN );
row_sz = cvAlign( width*CV_ELEM_SIZE(work_type), ALIGN );
buf_size = rows*row_sz;
buf_size = MIN( buf_size, 1 << 16 );
buf_size = MAX( buf_size, min_rows*row_sz );
max_rows = (buf_size/row_sz)*3 + max_ky*2 + 8;
buf_size += trow_sz;
}
void CvLaplaceFilter::init( int _max_width, int _src_type, int _dst_type, bool _normalized,
int _ksize0, int _border_mode, CvScalar _border_value )
{
CvMat *kx = 0, *ky = 0;
CV_FUNCNAME( "CvLaplaceFilter::init" );
__BEGIN__;
int src_depth = CV_MAT_DEPTH(_src_type), dst_depth = CV_MAT_DEPTH(_dst_type);
int _ksize = MAX( _ksize0, 3 );
normalized = _normalized;
basic_laplacian = _ksize0 == 1;
if( ((src_depth != CV_8U || (dst_depth != CV_16S && dst_depth != CV_32F)) &&
(src_depth != CV_32F || dst_depth != CV_32F)) ||
CV_MAT_CN(_src_type) != CV_MAT_CN(_dst_type) )
CV_ERROR( CV_StsUnmatchedFormats,
"Laplacian can either transform 8u->16s, or 8u->32f, or 32f->32f.\n"
"The number of channels must be the same." );
if( _ksize < 1 || _ksize > CV_MAX_SOBEL_KSIZE || _ksize % 2 == 0 )
CV_ERROR( CV_StsOutOfRange, "kernel size must be within 1..7 and odd" );
CV_CALL( kx = cvCreateMat( 1, _ksize, CV_32F ));
CV_CALL( ky = cvCreateMat( 1, _ksize, CV_32F ));
CvSepFilter::init_sobel_kernel( kx, ky, 2, 0, 0 );
CvSepFilter::init( _max_width, _src_type, _dst_type, kx, ky,
cvPoint(-1,-1), _border_mode, _border_value );
x_func = 0;
y_func = 0;
if( src_depth == CV_8U )
{
if( dst_depth == CV_16S )
{
x_func = (CvRowFilterFunc)icvLaplaceRow_8u32s;
y_func = (CvColumnFilterFunc)icvLaplaceCol_32s16s;
}
else if( dst_depth == CV_32F )
{
x_func = (CvRowFilterFunc)icvLaplaceRow_8u32f;
y_func = (CvColumnFilterFunc)icvLaplaceCol_32f;
}
}
else if( src_depth == CV_32F )
{
if( dst_depth == CV_32F )
{
x_func = (CvRowFilterFunc)icvLaplaceRow_32f;
y_func = (CvColumnFilterFunc)icvLaplaceCol_32f;
}
}
if( !x_func || !y_func )
CV_ERROR( CV_StsUnsupportedFormat, "" );
__END__;
cvReleaseMat( &kx );
cvReleaseMat( &ky );
}
void CvLaplaceFilter::init( int _max_width, int _src_type, int _dst_type,
bool _is_separable, CvSize _ksize,
CvPoint _anchor, int _border_mode,
CvScalar _border_value )
{
CvSepFilter::init( _max_width, _src_type, _dst_type, _is_separable,
_ksize, _anchor, _border_mode, _border_value );
}
void CvLaplaceFilter::init( int _max_width, int _src_type, int _dst_type,
const CvMat* _kx, const CvMat* _ky,
CvPoint _anchor, int _border_mode,
CvScalar _border_value )
{
CvSepFilter::init( _max_width, _src_type, _dst_type, _kx, _ky,
_anchor, _border_mode, _border_value );
}
#define ICV_LAPLACE_ROW( flavor, srctype, dsttype, load_macro ) \
static void \
icvLaplaceRow_##flavor( const srctype* src, dsttype* dst, void* params )\
{ \
