blob: 1f1c0d1ee2e5526508afeb7b4c897bab0cb79b8e [file] [log] [blame]
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cv.h"
CV_IMPL CvRect
cvMaxRect( const CvRect* rect1, const CvRect* rect2 )
{
if( rect1 && rect2 )
{
CvRect max_rect;
int a, b;
max_rect.x = a = rect1->x;
b = rect2->x;
if( max_rect.x > b )
max_rect.x = b;
max_rect.width = a += rect1->width;
b += rect2->width;
if( max_rect.width < b )
max_rect.width = b;
max_rect.width -= max_rect.x;
max_rect.y = a = rect1->y;
b = rect2->y;
if( max_rect.y > b )
max_rect.y = b;
max_rect.height = a += rect1->height;
b += rect2->height;
if( max_rect.height < b )
max_rect.height = b;
max_rect.height -= max_rect.y;
return max_rect;
}
else if( rect1 )
return *rect1;
else if( rect2 )
return *rect2;
else
return cvRect(0,0,0,0);
}
CV_IMPL void
cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] )
{
CV_FUNCNAME( "cvBoxPoints" );
__BEGIN__;
double angle = box.angle*CV_PI/180.;
float a = (float)cos(angle)*0.5f;
float b = (float)sin(angle)*0.5f;
if( !pt )
CV_ERROR( CV_StsNullPtr, "NULL vertex array pointer" );
pt[0].x = box.center.x - a*box.size.height - b*box.size.width;
pt[0].y = box.center.y + b*box.size.height - a*box.size.width;
pt[1].x = box.center.x + a*box.size.height - b*box.size.width;
pt[1].y = box.center.y - b*box.size.height - a*box.size.width;
pt[2].x = 2*box.center.x - pt[0].x;
pt[2].y = 2*box.center.y - pt[0].y;
pt[3].x = 2*box.center.x - pt[1].x;
pt[3].y = 2*box.center.y - pt[1].y;
__END__;
}
int
icvIntersectLines( double x1, double dx1, double y1, double dy1,
double x2, double dx2, double y2, double dy2, double *t2 )
{
double d = dx1 * dy2 - dx2 * dy1;
int result = -1;
if( d != 0 )
{
*t2 = ((x2 - x1) * dy1 - (y2 - y1) * dx1) / d;
result = 0;
}
return result;
}
void
icvCreateCenterNormalLine( CvSubdiv2DEdge edge, double *_a, double *_b, double *_c )
{
CvPoint2D32f org = cvSubdiv2DEdgeOrg( edge )->pt;
CvPoint2D32f dst = cvSubdiv2DEdgeDst( edge )->pt;
double a = dst.x - org.x;
double b = dst.y - org.y;
double c = -(a * (dst.x + org.x) + b * (dst.y + org.y));
*_a = a + a;
*_b = b + b;
*_c = c;
}
void
icvIntersectLines3( double *a0, double *b0, double *c0,
double *a1, double *b1, double *c1, CvPoint2D32f * point )
{
double det = a0[0] * b1[0] - a1[0] * b0[0];
if( det != 0 )
{
det = 1. / det;
point->x = (float) ((b0[0] * c1[0] - b1[0] * c0[0]) * det);
point->y = (float) ((a1[0] * c0[0] - a0[0] * c1[0]) * det);
}
else
{
point->x = point->y = FLT_MAX;
}
}
CV_IMPL double
cvPointPolygonTest( const CvArr* _contour, CvPoint2D32f pt, int measure_dist )
{
double result = 0;
CV_FUNCNAME( "cvCheckPointPolygon" );
__BEGIN__;
CvSeqBlock block;
CvContour header;
CvSeq* contour = (CvSeq*)_contour;
CvSeqReader reader;
int i, total, counter = 0;
int is_float;
double min_dist_num = FLT_MAX, min_dist_denom = 1;
CvPoint ip = {0,0};
if( !CV_IS_SEQ(contour) )
{
