blob: 3235fe43e26e59119f3372ad7c9a8920d93bc5b3 [file] [log] [blame]
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_highgui.h"
#include "grfmt_jpeg.h"
// JPEG filter factory
GrFmtJpeg::GrFmtJpeg()
{
m_sign_len = 3;
m_signature = "\xFF\xD8\xFF";
m_description = "JPEG files (*.jpeg;*.jpg;*.jpe)";
}
GrFmtJpeg::~GrFmtJpeg()
{
}
GrFmtReader* GrFmtJpeg::NewReader( const char* filename )
{
return new GrFmtJpegReader( filename );
}
GrFmtWriter* GrFmtJpeg::NewWriter( const char* filename )
{
return new GrFmtJpegWriter( filename );
}
#ifdef HAVE_JPEG
/****************************************************************************************\
This part of the file implements JPEG codec on base of IJG libjpeg library,
in particular, this is the modified example.doc from libjpeg package.
See otherlibs/_graphics/readme.txt for copyright notice.
\****************************************************************************************/
#include <stdio.h>
#include <setjmp.h>
#ifdef WIN32
#define XMD_H // prevent redefinition of INT32
#undef FAR // prevent FAR redefinition
#endif
#if defined WIN32 && defined __GNUC__
typedef unsigned char boolean;
#endif
extern "C" {
#include "jpeglib.h"
}
/////////////////////// Error processing /////////////////////
typedef struct GrFmtJpegErrorMgr
{
struct jpeg_error_mgr pub; /* "parent" structure */
jmp_buf setjmp_buffer; /* jump label */
}
GrFmtJpegErrorMgr;
METHODDEF(void)
error_exit( j_common_ptr cinfo )
{
GrFmtJpegErrorMgr* err_mgr = (GrFmtJpegErrorMgr*)(cinfo->err);
/* Return control to the setjmp point */
longjmp( err_mgr->setjmp_buffer, 1 );
}
/////////////////////// GrFmtJpegReader ///////////////////
GrFmtJpegReader::GrFmtJpegReader( const char* filename ) : GrFmtReader( filename )
{
m_cinfo = 0;
m_f = 0;
}
GrFmtJpegReader::~GrFmtJpegReader()
{
}
void GrFmtJpegReader::Close()
{
if( m_f )
{
fclose( m_f );
m_f = 0;
}
if( m_cinfo )
{
jpeg_decompress_struct* cinfo = (jpeg_decompress_struct*)m_cinfo;
GrFmtJpegErrorMgr* jerr = (GrFmtJpegErrorMgr*)m_jerr;
jpeg_destroy_decompress( cinfo );
delete cinfo;
delete jerr;
m_cinfo = 0;
m_jerr = 0;
}
GrFmtReader::Close();
}
bool GrFmtJpegReader::ReadHeader()
{
bool result = false;
Close();
jpeg_decompress_struct* cinfo = new jpeg_decompress_struct;
GrFmtJpegErrorMgr* jerr = new GrFmtJpegErrorMgr;
cinfo->err = jpeg_std_error(&jerr->pub);
jerr->pub.error_exit = error_exit;
m_cinfo = cinfo;
m_jerr = jerr;
if( setjmp( jerr->setjmp_buffer ) == 0 )
{
jpeg_create_decompress( cinfo );
m_f = fopen( m_filename, "rb" );
if( m_f )
{
jpeg_stdio_src( cinfo, m_f );
jpeg_read_header( cinfo, TRUE );
m_width = cinfo->image_width;
m_height = cinfo->image_height;
m_iscolor = cinfo->num_components > 1;
result = true;
}
}
if( !result )
Close();
return result;
}
/***************************************************************************
* following code is for supporting MJPEG image files
* based on a message of Laurent Pinchart on the video4linux mailing list
***************************************************************************/
/* JPEG DHT Segment for YCrCb omitted from MJPEG data */
static
unsigned char my_jpeg_odml_dht[0x1a4] = {
0xff, 0xc4, 0x01, 0xa2,
0x00, 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x01, 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x10, 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04,
0x04, 0x00, 0x00, 0x01, 0x7d,
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06,
0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1,
0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a,
0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45,
0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65,
0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85,
0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3,
0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba,
0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4,
0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa,
0x11, 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04,
0x04, 0x00, 0x01, 0x02, 0x77,
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41,
0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09,
0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17,
0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44,
0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64,
0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83,
0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a,
0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8,
0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4,
0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
/*
* Parse the DHT table.
* This code comes from jpeg6b (jdmarker.c).