const CvLaplaceFilter* state = (const CvLaplaceFilter*)params; \
const CvMat* _kx = state->get_x_kernel(); \
const CvMat* _ky = state->get_y_kernel(); \
const dsttype* kx = (dsttype*)_kx->data.ptr; \
const dsttype* ky = (dsttype*)_ky->data.ptr; \
int ksize = _kx->cols + _kx->rows - 1; \
int i = 0, j, k, width = state->get_width(); \
int cn = CV_MAT_CN(state->get_src_type()); \
int ksize2 = ksize/2, ksize2n = ksize2*cn; \
const srctype* s = src + ksize2n; \
bool basic_laplacian = state->is_basic_laplacian(); \
\
kx += ksize2; \
ky += ksize2; \
width *= cn; \
\
if( basic_laplacian ) \
for( i = 0; i < width; i++ ) \
{ \
dsttype s0 = load_macro(s[i]); \
dsttype s1 = (dsttype)(s[i-cn] - s0*2 + s[i+cn]); \
dst[i] = s0; dst[i+width] = s1; \
} \
else if( ksize == 3 ) \
for( i = 0; i < width; i++ ) \
{ \
dsttype s0 = (dsttype)(s[i-cn] + s[i]*2 + s[i+cn]); \
dsttype s1 = (dsttype)(s[i-cn] - s[i]*2 + s[i+cn]); \
dst[i] = s0; dst[i+width] = s1; \
} \
else if( ksize == 5 ) \
for( i = 0; i < width; i++ ) \
{ \
dsttype s0 = (dsttype)(s[i-2*cn]+(s[i-cn]+s[i+cn])*4+s[i]*6+s[i+2*cn]);\
dsttype s1 = (dsttype)(s[i-2*cn]-s[i]*2+s[i+2*cn]); \
dst[i] = s0; dst[i+width] = s1; \
} \
else \
for( i = 0; i < width; i++, s++ ) \
{ \
dsttype s0 = ky[0]*load_macro(s[0]), s1 = kx[0]*load_macro(s[0]);\
for( k = 1, j = cn; k <= ksize2; k++, j += cn ) \
{ \
dsttype t = load_macro(s[j] + s[-j]); \
s0 += ky[k]*t; s1 += kx[k]*t; \
} \
dst[i] = s0; dst[i+width] = s1; \
} \
}
ICV_LAPLACE_ROW( 8u32s, uchar, int, CV_NOP )
ICV_LAPLACE_ROW( 8u32f, uchar, float, CV_8TO32F )
ICV_LAPLACE_ROW( 32f, float, float, CV_NOP )
static void
icvLaplaceCol_32s16s( const int** src, short* dst,
int dst_step, int count, void* params )
{
const CvLaplaceFilter* state = (const CvLaplaceFilter*)params;
const CvMat* _kx = state->get_x_kernel();
const CvMat* _ky = state->get_y_kernel();
const int* kx = (const int*)_kx->data.ptr;
const int* ky = (const int*)_ky->data.ptr;
int ksize = _kx->cols + _kx->rows - 1, ksize2 = ksize/2;
int i = 0, k, width = state->get_width();
int cn = CV_MAT_CN(state->get_src_type());
bool basic_laplacian = state->is_basic_laplacian();
bool normalized = state->is_normalized();
int shift = ksize - 1, delta = (1 << shift) >> 1;
width *= cn;
src += ksize2;
kx += ksize2;
ky += ksize2;
dst_step /= sizeof(dst[0]);
if( basic_laplacian || !normalized )
{
normalized = false;
shift = delta = 0;
}
for( ; count--; dst += dst_step, src++ )
{
if( ksize == 3 )
{
const int *src0 = src[-1], *src1 = src[0], *src2 = src[1];
if( basic_laplacian )
{
for( i = 0; i <= width - 2; i += 2 )
{
int s0 = src0[i] - src1[i]*2 + src2[i] + src1[i+width];
int s1 = src0[i+1] - src1[i+1]*2 + src2[i+1] + src1[i+width+1];
