| // ==================================================================== |
| // Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL |
| // project. |
| // |
| // Rights for redistribution and usage in source and binary forms are |
| // granted according to the OpenSSL license. Warranty of any kind is |
| // disclaimed. |
| // ==================================================================== |
| |
| .ident "rc4-ia64.S, Version 2.0" |
| .ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>" |
| |
| // What's wrong with compiler generated code? Because of the nature of |
| // C language, compiler doesn't [dare to] reorder load and stores. But |
| // being memory-bound, RC4 should benefit from reorder [on in-order- |
| // execution core such as IA-64]. But what can we reorder? At the very |
| // least we can safely reorder references to key schedule in respect |
| // to input and output streams. Secondly, from the first [close] glance |
| // it appeared that it's possible to pull up some references to |
| // elements of the key schedule itself. Original rationale ["prior |
| // loads are not safe only for "degenerated" key schedule, when some |
| // elements equal to the same value"] was kind of sloppy. I should have |
| // formulated as it really was: if we assume that pulling up reference |
| // to key[x+1] is not safe, then it would mean that key schedule would |
| // "degenerate," which is never the case. The problem is that this |
| // holds true in respect to references to key[x], but not to key[y]. |
| // Legitimate "collisions" do occur within every 256^2 bytes window. |
| // Fortunately there're enough free instruction slots to keep prior |
| // reference to key[x+1], detect "collision" and compensate for it. |
| // All this without sacrificing a single clock cycle:-) Throughput is |
| // ~210MBps on 900MHz CPU, which is is >3x faster than gcc generated |
| // code and +30% - if compared to HP-UX C. Unrolling loop below should |
| // give >30% on top of that... |
| |
| .text |
| .explicit |
| |
| #if defined(_HPUX_SOURCE) && !defined(_LP64) |
| # define ADDP addp4 |
| #else |
| # define ADDP add |
| #endif |
| |
| #ifndef SZ |
| #define SZ 4 // this is set to sizeof(RC4_INT) |
| #endif |
| // SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for |
| // assembler implementation, while SZ==1 code is ~30% slower. |
| #if SZ==1 // RC4_INT is unsigned char |
| # define LDKEY ld1 |
| # define STKEY st1 |
| # define OFF 0 |
| #elif SZ==4 // RC4_INT is unsigned int |
| # define LDKEY ld4 |
| # define STKEY st4 |
| # define OFF 2 |
| #elif SZ==8 // RC4_INT is unsigned long |
| # define LDKEY ld8 |
| # define STKEY st8 |
| # define OFF 3 |
| #endif |
| |
| out=r8; // [expanded] output pointer |
| inp=r9; // [expanded] output pointer |
| prsave=r10; |
| key=r28; // [expanded] pointer to RC4_KEY |
| ksch=r29; // (key->data+255)[&~(sizeof(key->data)-1)] |
| xx=r30; |
| yy=r31; |
| |
| // void RC4(RC4_KEY *key,size_t len,const void *inp,void *out); |
| .global RC4# |
| .proc RC4# |
| .align 32 |
| .skip 16 |
| RC4: |
| .prologue |
| .save ar.pfs,r2 |
| { .mii; alloc r2=ar.pfs,4,12,0,16 |
| .save pr,prsave |
| mov prsave=pr |
| ADDP key=0,in0 };; |
| { .mib; cmp.eq p6,p0=0,in1 // len==0? |