CV_CALL( contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE + CV_SEQ_FLAG_CLOSED,
_contour, &header, &block ));
}
else if( CV_IS_SEQ_POLYGON(contour) )
{
if( contour->header_size == sizeof(CvContour) && !measure_dist )
{
CvRect r = ((CvContour*)contour)->rect;
if( pt.x < r.x || pt.y < r.y ||
pt.x >= r.x + r.width || pt.y >= r.y + r.height )
return -100;
}
}
else if( CV_IS_SEQ_CHAIN(contour) )
{
CV_ERROR( CV_StsBadArg,
"Chains are not supported. Convert them to polygonal representation using cvApproxChains()" );
}
else
CV_ERROR( CV_StsBadArg, "Input contour is neither a valid sequence nor a matrix" );
total = contour->total;
is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2;
cvStartReadSeq( contour, &reader, -1 );
if( !is_float && !measure_dist && (ip.x = cvRound(pt.x)) == pt.x && (ip.y = cvRound(pt.y)) == pt.y )
{
// the fastest "pure integer" branch
CvPoint v0, v;
CV_READ_SEQ_ELEM( v, reader );
for( i = 0; i < total; i++ )
{
int dist;
v0 = v;
CV_READ_SEQ_ELEM( v, reader );
if( (v0.y <= ip.y && v.y <= ip.y) ||
(v0.y > ip.y && v.y > ip.y) ||
(v0.x < ip.x && v.x < ip.x) )
{
if( ip.y == v.y && (ip.x == v.x || (ip.y == v0.y &&
((v0.x <= ip.x && ip.x <= v.x) || (v.x <= ip.x && ip.x <= v0.x)))) )
EXIT;
continue;
}
dist = (ip.y - v0.y)*(v.x - v0.x) - (ip.x - v0.x)*(v.y - v0.y);
if( dist == 0 )
EXIT;
if( v.y < v0.y )
dist = -dist;
counter += dist > 0;
}
result = counter % 2 == 0 ? -100 : 100;
}
else
{
CvPoint2D32f v0, v;
CvPoint iv;
if( is_float )
{
CV_READ_SEQ_ELEM( v, reader );
}
else
{
CV_READ_SEQ_ELEM( iv, reader );
v = cvPointTo32f( iv );
}
if( !measure_dist )
{
for( i = 0; i < total; i++ )
{
double dist;
v0 = v;
if( is_float )
{
CV_READ_SEQ_ELEM( v, reader );
}
else
{
CV_READ_SEQ_ELEM( iv, reader );
v = cvPointTo32f( iv );
}
if( (v0.y <= pt.y && v.y <= pt.y) ||
(v0.y > pt.y && v.y > pt.y) ||
(v0.x < pt.x && v.x < pt.x) )
{
if( pt.y == v.y && (pt.x == v.x || (pt.y == v0.y &&
((v0.x <= pt.x && pt.x <= v.x) || (v.x <= pt.x && pt.x <= v0.x)))) )
EXIT;
continue;
}
dist = (double)(pt.y - v0.y)*(v.x - v0.x) - (double)(pt.x - v0.x)*(v.y - v0.y);
if( dist == 0 )
EXIT;
if( v.y < v0.y )
dist = -dist;
counter += dist > 0;
}
result = counter % 2 == 0 ? -100 : 100;
}
else
{
for( i = 0; i < total; i++ )
{
double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1;
v0 = v;
if( is_float )
{
CV_READ_SEQ_ELEM( v, reader );
}
else
{
CV_READ_SEQ_ELEM( iv, reader );
v = cvPointTo32f( iv );
}
dx = v.x - v0.x; dy = v.y - v0.y;
dx1 = pt.x - v0.x; dy1 = pt.y - v0.y;
dx2 = pt.x - v.x; dy2 = pt.y - v.y;
if( dx1*dx + dy1*dy <= 0 )
dist_num = dx1*dx1 + dy1*dy1;
else if( dx2*dx + dy2*dy >= 0 )
dist_num = dx2*dx2 + dy2*dy2;
else
{
dist_num = (dy1*dx - dx1*dy);
dist_num *= dist_num;
dist_denom = dx*dx + dy*dy;
}
if( dist_num*min_dist_denom < min_dist_num*dist_denom )
{
min_dist_num = dist_num;
min_dist_denom = dist_denom;
if( min_dist_num == 0 )
break;
}