dst[i] = (short)s0; dst[i+1] = (short)s1;
}
for( ; i < width; i++ )
dst[i] = (short)(src0[i] - src1[i]*2 + src2[i] + src1[i+width]);
}
else if( !normalized )
for( i = 0; i <= width - 2; i += 2 )
{
int s0 = src0[i] - src1[i]*2 + src2[i] +
src0[i+width] + src1[i+width]*2 + src2[i+width];
int s1 = src0[i+1] - src1[i+1]*2 + src2[i+1] +
src0[i+width+1] + src1[i+width+1]*2 + src2[i+width+1];
dst[i] = (short)s0; dst[i+1] = (short)s1;
}
else
for( i = 0; i <= width - 2; i += 2 )
{
int s0 = CV_DESCALE(src0[i] - src1[i]*2 + src2[i] +
src0[i+width] + src1[i+width]*2 + src2[i+width], 2);
int s1 = CV_DESCALE(src0[i+1] - src1[i+1]*2 + src2[i+1] +
src0[i+width+1] + src1[i+width+1]*2 + src2[i+width+1],2);
dst[i] = (short)s0; dst[i+1] = (short)s1;
}
}
else if( ksize == 5 )
{
const int *src0 = src[-2], *src1 = src[-1], *src2 = src[0], *src3 = src[1], *src4 = src[2];
if( !normalized )
for( i = 0; i <= width - 2; i += 2 )
{
int s0 = src0[i] - src2[i]*2 + src4[i] + src0[i+width] + src4[i+width] +
(src1[i+width] + src3[i+width])*4 + src2[i+width]*6;
int s1 = src0[i+1] - src2[i+1]*2 + src4[i+1] + src0[i+width+1] +
src4[i+width+1] + (src1[i+width+1] + src3[i+width+1])*4 +
src2[i+width+1]*6;
dst[i] = (short)s0; dst[i+1] = (short)s1;
}
else
for( i = 0; i <= width - 2; i += 2 )
{
int s0 = CV_DESCALE(src0[i] - src2[i]*2 + src4[i] +
src0[i+width] + src4[i+width] +
(src1[i+width] + src3[i+width])*4 + src2[i+width]*6, 4);
int s1 = CV_DESCALE(src0[i+1] - src2[i+1]*2 + src4[i+1] +
src0[i+width+1] + src4[i+width+1] +
(src1[i+width+1] + src3[i+width+1])*4 + src2[i+width+1]*6, 4);
dst[i] = (short)s0; dst[i+1] = (short)s1;
}
}
else
{
if( !normalized )
for( i = 0; i <= width - 2; i += 2 )
{
int s0 = kx[0]*src[0][i] + ky[0]*src[0][i+width];
int s1 = kx[0]*src[0][i+1] + ky[0]*src[0][i+width+1];
for( k = 1; k <= ksize2; k++ )
{
const int* src1 = src[k] + i, *src2 = src[-k] + i;
int fx = kx[k], fy = ky[k];
s0 += fx*(src1[0] + src2[0]) + fy*(src1[width] + src2[width]);
s1 += fx*(src1[1] + src2[1]) + fy*(src1[width+1] + src2[width+1]);
}
dst[i] = CV_CAST_16S(s0); dst[i+1] = CV_CAST_16S(s1);
}
else
for( i = 0; i <= width - 2; i += 2 )
{
int s0 = kx[0]*src[0][i] + ky[0]*src[0][i+width];
int s1 = kx[0]*src[0][i+1] + ky[0]*src[0][i+width+1];
for( k = 1; k <= ksize2; k++ )
{
const int* src1 = src[k] + i, *src2 = src[-k] + i;
int fx = kx[k], fy = ky[k];
s0 += fx*(src1[0] + src2[0]) + fy*(src1[width] + src2[width]);
s1 += fx*(src1[1] + src2[1]) + fy*(src1[width+1] + src2[width+1]);
}
s0 = CV_DESCALE( s0, shift ); s1 = CV_DESCALE( s1, shift );
dst[i] = (short)s0; dst[i+1] = (short)s1;
}
}
for( ; i < width; i++ )
{
int s0 = kx[0]*src[0][i] + ky[0]*src[0][i+width];