*/
static
int my_jpeg_load_dht (struct jpeg_decompress_struct *info, unsigned char *dht,
JHUFF_TBL *ac_tables[], JHUFF_TBL *dc_tables[])
{
unsigned int length = (dht[2] << 8) + dht[3] - 2;
unsigned int pos = 4;
unsigned int count, i;
int index;
JHUFF_TBL **hufftbl;
unsigned char bits[17];
unsigned char huffval[256];
while (length > 16)
{
bits[0] = 0;
index = dht[pos++];
count = 0;
for (i = 1; i <= 16; ++i)
{
bits[i] = dht[pos++];
count += bits[i];
}
length -= 17;
if (count > 256 || count > length)
return -1;
for (i = 0; i < count; ++i)
huffval[i] = dht[pos++];
length -= count;
if (index & 0x10)
{
index -= 0x10;
hufftbl = &ac_tables[index];
}
else
hufftbl = &dc_tables[index];
if (index < 0 || index >= NUM_HUFF_TBLS)
return -1;
if (*hufftbl == NULL)
*hufftbl = jpeg_alloc_huff_table ((j_common_ptr)info);
if (*hufftbl == NULL)
return -1;
memcpy ((*hufftbl)->bits, bits, sizeof (*hufftbl)->bits);
memcpy ((*hufftbl)->huffval, huffval, sizeof (*hufftbl)->huffval);
}
if (length != 0)
return -1;
return 0;
}
/***************************************************************************
* end of code for supportting MJPEG image files
* based on a message of Laurent Pinchart on the video4linux mailing list
***************************************************************************/
bool GrFmtJpegReader::ReadData( uchar* data, int step, int color )
{
bool result = false;
color = color > 0 || (m_iscolor && color < 0);
if( m_cinfo && m_jerr && m_width && m_height )
{
jpeg_decompress_struct* cinfo = (jpeg_decompress_struct*)m_cinfo;
GrFmtJpegErrorMgr* jerr = (GrFmtJpegErrorMgr*)m_jerr;
JSAMPARRAY buffer = 0;
if( setjmp( jerr->setjmp_buffer ) == 0 )
{
/* check if this is a mjpeg image format */
if ( cinfo->ac_huff_tbl_ptrs[0] == NULL &&
cinfo->ac_huff_tbl_ptrs[1] == NULL &&
cinfo->dc_huff_tbl_ptrs[0] == NULL &&
cinfo->dc_huff_tbl_ptrs[1] == NULL )
{
/* yes, this is a mjpeg image format, so load the correct
huffman table */
my_jpeg_load_dht( cinfo,
my_jpeg_odml_dht,
cinfo->ac_huff_tbl_ptrs,
cinfo->dc_huff_tbl_ptrs );
}
if( color > 0 || (m_iscolor && color < 0) )
{
color = 1;
if( cinfo->num_components != 4 )
{
cinfo->out_color_space = JCS_RGB;
cinfo->out_color_components = 3;
}
else
{
cinfo->out_color_space = JCS_CMYK;
cinfo->out_color_components = 4;
}
}
else
{
color = 0;
if( cinfo->num_components != 4 )
{
cinfo->out_color_space = JCS_GRAYSCALE;
cinfo->out_color_components = 1;
}
else
{
cinfo->out_color_space = JCS_CMYK;
cinfo->out_color_components = 4;
}
}
jpeg_start_decompress( cinfo );
buffer = (*cinfo->mem->alloc_sarray)((j_common_ptr)cinfo,
JPOOL_IMAGE, m_width*4, 1 );
for( ; m_height--; data += step )
{
jpeg_read_scanlines( cinfo, buffer, 1 );
if( color )
{
if( cinfo->out_color_components == 3 )
icvCvt_RGB2BGR_8u_C3R( buffer[0], 0, data, 0, cvSize(m_width,1) );
else
icvCvt_CMYK2BGR_8u_C4C3R( buffer[0], 0, data, 0, cvSize(m_width,1) );
}
else
{
if( cinfo->out_color_components == 1 )
memcpy( data, buffer[0], m_width );
else
icvCvt_CMYK2Gray_8u_C4C1R( buffer[0], 0, data, 0, cvSize(m_width,1) );
}
}
result = true;
jpeg_finish_decompress( cinfo );
}
}
Close();
return result;
}
/////////////////////// GrFmtJpegWriter ///////////////////
GrFmtJpegWriter::GrFmtJpegWriter( const char* filename ) : GrFmtWriter( filename )
{
}
GrFmtJpegWriter::~GrFmtJpegWriter()
{
}
bool GrFmtJpegWriter::WriteImage( const uchar* data, int step,
int width, int height, int /*depth*/, int _channels )
{
const int default_quality = 95;
struct jpeg_compress_struct cinfo;
GrFmtJpegErrorMgr jerr;
bool result = false;
FILE* f = 0;
int channels = _channels > 1 ? 3 : 1;
uchar* buffer = 0; // temporary buffer for row flipping
cinfo.err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = error_exit;
if( setjmp( jerr.setjmp_buffer ) == 0 )
{
jpeg_create_compress(&cinfo);
f = fopen( m_filename, "wb" );
if( f )
{
jpeg_stdio_dest( &cinfo, f );
cinfo.image_width = width;
cinfo.image_height = height;
cinfo.input_components = channels;
cinfo.in_color_space = channels > 1 ? JCS_RGB : JCS_GRAYSCALE;
jpeg_set_defaults( &cinfo );
jpeg_set_quality( &cinfo, default_quality,
TRUE /* limit to baseline-JPEG values */ );
jpeg_start_compress( &cinfo, TRUE );
if( channels > 1 )
buffer = new uchar[width*channels];
for( ; height--; data += step )
{
uchar* ptr = (uchar*)data;
if( _channels == 3 )