| .save ar.lc,r3 |
| mov r3=ar.lc |
| (p6) br.ret.spnt.many b0 };; // emergency exit |
| |
| .body |
| .rotr dat[4],key_x[4],tx[2],rnd[2],key_y[2],ty[1]; |
| |
| { .mib; LDKEY xx=[key],SZ // load key->x |
| add in1=-1,in1 // adjust len for loop counter |
| nop.b 0 } |
| { .mib; ADDP inp=0,in2 |
| ADDP out=0,in3 |
| brp.loop.imp .Ltop,.Lexit-16 };; |
| { .mmi; LDKEY yy=[key] // load key->y |
| add ksch=SZ,key |
| mov ar.lc=in1 } |
| { .mmi; mov key_y[1]=r0 // guarantee inequality |
| // in first iteration |
| add xx=1,xx |
| mov pr.rot=1<<16 };; |
| { .mii; nop.m 0 |
| dep key_x[1]=xx,r0,OFF,8 |
| mov ar.ec=3 };; // note that epilogue counter |
| // is off by 1. I compensate |
| // for this at exit... |
| .Ltop: |
| // The loop is scheduled for 4*(n+2) spin-rate on Itanium 2, which |
| // theoretically gives asymptotic performance of clock frequency |
| // divided by 4 bytes per seconds, or 400MBps on 1.6GHz CPU. This is |
| // for sizeof(RC4_INT)==4. For smaller RC4_INT STKEY inadvertently |
| // splits the last bundle and you end up with 5*n spin-rate:-( |
| // Originally the loop was scheduled for 3*n and relied on key |
| // schedule to be aligned at 256*sizeof(RC4_INT) boundary. But |
| // *(out++)=dat, which maps to st1, had same effect [inadvertent |
| // bundle split] and holded the loop back. Rescheduling for 4*n |
| // made it possible to eliminate dependence on specific alignment |
| // and allow OpenSSH keep "abusing" our API. Reaching for 3*n would |
| // require unrolling, sticking to variable shift instruction for |
| // collecting output [to avoid starvation for integer shifter] and |
| // copying of key schedule to controlled place in stack [so that |
| // deposit instruction can serve as substitute for whole |
| // key->data+((x&255)<<log2(sizeof(key->data[0])))]... |
| { .mmi; (p19) st1 [out]=dat[3],1 // *(out++)=dat |
| (p16) add xx=1,xx // x++ |
| (p18) dep rnd[1]=rnd[1],r0,OFF,8 } // ((tx+ty)&255)<<OFF |
| { .mmi; (p16) add key_x[1]=ksch,key_x[1] // &key[xx&255] |
| (p17) add key_y[1]=ksch,key_y[1] };; // &key[yy&255] |
| { .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx] |
| (p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy] |
| (p16) dep key_x[0]=xx,r0,OFF,8 } // (xx&255)<<OFF |
| { .mmi; (p18) add rnd[1]=ksch,rnd[1] // &key[(tx+ty)&255] |
| (p16) cmp.ne.unc p20,p21=key_x[1],key_y[1] };; |
| { .mmi; (p18) LDKEY rnd[1]=[rnd[1]] // rnd=key[(tx+ty)&255] |
| (p16) ld1 dat[0]=[inp],1 } // dat=*(inp++) |
| .pred.rel "mutex",p20,p21 |
| { .mmi; (p21) add yy=yy,tx[1] // (p16) |
| (p20) add yy=yy,tx[0] // (p16) y+=tx |
| (p21) mov tx[0]=tx[1] };; // (p16) |
| { .mmi; (p17) STKEY [key_y[1]]=tx[1] // key[yy]=tx |
| (p17) STKEY [key_x[2]]=ty[0] // key[xx]=ty |
| (p16) dep key_y[0]=yy,r0,OFF,8 } // &key[yy&255] |
| { .mmb; (p17) add rnd[0]=tx[1],ty[0] // tx+=ty |
| (p18) xor dat[2]=dat[2],rnd[1] // dat^=rnd |
| br.ctop.sptk .Ltop };; |
| .Lexit: |
| { .mib; STKEY [key]=yy,-SZ // save key->y |
| mov pr=prsave,0x1ffff |
| nop.b 0 } |
| { .mib; st1 [out]=dat[3],1 // compensate for truncated |
| // epilogue counter |
| add xx=-1,xx |
| nop.b 0 };; |
| { .mib; STKEY [key]=xx // save key->x |
| mov ar.lc=r3 |
| br.ret.sptk.many b0 };; |
| .endp RC4# |