for( k = 1; k <= ksize2; k++ )
{
const int* src1 = src[k] + i, *src2 = src[-k] + i;
s0 += kx[k]*(src1[0] + src2[0]) + ky[k]*(src1[width] + src2[width]);
}
s0 = (s0 + delta) >> shift;
dst[i] = CV_CAST_16S(s0);
}
}
}
static void
icvLaplaceCol_32f( const float** src, float* dst,
int dst_step, int count, void* params )
{
const CvLaplaceFilter* state = (const CvLaplaceFilter*)params;
const CvMat* _kx = state->get_x_kernel();
const CvMat* _ky = state->get_y_kernel();
const float* kx = (const float*)_kx->data.ptr;
const float* ky = (const float*)_ky->data.ptr;
int ksize = _kx->cols + _kx->rows - 1, ksize2 = ksize/2;
int i = 0, k, width = state->get_width();
int cn = CV_MAT_CN(state->get_src_type());
bool basic_laplacian = state->is_basic_laplacian();
bool normalized = state->is_normalized();
float scale = 1.f/(1 << (ksize - 1));
width *= cn;
src += ksize2;
kx += ksize2;
ky += ksize2;
dst_step /= sizeof(dst[0]);
if( basic_laplacian || !normalized )
{
normalized = false;
scale = 1.f;
}
for( ; count--; dst += dst_step, src++ )
{
if( ksize == 3 )
{
const float *src0 = src[-1], *src1 = src[0], *src2 = src[1];
if( basic_laplacian )
{
for( i = 0; i <= width - 2; i += 2 )
{
float s0 = src0[i] - src1[i]*2 + src2[i] + src1[i+width];
float s1 = src0[i+1] - src1[i+1]*2 + src2[i+1] + src1[i+width+1];
dst[i] = s0; dst[i+1] = s1;
}
for( ; i < width; i++ )
dst[i] = src0[i] - src1[i]*2 + src2[i] + src1[i+width];
}
else if( !normalized )
for( i = 0; i <= width - 2; i += 2 )
{
float s0 = src0[i] - src1[i]*2 + src2[i] +
src0[i+width] + src1[i+width]*2 + src2[i+width];
float s1 = src0[i+1] - src1[i+1]*2 + src2[i+1] +
src0[i+width+1] + src1[i+width+1]*2 + src2[i+width+1];
dst[i] = s0; dst[i+1] = s1;
}
else
for( i = 0; i <= width - 2; i += 2 )
{
float s0 = (src0[i] - src1[i]*2 + src2[i] +
src0[i+width] + src1[i+width]*2 + src2[i+width])*scale;
float s1 = (src0[i+1] - src1[i+1]*2 + src2[i+1] +
src0[i+width+1] + src1[i+width+1]*2 + src2[i+width+1])*scale;
dst[i] = s0; dst[i+1] = s1;
}
}
else if( ksize == 5 )
{
const float *src0 = src[-2], *src1 = src[-1], *src2 = src[0], *src3 = src[1], *src4 = src[2];
for( i = 0; i <= width - 2; i += 2 )
{
float s0 = (src0[i] - src2[i]*2 + src4[i] +
src0[i+width] + src4[i+width] +
(src1[i+width] + src3[i+width])*4 + src2[i+width]*6)*scale;
float s1 = (src0[i+1] - src2[i+1]*2 + src4[i+1] +
src0[i+width+1] + src4[i+width+1] +
(src1[i+width+1] + src3[i+width+1])*4 + src2[i+width+1]*6)*scale;
dst[i] = s0; dst[i+1] = s1;
}
}
else
{
for( i = 0; i <= width - 2; i += 2 )
{
float s0 = kx[0]*src[0][i] + ky[0]*src[0][i+width];
float s1 = kx[0]*src[0][i+1] + ky[0]*src[0][i+width+1];
for( k = 1; k <= ksize2; k++ )
{