{
icvCvt_BGR2RGB_8u_C3R( data, 0, buffer, 0, cvSize(width,1) );
ptr = buffer;
}
else if( _channels == 4 )
{
icvCvt_BGRA2BGR_8u_C4C3R( data, 0, buffer, 0, cvSize(width,1), 2 );
ptr = buffer;
}
jpeg_write_scanlines( &cinfo, &ptr, 1 );
}
jpeg_finish_compress( &cinfo );
result = true;
}
}
if(f) fclose(f);
jpeg_destroy_compress( &cinfo );
delete[] buffer;
return result;
}
#else
////////////////////// JPEG-oriented two-level bitstream ////////////////////////
RJpegBitStream::RJpegBitStream()
{
}
RJpegBitStream::~RJpegBitStream()
{
Close();
}
bool RJpegBitStream::Open( const char* filename )
{
Close();
Allocate();
m_is_opened = m_low_strm.Open( filename );
if( m_is_opened ) SetPos(0);
return m_is_opened;
}
void RJpegBitStream::Close()
{
m_low_strm.Close();
m_is_opened = false;
}
void RJpegBitStream::ReadBlock()
{
uchar* end = m_start + m_block_size;
uchar* current = m_start;
if( setjmp( m_low_strm.JmpBuf()) == 0 )
{
int sz = m_unGetsize;
memmove( current - sz, m_end - sz, sz );
while( current < end )
{
int val = m_low_strm.GetByte();
if( val != 0xff )
{
*current++ = (uchar)val;
}
else
{
val = m_low_strm.GetByte();
if( val == 0 )
*current++ = 0xFF;
else if( !(0xD0 <= val && val <= 0xD7) )
{
m_low_strm.SetPos( m_low_strm.GetPos() - 2 );
goto fetch_end;
}
}
}
fetch_end: ;
}
else
{
if( current == m_start && m_jmp_set )
longjmp( m_jmp_buf, RBS_THROW_EOS );
}
m_current = m_start;
m_end = m_start + (((current - m_start) + 3) & -4);
if( !bsIsBigEndian() )
bsBSwapBlock( m_start, m_end );
}
void RJpegBitStream::Flush()
{
m_end = m_start + m_block_size;
m_current = m_end - 4;
m_bit_idx = 0;
}
void RJpegBitStream::AlignOnByte()
{
m_bit_idx &= -8;
}
int RJpegBitStream::FindMarker()
{
int code = m_low_strm.GetWord();
while( (code & 0xFF00) != 0xFF00 || (code == 0xFFFF || code == 0xFF00 ))
{
code = ((code&255) << 8) | m_low_strm.GetByte();
}
return code;
}
/****************************** JPEG (JFIF) reader ***************************/
// zigzag & IDCT prescaling (AAN algorithm) tables
static const uchar zigzag[] =
{
0, 8, 1, 2, 9, 16, 24, 17, 10, 3, 4, 11, 18, 25, 32, 40,
33, 26, 19, 12, 5, 6, 13, 20, 27, 34, 41, 48, 56, 49, 42, 35,
28, 21, 14, 7, 15, 22, 29, 36, 43, 50, 57, 58, 51, 44, 37, 30,
23, 31, 38, 45, 52, 59, 60, 53, 46, 39, 47, 54, 61, 62, 55, 63,
63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63
};
static const int idct_prescale[] =
{
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
#define fixb 14
#define fix(x, n) (int)((x)*(1 << (n)) + .5)
#define fix1(x, n) (x)
#define fixmul(x) (x)
#define C0_707 fix( 0.707106781f, fixb )
#define C0_924 fix( 0.923879533f, fixb )
#define C0_541 fix( 0.541196100f, fixb )
#define C0_382 fix( 0.382683432f, fixb )
#define C1_306 fix( 1.306562965f, fixb )
#define C1_082 fix( 1.082392200f, fixb )
#define C1_414 fix( 1.414213562f, fixb )
#define C1_847 fix( 1.847759065f, fixb )
#define C2_613 fix( 2.613125930f, fixb )
#define fixc 12
#define b_cb fix( 1.772, fixc )
#define g_cb -fix( 0.34414, fixc )
#define g_cr -fix( 0.71414, fixc )
#define r_cr fix( 1.402, fixc )
#define y_r fix( 0.299, fixc )
#define y_g fix( 0.587, fixc )
#define y_b fix( 0.114, fixc )
#define cb_r -fix( 0.1687, fixc )
#define cb_g -fix( 0.3313, fixc )
#define cb_b fix( 0.5, fixc )
#define cr_r fix( 0.5, fixc )
#define cr_g -fix( 0.4187, fixc )
#define cr_b -fix( 0.0813, fixc )
// IDCT without prescaling
static void aan_idct8x8( int *src, int *dst, int step )
{
int workspace[64], *work = workspace;
int i;
/* Pass 1: process rows */
for( i = 8; i > 0; i--, src += 8, work += 8 )
{
/* Odd part */
int x0 = src[5], x1 = src[3];
int x2 = src[1], x3 = src[7];
int x4 = x0 + x1; x0 -= x1;
x1 = x2 + x3; x2 -= x3;
x3 = x1 + x4; x1 -= x4;
x4 = (x0 + x2)*C1_847;
x0 = descale( x4 - x0*C2_613, fixb);
x2 = descale( x2*C1_082 - x4, fixb);
x1 = descale( x1*C1_414, fixb);
x0 -= x3;
x1 -= x0;
x2 += x1;
work[7] = x3; work[6] = x0;
work[5] = x1; work[4] = x2;
/* Even part */
x2 = src[2]; x3 = src[6];
x0 = src[0]; x1 = src[4];
x4 = x2 + x3;
x2 = descale((x2-x3)*C1_414, fixb) - x4;
x3 = x0 + x1; x0 -= x1;
x1 = x3 + x4; x3 -= x4;
x4 = x0 + x2; x0 -= x2;
x2 = work[7];
x1 -= x2; x2 = 2*x2 + x1;
work[7] = x1; work[0] = x2;
x2 = work[6];
x1 = x4 + x2; x4 -= x2;
work[1] = x1; work[6] = x4;
x1 = work[5]; x2 = work[4];
x4 = x0 + x1; x0 -= x1;
