| /* p5_crpt2.c */ |
| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project 1999. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include "cryptlib.h" |
| #if !defined(OPENSSL_NO_HMAC) && !defined(OPENSSL_NO_SHA) |
| #include <openssl/x509.h> |
| #include <openssl/evp.h> |
| #include <openssl/hmac.h> |
| #include "evp_locl.h" |
| |
| /* set this to print out info about the keygen algorithm */ |
| /* #define DEBUG_PKCS5V2 */ |
| |
| #ifdef DEBUG_PKCS5V2 |
| static void h__dump (const unsigned char *p, int len); |
| #endif |
| |
| /* This is an implementation of PKCS#5 v2.0 password based encryption key |
| * derivation function PBKDF2. |
| * SHA1 version verified against test vectors posted by Peter Gutmann |
| * <pgut001@cs.auckland.ac.nz> to the PKCS-TNG <pkcs-tng@rsa.com> mailing list. |
| */ |
| |
| int PKCS5_PBKDF2_HMAC(const char *pass, int passlen, |
| const unsigned char *salt, int saltlen, int iter, |
| const EVP_MD *digest, |
| int keylen, unsigned char *out) |
| { |
| unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4]; |
| int cplen, j, k, tkeylen, mdlen; |
| unsigned long i = 1; |
| HMAC_CTX hctx; |
| |
| mdlen = EVP_MD_size(digest); |
| if (mdlen < 0) |
| return 0; |
| |
| HMAC_CTX_init(&hctx); |
| p = out; |
| tkeylen = keylen; |
| if(!pass) |
| passlen = 0; |
| else if(passlen == -1) |
| passlen = strlen(pass); |
| while(tkeylen) |
| { |
| if(tkeylen > mdlen) |
| cplen = mdlen; |
| else |
| cplen = tkeylen; |
| /* We are unlikely to ever use more than 256 blocks (5120 bits!) |
| * but just in case... |
| */ |
| itmp[0] = (unsigned char)((i >> 24) & 0xff); |
| itmp[1] = (unsigned char)((i >> 16) & 0xff); |
| itmp[2] = (unsigned char)((i >> 8) & 0xff); |
| itmp[3] = (unsigned char)(i & 0xff); |
| if (!HMAC_Init_ex(&hctx, pass, passlen, digest, NULL) |
| || !HMAC_Update(&hctx, salt, saltlen) |
| || !HMAC_Update(&hctx, itmp, 4) |
| || !HMAC_Final(&hctx, digtmp, NULL)) |
| { |
| HMAC_CTX_cleanup(&hctx); |
| return 0; |
| } |
| memcpy(p, digtmp, cplen); |
| for(j = 1; j < iter; j++) |
| { |
| HMAC(digest, pass, passlen, |
| digtmp, mdlen, digtmp, NULL); |
| for(k = 0; k < cplen; k++) |
| p[k] ^= digtmp[k]; |
| } |
| tkeylen-= cplen; |
| i++; |
| p+= cplen; |
| } |
| HMAC_CTX_cleanup(&hctx); |
| #ifdef DEBUG_PKCS5V2 |
| fprintf(stderr, "Password:\n"); |
| h__dump (pass, passlen); |
| fprintf(stderr, "Salt:\n"); |
| h__dump (salt, saltlen); |
| fprintf(stderr, "Iteration count %d\n", iter); |
| fprintf(stderr, "Key:\n"); |
| h__dump (out, keylen); |
| #endif |
| return 1; |
| } |
| |
| int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen, |
| const unsigned char *salt, int saltlen, int iter, |
| int keylen, unsigned char *out) |
| { |
| return PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, EVP_sha1(), |
| keylen, out); |
| } |
| |
| #ifdef DO_TEST |
| main() |
| { |
| unsigned char out[4]; |
| unsigned char salt[] = {0x12, 0x34, 0x56, 0x78}; |
| PKCS5_PBKDF2_HMAC_SHA1("password", -1, salt, 4, 5, 4, out); |
| fprintf(stderr, "Out %02X %02X %02X %02X\n", |
| out[0], out[1], out[2], out[3]); |
| } |
| |
| #endif |
| |
| /* Now the key derivation function itself. This is a bit evil because |
| * it has to check the ASN1 parameters are valid: and there are quite a |
| * few of them... |
| */ |
| |
| int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, |
| ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md, |
| int en_de) |
| { |
| const unsigned char *pbuf; |
| int plen; |
| PBE2PARAM *pbe2 = NULL; |
| const EVP_CIPHER *cipher; |
| |
| int rv = 0; |
| |
| if (param == NULL || param->type != V_ASN1_SEQUENCE || |
| param->value.sequence == NULL) { |
| EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,EVP_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| pbuf = param->value.sequence->data; |