if( (v0.y <= pt.y && v.y <= pt.y) ||
(v0.y > pt.y && v.y > pt.y) ||
(v0.x < pt.x && v.x < pt.x) )
continue;
dist_num = dy1*dx - dx1*dy;
if( dy < 0 )
dist_num = -dist_num;
counter += dist_num > 0;
}
result = sqrt(min_dist_num/min_dist_denom);
if( counter % 2 == 0 )
result = -result;
}
}
__END__;
return result;
}
CV_IMPL void
cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
CvMat *matrixQx, CvMat *matrixQy, CvMat *matrixQz,
CvPoint3D64f *eulerAngles)
{
CV_FUNCNAME("cvRQDecomp3x3");
__BEGIN__;
double _M[3][3], _R[3][3], _Q[3][3];
CvMat M = cvMat(3, 3, CV_64F, _M);
CvMat R = cvMat(3, 3, CV_64F, _R);
CvMat Q = cvMat(3, 3, CV_64F, _Q);
double z, c, s;
/* Validate parameters. */
CV_ASSERT( CV_IS_MAT(matrixM) && CV_IS_MAT(matrixR) && CV_IS_MAT(matrixQ) &&
matrixM->cols == 3 && matrixM->rows == 3 &&
CV_ARE_SIZES_EQ(matrixM, matrixR) && CV_ARE_SIZES_EQ(matrixM, matrixQ));
cvConvert(matrixM, &M);
{
/* Find Givens rotation Q_x for x axis (left multiplication). */
/*
( 1 0 0 )
Qx = ( 0 c s ), c = m33/sqrt(m32^2 + m33^2), s = m32/sqrt(m32^2 + m33^2)
( 0 -s c )
*/
s = _M[2][1];
c = _M[2][2];
z = 1./sqrt(c * c + s * s + DBL_EPSILON);
c *= z;
s *= z;
double _Qx[3][3] = { {1, 0, 0}, {0, c, s}, {0, -s, c} };
CvMat Qx = cvMat(3, 3, CV_64F, _Qx);
cvMatMul(&M, &Qx, &R);
assert(fabs(_R[2][1]) < FLT_EPSILON);
_R[2][1] = 0;
/* Find Givens rotation for y axis. */
/*
( c 0 s )
Qy = ( 0 1 0 ), c = m33/sqrt(m31^2 + m33^2), s = m31/sqrt(m31^2 + m33^2)
(-s 0 c )
*/
s = _R[2][0];
c = _R[2][2];
z = 1./sqrt(c * c + s * s + DBL_EPSILON);
c *= z;
s *= z;
double _Qy[3][3] = { {c, 0, s}, {0, 1, 0}, {-s, 0, c} };
CvMat Qy = cvMat(3, 3, CV_64F, _Qy);
cvMatMul(&R, &Qy, &M);
assert(fabs(_M[2][0]) < FLT_EPSILON);
_M[2][0] = 0;
/* Find Givens rotation for z axis. */
/*
( c s 0 )
Qz = (-s c 0 ), c = m22/sqrt(m21^2 + m22^2), s = m21/sqrt(m21^2 + m22^2)
( 0 0 1 )
*/
s = _M[1][0];
c = _M[1][1];
z = 1./sqrt(c * c + s * s + DBL_EPSILON);
c *= z;
s *= z;
double _Qz[3][3] = { {c, s, 0}, {-s, c, 0}, {0, 0, 1} };
CvMat Qz = cvMat(3, 3, CV_64F, _Qz);
cvMatMul(&M, &Qz, &R);
assert(fabs(_R[1][0]) < FLT_EPSILON);
_R[1][0] = 0;
// Solve the decomposition ambiguity.
// Diagonal entries of R, except the last one, shall be positive.
// Further rotate R by 180 degree if necessary
if( _R[0][0] < 0 )
{
if( _R[1][1] < 0 )
{
// rotate around z for 180 degree, i.e. a rotation matrix of
// [-1, 0, 0],
// [ 0, -1, 0],
// [ 0, 0, 1]
_R[0][0] *= -1;
_R[0][1] *= -1;
_R[1][1] *= -1;
_Qz[0][0] *= -1;
_Qz[0][1] *= -1;
_Qz[1][0] *= -1;
_Qz[1][1] *= -1;
}
else
{
// rotate around y for 180 degree, i.e. a rotation matrix of
// [-1, 0, 0],
// [ 0, 1, 0],
// [ 0, 0, -1]
_R[0][0] *= -1;
_R[0][2] *= -1;
_R[1][2] *= -1;
_R[2][2] *= -1;
cvTranspose( &Qz, &Qz );
_Qy[0][0] *= -1;
_Qy[0][2] *= -1;
_Qy[2][0] *= -1;
_Qy[2][2] *= -1;
}
}
else if( _R[1][1] < 0 )
{
// ??? for some reason, we never get here ???