x1 = x3 + x2; x3 -= x2;
work[2] = x4; work[5] = x0;
work[3] = x3; work[4] = x1;
}
/* Pass 2: process columns */
work = workspace;
for( i = 8; i > 0; i--, dst += step, work++ )
{
/* Odd part */
int x0 = work[8*5], x1 = work[8*3];
int x2 = work[8*1], x3 = work[8*7];
int x4 = x0 + x1; x0 -= x1;
x1 = x2 + x3; x2 -= x3;
x3 = x1 + x4; x1 -= x4;
x4 = (x0 + x2)*C1_847;
x0 = descale( x4 - x0*C2_613, fixb);
x2 = descale( x2*C1_082 - x4, fixb);
x1 = descale( x1*C1_414, fixb);
x0 -= x3;
x1 -= x0;
x2 += x1;
dst[7] = x3; dst[6] = x0;
dst[5] = x1; dst[4] = x2;
/* Even part */
x2 = work[8*2]; x3 = work[8*6];
x0 = work[8*0]; x1 = work[8*4];
x4 = x2 + x3;
x2 = descale((x2-x3)*C1_414, fixb) - x4;
x3 = x0 + x1; x0 -= x1;
x1 = x3 + x4; x3 -= x4;
x4 = x0 + x2; x0 -= x2;
x2 = dst[7];
x1 -= x2; x2 = 2*x2 + x1;
x1 = descale(x1,3);
x2 = descale(x2,3);
dst[7] = x1; dst[0] = x2;
x2 = dst[6];
x1 = descale(x4 + x2,3);
x4 = descale(x4 - x2,3);
dst[1] = x1; dst[6] = x4;
x1 = dst[5]; x2 = dst[4];
x4 = descale(x0 + x1,3);
x0 = descale(x0 - x1,3);
x1 = descale(x3 + x2,3);
x3 = descale(x3 - x2,3);
dst[2] = x4; dst[5] = x0;
dst[3] = x3; dst[4] = x1;
}
}
static const int max_dec_htable_size = 1 << 12;
static const int first_table_bits = 9;
GrFmtJpegReader::GrFmtJpegReader( const char* filename ) : GrFmtReader( filename )
{
m_planes= -1;
m_offset= -1;
int i;
for( i = 0; i < 4; i++ )
{
m_td[i] = new short[max_dec_htable_size];
m_ta[i] = new short[max_dec_htable_size];
}
}
GrFmtJpegReader::~GrFmtJpegReader()
{
for( int i = 0; i < 4; i++ )
{
delete[] m_td[i];
m_td[i] = 0;
delete[] m_ta[i];
m_ta[i] = 0;
}
}
void GrFmtJpegReader::Close()
{
m_strm.Close();
GrFmtReader::Close();
}
bool GrFmtJpegReader::ReadHeader()
{
char buffer[16];
int i;
bool result = false, is_sof = false,
is_qt = false, is_ht = false, is_sos = false;
assert( strlen(m_filename) != 0 );
if( !m_strm.Open( m_filename )) return false;
memset( m_is_tq, 0, sizeof(m_is_tq));
memset( m_is_td, 0, sizeof(m_is_td));
memset( m_is_ta, 0, sizeof(m_is_ta));
m_MCUs = 0;
if( setjmp( m_strm.JmpBuf()) == 0 )
{
RMByteStream& lstrm = m_strm.m_low_strm;
lstrm.Skip( 2 ); // skip SOI marker
for(;;)
{
int marker = m_strm.FindMarker() & 255;
// check for standalone markers
if( marker != 0xD8 /* SOI */ && marker != 0xD9 /* EOI */ &&
marker != 0x01 /* TEM */ && !( 0xD0 <= marker && marker <= 0xD7 ))
{
int pos = lstrm.GetPos();
int length = lstrm.GetWord();
switch( marker )
{
case 0xE0: // APP0
lstrm.GetBytes( buffer, 5 );
if( strcmp(buffer, "JFIF") == 0 ) // JFIF identification
{
m_version = lstrm.GetWord();
//is_jfif = true;
}
break;
case 0xC0: // SOF0
m_precision = lstrm.GetByte();
m_height = lstrm.GetWord();
m_width = lstrm.GetWord();
m_planes = lstrm.GetByte();
if( m_width == 0 || m_height == 0 || // DNL not supported
(m_planes != 1 && m_planes != 3)) goto parsing_end;
m_iscolor = m_planes == 3;
memset( m_ci, -1, sizeof(m_ci));
for( i = 0; i < m_planes; i++ )
{
int idx = lstrm.GetByte();
if( idx < 1 || idx > m_planes ) // wrong index
{
idx = i+1; // hack
}
cmp_info& ci = m_ci[idx-1];
if( ci.tq > 0 /* duplicated description */) goto parsing_end;
ci.h = (char)lstrm.GetByte();
ci.v = (char)(ci.h & 15);
ci.h >>= 4;
ci.tq = (char)lstrm.GetByte();
if( !((ci.h == 1 || ci.h == 2 || ci.h == 4) &&
(ci.v == 1 || ci.v == 2 || ci.v == 4) &&
ci.tq < 3) ||
// chroma mcu-parts should have equal sizes and
// be non greater then luma sizes
!( i != 2 || (ci.h == m_ci[1].h && ci.v == m_ci[1].v &&
ci.h <= m_ci[0].h && ci.v <= m_ci[0].v)))
goto parsing_end;
}
is_sof = true;
m_type = marker - 0xC0;
break;
case 0xDB: // DQT
if( !LoadQuantTables( length )) goto parsing_end;
is_qt = true;
break;
case 0xC4: // DHT
if( !LoadHuffmanTables( length )) goto parsing_end;
is_ht = true;
break;
case 0xDA: // SOS
is_sos = true;
m_offset = pos - 2;
goto parsing_end;
case 0xDD: // DRI
m_MCUs = lstrm.GetWord();
break;
}
lstrm.SetPos( pos + length );
}
}
parsing_end: ;
}
result = /*is_jfif &&*/ is_sof && is_qt && is_ht && is_sos;
if( !result )
{
m_width = m_height = -1;
m_offset = -1;
m_strm.Close();
}
return result;
}
bool GrFmtJpegReader::LoadQuantTables( int length )
{
uchar buffer[128];
int i, tq_size;
RMByteStream& lstrm = m_strm.m_low_strm;
length -= 2;
while( length > 0 )
{
int tq = lstrm.GetByte();
int size = tq >> 4;
tq &= 15;
tq_size = (64<<size) + 1;