const float* src1 = src[k] + i, *src2 = src[-k] + i;
float fx = kx[k], fy = ky[k];
s0 += fx*(src1[0] + src2[0]) + fy*(src1[width] + src2[width]);
s1 += fx*(src1[1] + src2[1]) + fy*(src1[width+1] + src2[width+1]);
}
s0 *= scale; s1 *= scale;
dst[i] = s0; dst[i+1] = s1;
}
}
for( ; i < width; i++ )
{
float s0 = kx[0]*src[0][i] + ky[0]*src[0][i+width];
for( k = 1; k <= ksize2; k++ )
{
const float* src1 = src[k] + i, *src2 = src[-k] + i;
s0 += kx[k]*(src1[0] + src2[0]) + ky[k]*(src1[width] + src2[width]);
}
dst[i] = s0*scale;
}
}
}
CV_IMPL void
cvLaplace( const void* srcarr, void* dstarr, int aperture_size )
{
CvLaplaceFilter laplacian;
void* buffer = 0;
int local_alloc = 0;
CV_FUNCNAME( "cvLaplace" );
__BEGIN__;
CvMat srcstub, *src = (CvMat*)srcarr;
CvMat dststub, *dst = (CvMat*)dstarr;
int src_type, dst_type;
CV_CALL( src = cvGetMat( src, &srcstub ));
CV_CALL( dst = cvGetMat( dst, &dststub ));
src_type = CV_MAT_TYPE(src->type);
dst_type = CV_MAT_TYPE(dst->type);
if( (aperture_size == 3 || aperture_size == 5) &&
(src_type == CV_8UC1 && dst_type == CV_16SC1/* ||
src_type == CV_32FC1 && dst_type == CV_32FC1*/) )
{
CvDerivGetBufSizeIPPFunc ipp_laplace_getbufsize_func = 0;
CvDerivIPPFunc_8u ipp_laplace_func_8u = 0;
CvDerivIPPFunc_32f ipp_laplace_func_32f = 0;
if( src_type == CV_8U )
ipp_laplace_func_8u = icvFilterLaplacianBorder_8u16s_C1R_p,
ipp_laplace_getbufsize_func = icvFilterLaplacianGetBufSize_8u16s_C1R_p;
else
ipp_laplace_func_32f = icvFilterLaplacianBorder_32f_C1R_p,
ipp_laplace_getbufsize_func = icvFilterLaplacianGetBufSize_32f_C1R_p;
if( (ipp_laplace_func_8u || ipp_laplace_func_32f) && ipp_laplace_getbufsize_func )
{
int bufsize = 0, masksize = aperture_size == 3 ? 33 : 55;
CvSize size = cvGetMatSize( src );
uchar* src_ptr = src->data.ptr;
uchar* dst_ptr = dst->data.ptr;
int src_step = src->step ? src->step : CV_STUB_STEP;
int dst_step = dst->step ? dst->step : CV_STUB_STEP;
const int bordertype = 1; // replication border
CvStatus status;
status = ipp_laplace_getbufsize_func( size, masksize, &bufsize );
if( status >= 0 )
{
if( bufsize <= CV_MAX_LOCAL_SIZE )
{
buffer = cvStackAlloc( bufsize );
local_alloc = 1;
}
else
CV_CALL( buffer = cvAlloc( bufsize ));
status =
ipp_laplace_func_8u ? ipp_laplace_func_8u( src_ptr, src_step, dst_ptr, dst_step,
size, masksize, bordertype, 0, buffer ) :
ipp_laplace_func_32f ? ipp_laplace_func_32f( src_ptr, src_step, dst_ptr, dst_step,
size, masksize, bordertype, 0, buffer ) :
CV_NOTDEFINED_ERR;
}
if( status >= 0 )
EXIT;
}
}
CV_CALL( laplacian.init( src->cols, src_type, dst_type,
false, aperture_size ));
CV_CALL( laplacian.process( src, dst ));
__END__;
if( buffer && !local_alloc )
cvFree( &buffer );
}
/* End of file. */