// rotate around x for 180 degree, i.e. a rotation matrix of
// [ 1, 0, 0],
// [ 0, -1, 0],
// [ 0, 0, -1]
_R[0][1] *= -1;
_R[0][2] *= -1;
_R[1][1] *= -1;
_R[1][2] *= -1;
_R[2][2] *= -1;
cvTranspose( &Qz, &Qz );
cvTranspose( &Qy, &Qy );
_Qx[1][1] *= -1;
_Qx[1][2] *= -1;
_Qx[2][1] *= -1;
_Qx[2][2] *= -1;
}
// calculate the euler angle
if( eulerAngles )
{
eulerAngles->x = acos(_Qx[1][1]) * (_Qx[1][2] >= 0 ? 1 : -1) * (180.0 / CV_PI);
eulerAngles->y = acos(_Qy[0][0]) * (_Qy[0][2] >= 0 ? 1 : -1) * (180.0 / CV_PI);
eulerAngles->z = acos(_Qz[0][0]) * (_Qz[0][1] >= 0 ? 1 : -1) * (180.0 / CV_PI);
}
/* Calulate orthogonal matrix. */
/*
Q = QzT * QyT * QxT
*/
cvGEMM( &Qz, &Qy, 1, 0, 0, &M, CV_GEMM_A_T + CV_GEMM_B_T );
cvGEMM( &M, &Qx, 1, 0, 0, &Q, CV_GEMM_B_T );
/* Save R and Q matrices. */
cvConvert( &R, matrixR );
cvConvert( &Q, matrixQ );
if( matrixQx )
cvConvert(&Qx, matrixQx);
if( matrixQy )
cvConvert(&Qy, matrixQy);
if( matrixQz )
cvConvert(&Qz, matrixQz);
}
__END__;
}
CV_IMPL void
cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
CvMat *rotMatr, CvMat *posVect,
CvMat *rotMatrX, CvMat *rotMatrY,
CvMat *rotMatrZ, CvPoint3D64f *eulerAngles)
{
CvMat *tmpProjMatr = 0;
CvMat *tmpMatrixD = 0;
CvMat *tmpMatrixV = 0;
CvMat *tmpMatrixM = 0;
CV_FUNCNAME("cvDecomposeProjectionMatrix");
__BEGIN__;
/* Validate parameters. */
if(projMatr == 0 || calibMatr == 0 || rotMatr == 0 || posVect == 0)
CV_ERROR(CV_StsNullPtr, "Some of parameters is a NULL pointer!");
if(!CV_IS_MAT(projMatr) || !CV_IS_MAT(calibMatr) || !CV_IS_MAT(rotMatr) || !CV_IS_MAT(posVect))
CV_ERROR(CV_StsUnsupportedFormat, "Input parameters must be a matrices!");
if(projMatr->cols != 4 || projMatr->rows != 3)
CV_ERROR(CV_StsUnmatchedSizes, "Size of projection matrix must be 3x4!");
if(calibMatr->cols != 3 || calibMatr->rows != 3 || rotMatr->cols != 3 || rotMatr->rows != 3)
CV_ERROR(CV_StsUnmatchedSizes, "Size of calibration and rotation matrices must be 3x3!");
if(posVect->cols != 1 || posVect->rows != 4)
CV_ERROR(CV_StsUnmatchedSizes, "Size of position vector must be 4x1!");
CV_CALL(tmpProjMatr = cvCreateMat(4, 4, CV_64F));
CV_CALL(tmpMatrixD = cvCreateMat(4, 4, CV_64F));
CV_CALL(tmpMatrixV = cvCreateMat(4, 4, CV_64F));
CV_CALL(tmpMatrixM = cvCreateMat(3, 3, CV_64F));
/* Compute position vector. */
cvSetZero(tmpProjMatr); // Add zero row to make matrix square.
int i, k;
for(i = 0; i < 3; i++)
for(k = 0; k < 4; k++)
cvmSet(tmpProjMatr, i, k, cvmGet(projMatr, i, k));
CV_CALL(cvSVD(tmpProjMatr, tmpMatrixD, NULL, tmpMatrixV, CV_SVD_MODIFY_A + CV_SVD_V_T));
/* Save position vector. */
for(i = 0; i < 4; i++)
cvmSet(posVect, i, 0, cvmGet(tmpMatrixV, 3, i)); // Solution is last row of V.
/* Compute calibration and rotation matrices via RQ decomposition. */
cvGetCols(projMatr, tmpMatrixM, 0, 3); // M is first square matrix of P.
assert(cvDet(tmpMatrixM) != 0.0); // So far only finite cameras could be decomposed, so M has to be nonsingular [det(M) != 0].
CV_CALL(cvRQDecomp3x3(tmpMatrixM, calibMatr, rotMatr, rotMatrX, rotMatrY, rotMatrZ, eulerAngles));
__END__;
cvReleaseMat(&tmpProjMatr);
cvReleaseMat(&tmpMatrixD);
cvReleaseMat(&tmpMatrixV);
cvReleaseMat(&tmpMatrixM);
}
/* End of file. */