if( tq > 3 || size > 1 || length < tq_size ) return false;
length -= tq_size;
lstrm.GetBytes( buffer, tq_size - 1 );
if( size == 0 ) // 8 bit quant factors
{
for( i = 0; i < 64; i++ )
{
int idx = zigzag[i];
m_tq[tq][idx] = buffer[i] * 16 * idct_prescale[idx];
}
}
else // 16 bit quant factors
{
for( i = 0; i < 64; i++ )
{
int idx = zigzag[i];
m_tq[tq][idx] = ((unsigned short*)buffer)[i] * idct_prescale[idx];
}
}
m_is_tq[tq] = true;
}
return true;
}
bool GrFmtJpegReader::LoadHuffmanTables( int length )
{
const int max_bits = 16;
uchar buffer[1024];
int buffer2[1024];
int i, ht_size;
RMByteStream& lstrm = m_strm.m_low_strm;
length -= 2;
while( length > 0 )
{
int t = lstrm.GetByte();
int hclass = t >> 4;
t &= 15;
if( t > 3 || hclass > 1 || length < 17 ) return false;
length -= 17;
lstrm.GetBytes( buffer, max_bits );
for( i = 0, ht_size = 0; i < max_bits; i++ ) ht_size += buffer[i];
if( length < ht_size ) return false;
length -= ht_size;
lstrm.GetBytes( buffer + max_bits, ht_size );
if( !::bsCreateDecodeHuffmanTable(
::bsCreateSourceHuffmanTable(
buffer, buffer2, max_bits, first_table_bits ),
hclass == 0 ? m_td[t] : m_ta[t],
max_dec_htable_size )) return false;
if( hclass == 0 )
m_is_td[t] = true;
else
m_is_ta[t] = true;
}
return true;
}
bool GrFmtJpegReader::ReadData( uchar* data, int step, int color )
{
if( m_offset < 0 || !m_strm.IsOpened())
return false;
if( setjmp( m_strm.JmpBuf()) == 0 )
{
RMByteStream& lstrm = m_strm.m_low_strm;
lstrm.SetPos( m_offset );
for(;;)
{
int marker = m_strm.FindMarker() & 255;
if( marker == 0xD8 /* SOI */ || marker == 0xD9 /* EOI */ )
goto decoding_end;
// check for standalone markers
if( marker != 0x01 /* TEM */ && !( 0xD0 <= marker && marker <= 0xD7 ))
{
int pos = lstrm.GetPos();
int length = lstrm.GetWord();
switch( marker )
{
case 0xC4: // DHT
if( !LoadHuffmanTables( length )) goto decoding_end;
break;
case 0xDA: // SOS
// read scan header
{
int idx[3] = { -1, -1, -1 };
int i, ns = lstrm.GetByte();
int sum = 0, a; // spectral selection & approximation
if( ns != m_planes ) goto decoding_end;
for( i = 0; i < ns; i++ )
{
int td, ta, c = lstrm.GetByte() - 1;
if( c < 0 || m_planes <= c )
{
c = i; // hack
}
if( idx[c] != -1 ) goto decoding_end;
idx[i] = c;
td = lstrm.GetByte();
ta = td & 15;
td >>= 4;
if( !(ta <= 3 && m_is_ta[ta] &&
td <= 3 && m_is_td[td] &&
m_is_tq[m_ci[c].tq]) )
goto decoding_end;
m_ci[c].td = (char)td;
m_ci[c].ta = (char)ta;
sum += m_ci[c].h*m_ci[c].v;
}
if( sum > 10 ) goto decoding_end;
m_ss = lstrm.GetByte();
m_se = lstrm.GetByte();
a = lstrm.GetByte();
m_al = a & 15;
m_ah = a >> 4;
ProcessScan( idx, ns, data, step, color );
goto decoding_end; // only single scan case is supported now
}
//m_offset = pos - 2;
//break;
case 0xDD: // DRI
m_MCUs = lstrm.GetWord();
break;
}
if( marker != 0xDA ) lstrm.SetPos( pos + length );
}
}
decoding_end: ;
}
return true;
}
void GrFmtJpegReader::ResetDecoder()
{
m_ci[0].dc_pred = m_ci[1].dc_pred = m_ci[2].dc_pred = 0;
}
void GrFmtJpegReader::ProcessScan( int* idx, int ns, uchar* data, int step, int color )
{
int i, s = 0, mcu, x1 = 0, y1 = 0;
int temp[64];
int blocks[10][64];
int pos[3], h[3], v[3];
int x_shift = 0, y_shift = 0;
int nch = color ? 3 : 1;
assert( ns == m_planes && m_ss == 0 && m_se == 63 &&
m_al == 0 && m_ah == 0 ); // sequental & single scan
assert( idx[0] == 0 && (ns ==1 || (idx[1] == 1 && idx[2] == 2)));
for( i = 0; i < ns; i++ )
{
int c = idx[i];
h[c] = m_ci[c].h*8;
v[c] = m_ci[c].v*8;
pos[c] = s >> 6;
s += h[c]*v[c];
}
if( ns == 3 )
{
x_shift = h[0]/(h[1]*2);
y_shift = v[0]/(v[1]*2);
}
m_strm.Flush();
ResetDecoder();
for( mcu = 0;; mcu++ )
{
int x2, y2, x, y, xc;
int* cmp;
uchar* data1;
if( mcu == m_MCUs && m_MCUs != 0 )
{
ResetDecoder();
m_strm.AlignOnByte();
mcu = 0;
}
// Get mcu
for( i = 0; i < ns; i++ )
{
int c = idx[i];
cmp = blocks[pos[c]];
for( y = 0; y < v[c]; y += 8, cmp += h[c]*8 )
for( x = 0; x < h[c]; x += 8 )
{
GetBlock( temp, c );
if( i < (color ? 3 : 1))
{
aan_idct8x8( temp, cmp + x, h[c] );
}
}
}
y2 = v[0];
x2 = h[0];
if( y1 + y2 > m_height ) y2 = m_height - y1;
if( x1 + x2 > m_width ) x2 = m_width - x1;
cmp = blocks[0];
data1 = data + x1*nch;
if( ns == 1 )
for( y = 0; y < y2; y++, data1 += step, cmp += h[0] )
{
if( color )
{
for( x = 0; x < x2; x++ )
{
int val = descale( cmp[x] + 128*4, 2 );