| plen = param->value.sequence->length; |
| if(!(pbe2 = d2i_PBE2PARAM(NULL, &pbuf, plen))) { |
| EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,EVP_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| /* See if we recognise the key derivation function */ |
| |
| if(OBJ_obj2nid(pbe2->keyfunc->algorithm) != NID_id_pbkdf2) { |
| EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, |
| EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); |
| goto err; |
| } |
| |
| /* lets see if we recognise the encryption algorithm. |
| */ |
| |
| cipher = EVP_get_cipherbyobj(pbe2->encryption->algorithm); |
| |
| if(!cipher) { |
| EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, |
| EVP_R_UNSUPPORTED_CIPHER); |
| goto err; |
| } |
| |
| /* Fixup cipher based on AlgorithmIdentifier */ |
| if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, en_de)) |
| goto err; |
| if(EVP_CIPHER_asn1_to_param(ctx, pbe2->encryption->parameter) < 0) { |
| EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, |
| EVP_R_CIPHER_PARAMETER_ERROR); |
| goto err; |
| } |
| rv = PKCS5_v2_PBKDF2_keyivgen(ctx, pass, passlen, |
| pbe2->keyfunc->parameter, c, md, en_de); |
| err: |
| PBE2PARAM_free(pbe2); |
| return rv; |
| } |
| |
| int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, |
| ASN1_TYPE *param, |
| const EVP_CIPHER *c, const EVP_MD *md, int en_de) |
| { |
| unsigned char *salt, key[EVP_MAX_KEY_LENGTH]; |
| const unsigned char *pbuf; |
| int saltlen, iter, plen; |
| int rv = 0; |
| unsigned int keylen = 0; |
| int prf_nid, hmac_md_nid; |
| PBKDF2PARAM *kdf = NULL; |
| const EVP_MD *prfmd; |
| |
| if (EVP_CIPHER_CTX_cipher(ctx) == NULL) |
| { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,EVP_R_NO_CIPHER_SET); |
| goto err; |
| } |
| keylen = EVP_CIPHER_CTX_key_length(ctx); |
| OPENSSL_assert(keylen <= sizeof key); |
| |
| /* Decode parameter */ |
| |
| if(!param || (param->type != V_ASN1_SEQUENCE)) |
| { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,EVP_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| pbuf = param->value.sequence->data; |
| plen = param->value.sequence->length; |
| |
| if(!(kdf = d2i_PBKDF2PARAM(NULL, &pbuf, plen)) ) { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,EVP_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| keylen = EVP_CIPHER_CTX_key_length(ctx); |
| |
| /* Now check the parameters of the kdf */ |
| |
| if(kdf->keylength && (ASN1_INTEGER_get(kdf->keylength) != (int)keylen)){ |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, |
| EVP_R_UNSUPPORTED_KEYLENGTH); |
| goto err; |
| } |
| |
| if (kdf->prf) |
| prf_nid = OBJ_obj2nid(kdf->prf->algorithm); |
| else |
| prf_nid = NID_hmacWithSHA1; |
| |
| if (!EVP_PBE_find(EVP_PBE_TYPE_PRF, prf_nid, NULL, &hmac_md_nid, 0)) |
| { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF); |
| goto err; |
| } |
| |
| prfmd = EVP_get_digestbynid(hmac_md_nid); |
| if (prfmd == NULL) |
| { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF); |
| goto err; |
| } |
| |
| if(kdf->salt->type != V_ASN1_OCTET_STRING) { |
| EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, |
| EVP_R_UNSUPPORTED_SALT_TYPE); |
| goto err; |
| } |
| |
| /* it seems that its all OK */ |
| salt = kdf->salt->value.octet_string->data; |
| saltlen = kdf->salt->value.octet_string->length; |
| iter = ASN1_INTEGER_get(kdf->iter); |
| if(!PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, prfmd, |
| keylen, key)) |
| goto err; |
| rv = EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, en_de); |
| err: |
| OPENSSL_cleanse(key, keylen); |
| PBKDF2PARAM_free(kdf); |
| return rv; |
| } |
| |
| #ifdef DEBUG_PKCS5V2 |
| static void h__dump (const unsigned char *p, int len) |
| { |
| for (; len --; p++) fprintf(stderr, "%02X ", *p); |
| fprintf(stderr, "\n"); |
| } |
| #endif |
| #endif |