data1[x*3] = data1[x*3 + 1] = data1[x*3 + 2] = saturate( val );
}
}
else
{
for( x = 0; x < x2; x++ )
{
int val = descale( cmp[x] + 128*4, 2 );
data1[x] = saturate( val );
}
}
}
else
{
for( y = 0; y < y2; y++, data1 += step, cmp += h[0] )
{
if( color )
{
int shift = h[1]*(y >> y_shift);
int* cmpCb = blocks[pos[1]] + shift;
int* cmpCr = blocks[pos[2]] + shift;
x = 0;
if( x_shift == 0 )
{
for( ; x < x2; x++ )
{
int Y = (cmp[x] + 128*4) << fixc;
int Cb = cmpCb[x];
int Cr = cmpCr[x];
int t = (Y + Cb*b_cb) >> (fixc + 2);
data1[x*3] = saturate(t);
t = (Y + Cb*g_cb + Cr*g_cr) >> (fixc + 2);
data1[x*3 + 1] = saturate(t);
t = (Y + Cr*r_cr) >> (fixc + 2);
data1[x*3 + 2] = saturate(t);
}
}
else if( x_shift == 1 )
{
for( xc = 0; x <= x2 - 2; x += 2, xc++ )
{
int Y = (cmp[x] + 128*4) << fixc;
int Cb = cmpCb[xc];
int Cr = cmpCr[xc];
int t = (Y + Cb*b_cb) >> (fixc + 2);
data1[x*3] = saturate(t);
t = (Y + Cb*g_cb + Cr*g_cr) >> (fixc + 2);
data1[x*3 + 1] = saturate(t);
t = (Y + Cr*r_cr) >> (fixc + 2);
data1[x*3 + 2] = saturate(t);
Y = (cmp[x+1] + 128*4) << fixc;
t = (Y + Cb*b_cb) >> (fixc + 2);
data1[x*3 + 3] = saturate(t);
t = (Y + Cb*g_cb + Cr*g_cr) >> (fixc + 2);
data1[x*3 + 4] = saturate(t);
t = (Y + Cr*r_cr) >> (fixc + 2);
data1[x*3 + 5] = saturate(t);
}
}
for( ; x < x2; x++ )
{
int Y = (cmp[x] + 128*4) << fixc;
int Cb = cmpCb[x >> x_shift];
int Cr = cmpCr[x >> x_shift];
int t = (Y + Cb*b_cb) >> (fixc + 2);
data1[x*3] = saturate(t);
t = (Y + Cb*g_cb + Cr*g_cr) >> (fixc + 2);
data1[x*3 + 1] = saturate(t);
t = (Y + Cr*r_cr) >> (fixc + 2);
data1[x*3 + 2] = saturate(t);
}
}
else
{
for( x = 0; x < x2; x++ )
{
int val = descale( cmp[x] + 128*4, 2 );
data1[x] = saturate(val);
}
}
}
}
x1 += h[0];
if( x1 >= m_width )
{
x1 = 0;
y1 += v[0];
data += v[0]*step;
if( y1 >= m_height ) break;
}
}
}
void GrFmtJpegReader::GetBlock( int* block, int c )
{
memset( block, 0, 64*sizeof(block[0]) );
assert( 0 <= c && c < 3 );
const short* td = m_td[m_ci[c].td];
const short* ta = m_ta[m_ci[c].ta];
const int* tq = m_tq[m_ci[c].tq];
// Get DC coefficient
int i = 0, cat = m_strm.GetHuff( td );
int mask = bs_bit_mask[cat];
int val = m_strm.Get( cat );
val -= (val*2 <= mask ? mask : 0);
m_ci[c].dc_pred = val += m_ci[c].dc_pred;
block[0] = descale(val * tq[0],16);
// Get AC coeffs
for(;;)
{
cat = m_strm.GetHuff( ta );
if( cat == 0 ) break; // end of block
i += (cat >> 4) + 1;
cat &= 15;
mask = bs_bit_mask[cat];
val = m_strm.Get( cat );
cat = zigzag[i];
val -= (val*2 <= mask ? mask : 0);
block[cat] = descale(val * tq[cat], 16);
assert( i <= 63 );
if( i >= 63 ) break;
}
}
////////////////////// WJpegStream ///////////////////////
WJpegBitStream::WJpegBitStream()
{
}
WJpegBitStream::~WJpegBitStream()
{
Close();
m_is_opened = false;
}
bool WJpegBitStream::Open( const char* filename )
{
Close();
Allocate();
m_is_opened = m_low_strm.Open( filename );
if( m_is_opened )
{
m_block_pos = 0;
ResetBuffer();
}
return m_is_opened;
}
void WJpegBitStream::Close()
{
if( m_is_opened )
{
Flush();
m_low_strm.Close();
m_is_opened = false;
}
}
void WJpegBitStream::Flush()
{
Put( -1, m_bit_idx & 31 );
*((ulong*&)m_current)++ = m_val;
WriteBlock();
ResetBuffer();
}
void WJpegBitStream::WriteBlock()
{
uchar* ptr = m_start;
if( !bsIsBigEndian() )
bsBSwapBlock( m_start, m_current );
while( ptr < m_current )
{
int val = *ptr++;
m_low_strm.PutByte( val );
if( val == 0xff )
{
m_low_strm.PutByte( 0 );
}
}
m_current = m_start;
}
/////////////////////// GrFmtJpegWriter ///////////////////
GrFmtJpegWriter::GrFmtJpegWriter( const char* filename ) : GrFmtWriter( filename )
{
}
GrFmtJpegWriter::~GrFmtJpegWriter()
{
}
// Standard JPEG quantization tables
static const uchar jpegTableK1_T[] =
{
16, 12, 14, 14, 18, 24, 49, 72,
11, 12, 13, 17, 22, 35, 64, 92,
10, 14, 16, 22, 37, 55, 78, 95,
16, 19, 24, 29, 56, 64, 87, 98,
24, 26, 40, 51, 68, 81, 103, 112,
40, 58, 57, 87, 109, 104, 121, 100,
51, 60, 69, 80, 103, 113, 120, 103,
61, 55, 56, 62, 77, 92, 101, 99
};
static const uchar jpegTableK2_T[] =
{
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
};
// Standard Huffman tables
// ... for luma DCs.
static const uchar jpegTableK3[] =
{
0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
};
// ... for chroma DCs.
static const uchar jpegTableK4[] =
{
0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
};
// ... for luma ACs.
static const uchar jpegTableK5[] =
{
0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125,
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
// ... for chroma ACs
static const uchar jpegTableK6[] =
{
0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119,
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa
};
static const char jpegHeader[] =
"\xFF\xD8" // SOI - start of image
"\xFF\xE0" // APP0 - jfif extention
"\x00\x10" // 2 bytes: length of APP0 segment
"JFIF\x00" // JFIF signature
"\x01\x02" // version of JFIF
"\x00" // units = pixels ( 1 - inch, 2 - cm )
"\x00\x01\x00\x01" // 2 2-bytes values: x density & y density
"\x00\x00"; // width & height of thumbnail: ( 0x0 means no thumbnail)
#define postshift 14
// FDCT with postscaling
static void aan_fdct8x8( int *src, int *dst,
int step, const int *postscale )
{
int workspace[64], *work = workspace;
int i;
// Pass 1: process rows
for( i = 8; i > 0; i--, src += step, work += 8 )
{
int x0 = src[0], x1 = src[7];
int x2 = src[3], x3 = src[4];
int x4 = x0 + x1; x0 -= x1;
x1 = x2 + x3; x2 -= x3;
work[7] = x0; work[1] = x2;
x2 = x4 + x1; x4 -= x1;
x0 = src[1]; x3 = src[6];
x1 = x0 + x3; x0 -= x3;
work[5] = x0;
x0 = src[2]; x3 = src[5];
work[3] = x0 - x3; x0 += x3;
x3 = x0 + x1; x0 -= x1;
x1 = x2 + x3; x2 -= x3;
work[0] = x1; work[4] = x2;
x0 = descale((x0 - x4)*C0_707, fixb);
x1 = x4 + x0; x4 -= x0;
work[2] = x4; work[6] = x1;
x0 = work[1]; x1 = work[3];
x2 = work[5]; x3 = work[7];
x0 += x1; x1 += x2; x2 += x3;
x1 = descale(x1*C0_707, fixb);
x4 = x1 + x3; x3 -= x1;
x1 = (x0 - x2)*C0_382;
x0 = descale(x0*C0_541 + x1, fixb);
x2 = descale(x2*C1_306 + x1, fixb);
x1 = x0 + x3; x3 -= x0;
x0 = x4 + x2; x4 -= x2;
work[5] = x1; work[1] = x0;
work[7] = x4; work[3] = x3;
}
work = workspace;
// pass 2: process columns
for( i = 8; i > 0; i--, work++, postscale += 8, dst += 8 )
{
int x0 = work[8*0], x1 = work[8*7];
int x2 = work[8*3], x3 = work[8*4];
int x4 = x0 + x1; x0 -= x1;
x1 = x2 + x3; x2 -= x3;
work[8*7] = x0; work[8*0] = x2;
x2 = x4 + x1; x4 -= x1;
x0 = work[8*1]; x3 = work[8*6];
x1 = x0 + x3; x0 -= x3;
work[8*4] = x0;
x0 = work[8*2]; x3 = work[8*5];
work[8*3] = x0 - x3; x0 += x3;
x3 = x0 + x1; x0 -= x1;
x1 = x2 + x3; x2 -= x3;
dst[0] = descale(x1*postscale[0], postshift);
dst[4] = descale(x2*postscale[4], postshift);
x0 = descale((x0 - x4)*C0_707, fixb);
x1 = x4 + x0; x4 -= x0;
dst[2] = descale(x4*postscale[2], postshift);
dst[6] = descale(x1*postscale[6], postshift);
x0 = work[8*0]; x1 = work[8*3];
x2 = work[8*4]; x3 = work[8*7];
x0 += x1; x1 += x2; x2 += x3;
x1 = descale(x1*C0_707, fixb);
x4 = x1 + x3; x3 -= x1;
x1 = (x0 - x2)*C0_382;
x0 = descale(x0*C0_541 + x1, fixb);
x2 = descale(x2*C1_306 + x1, fixb);
x1 = x0 + x3; x3 -= x0;
x0 = x4 + x2; x4 -= x2;
dst[5] = descale(x1*postscale[5], postshift);
dst[1] = descale(x0*postscale[1], postshift);
dst[7] = descale(x4*postscale[7], postshift);
dst[3] = descale(x3*postscale[3], postshift);
}
}
bool GrFmtJpegWriter::WriteImage( const uchar* data, int step,
int width, int height, int /*depth*/, int _channels )
{
assert( data && width > 0 && height > 0 );
if( !m_strm.Open( m_filename ) ) return false;
// encode the header and tables
// for each mcu:
// convert rgb to yuv with downsampling (if color).
// for every block:
// calc dct and quantize
// encode block.
int x, y;
int i, j;
const int max_quality = 12;
int quality = max_quality;
WMByteStream& lowstrm = m_strm.m_low_strm;
int fdct_qtab[2][64];
ulong huff_dc_tab[2][16];
ulong huff_ac_tab[2][256];
int channels = _channels > 1 ? 3 : 1;
int x_scale = channels > 1 ? 2 : 1, y_scale = x_scale;
int dc_pred[] = { 0, 0, 0 };
int x_step = x_scale * 8;
int y_step = y_scale * 8;
int block[6][64];
int buffer[1024];
int luma_count = x_scale*y_scale;
int block_count = luma_count + channels - 1;
int Y_step = x_scale*8;
const int UV_step = 16;
double inv_quality;
if( quality < 3 ) quality = 3;
if( quality > max_quality ) quality = max_quality;
inv_quality = 1./quality;
// Encode header
lowstrm.PutBytes( jpegHeader, sizeof(jpegHeader) - 1 );
// Encode quantization tables
for( i = 0; i < (channels > 1 ? 2 : 1); i++ )
{
const uchar* qtable = i == 0 ? jpegTableK1_T : jpegTableK2_T;
int chroma_scale = i > 0 ? luma_count : 1;
lowstrm.PutWord( 0xffdb ); // DQT marker
lowstrm.PutWord( 2 + 65*1 ); // put single qtable
lowstrm.PutByte( 0*16 + i ); // 8-bit table
// put coefficients
for( j = 0; j < 64; j++ )
{
int idx = zigzag[j];
int qval = cvRound(qtable[idx]*inv_quality);
if( qval < 1 )
qval = 1;
if( qval > 255 )
qval = 255;
fdct_qtab[i][idx] = cvRound((1 << (postshift + 9))/
(qval*chroma_scale*idct_prescale[idx]));
lowstrm.PutByte( qval );
}
}
// Encode huffman tables
for( i = 0; i < (channels > 1 ? 4 : 2); i++ )
{
const uchar* htable = i == 0 ? jpegTableK3 : i == 1 ? jpegTableK5 :
i == 2 ? jpegTableK4 : jpegTableK6;
int is_ac_tab = i & 1;
int idx = i >= 2;
int tableSize = 16 + (is_ac_tab ? 162 : 12);
lowstrm.PutWord( 0xFFC4 ); // DHT marker
lowstrm.PutWord( 3 + tableSize ); // define one huffman table
lowstrm.PutByte( is_ac_tab*16 + idx ); // put DC/AC flag and table index
lowstrm.PutBytes( htable, tableSize ); // put table
bsCreateEncodeHuffmanTable( bsCreateSourceHuffmanTable(
htable, buffer, 16, 9 ), is_ac_tab ? huff_ac_tab[idx] :
huff_dc_tab[idx], is_ac_tab ? 256 : 16 );
}
// put frame header
lowstrm.PutWord( 0xFFC0 ); // SOF0 marker
lowstrm.PutWord( 8 + 3*channels ); // length of frame header
lowstrm.PutByte( 8 ); // sample precision
lowstrm.PutWord( height );
lowstrm.PutWord( width );
lowstrm.PutByte( channels ); // number of components
for( i = 0; i < channels; i++ )
{
lowstrm.PutByte( i + 1 ); // (i+1)-th component id (Y,U or V)
if( i == 0 )
lowstrm.PutByte(x_scale*16 + y_scale); // chroma scale factors
else
lowstrm.PutByte(1*16 + 1);
lowstrm.PutByte( i > 0 ); // quantization table idx
}
// put scan header
lowstrm.PutWord( 0xFFDA ); // SOS marker
lowstrm.PutWord( 6 + 2*channels ); // length of scan header
lowstrm.PutByte( channels ); // number of components in the scan
for( i = 0; i < channels; i++ )
{
lowstrm.PutByte( i+1 ); // component id
lowstrm.PutByte( (i>0)*16 + (i>0) );// selection of DC & AC tables
}
lowstrm.PutWord(0*256 + 63);// start and end of spectral selection - for
// sequental DCT start is 0 and end is 63
lowstrm.PutByte( 0 ); // successive approximation bit position
// high & low - (0,0) for sequental DCT
// encode data
for( y = 0; y < height; y += y_step, data += y_step*step )
{
for( x = 0; x < width; x += x_step )
{
int x_limit = x_step;
int y_limit = y_step;
const uchar* rgb_data = data + x*_channels;
int* Y_data = block[0];
if( x + x_limit > width ) x_limit = width - x;
if( y + y_limit > height ) y_limit = height - y;
memset( block, 0, block_count*64*sizeof(block[0][0]));
if( channels > 1 )
{
int* UV_data = block[luma_count];
for( i = 0; i < y_limit; i++, rgb_data += step, Y_data += Y_step )
{
for( j = 0; j < x_limit; j++, rgb_data += _channels )
{
int r = rgb_data[2];
int g = rgb_data[1];
int b = rgb_data[0];
int Y = descale( r*y_r + g*y_g + b*y_b, fixc - 2) - 128*4;
int U = descale( r*cb_r + g*cb_g + b*cb_b, fixc - 2 );
int V = descale( r*cr_r + g*cr_g + b*cr_b, fixc - 2 );
int j2 = j >> (x_scale - 1);
Y_data[j] = Y;
UV_data[j2] += U;
UV_data[j2 + 8] += V;
}
rgb_data -= x_limit*_channels;
if( ((i+1) & (y_scale - 1)) == 0 )
{
UV_data += UV_step;
}
}
}
else
{
for( i = 0; i < y_limit; i++, rgb_data += step, Y_data += Y_step )
{
for( j = 0; j < x_limit; j++ )
Y_data[j] = rgb_data[j]*4 - 128*4;
}
}
for( i = 0; i < block_count; i++ )
{
int is_chroma = i >= luma_count;
int src_step = x_scale * 8;
int run = 0, val;
int* src_ptr = block[i & -2] + (i & 1)*8;
const ulong* htable = huff_ac_tab[is_chroma];
aan_fdct8x8( src_ptr, buffer, src_step, fdct_qtab[is_chroma] );
j = is_chroma + (i > luma_count);
val = buffer[0] - dc_pred[j];
dc_pred[j] = buffer[0];
{
float a = (float)val;
int cat = (((int&)a >> 23) & 255) - (126 & (val ? -1 : 0));
assert( cat <= 11 );
m_strm.PutHuff( cat, huff_dc_tab[is_chroma] );
m_strm.Put( val - (val < 0 ? 1 : 0), cat );
}
for( j = 1; j < 64; j++ )
{
val = buffer[zigzag[j]];
if( val == 0 )
{
run++;
}
else
{
while( run >= 16 )
{
m_strm.PutHuff( 0xF0, htable ); // encode 16 zeros
run -= 16;
}
{
float a = (float)val;
int cat = (((int&)a >> 23) & 255) - (126 & (val ? -1 : 0));
assert( cat <= 10 );
m_strm.PutHuff( cat + run*16, htable );
m_strm.Put( val - (val < 0 ? 1 : 0), cat );
}
run = 0;
}
}
if( run )
{
m_strm.PutHuff( 0x00, htable ); // encode EOB
}
}
}
}
// Flush
m_strm.Flush();
lowstrm.PutWord( 0xFFD9 ); // EOI marker
m_strm.Close();
return true;
}
#endif
/* End of file. */