| From fb402b7cdeffc907a9464cb84aa1311b1f77832a Mon Sep 17 00:00:00 2001 |
| From: Adam Langley <agl@chromium.org> |
| Date: Wed, 16 Jan 2013 11:18:19 -0500 |
| Subject: [PATCH 2/2] Make CBC decoding constant time. |
| |
| This patch makes the decoding of SSLv3 and TLS CBC records constant |
| time. Without this, a timing side-channel can be used to build a padding |
| oracle and mount Vaudenay's attack. |
| |
| This patch also disables the stitched AESNI+SHA mode pending a similar |
| fix to that code. |
| |
| In order to be easy to backport, this change is implemented in ssl/, |
| rather than as a generic AEAD mode. In the future this should be changed |
| around so that HMAC isn't in ssl/, but crypto/ as FIPS expects. |
| --- |
| crypto/evp/c_allc.c | 2 + |
| ssl/Makefile | 4 +- |
| ssl/d1_enc.c | 59 ++--- |
| ssl/d1_pkt.c | 87 ++++--- |
| ssl/s3_cbc.c | 696 ++++++++++++++++++++++++++++++++++++++++++++++++++++ |
| ssl/s3_enc.c | 119 +++++---- |
| ssl/s3_pkt.c | 94 +++---- |
| ssl/ssl3.h | 4 + |
| ssl/ssl_algs.c | 3 + |
| ssl/ssl_locl.h | 34 +++ |
| ssl/t1_enc.c | 144 +++++------ |
| 11 files changed, 993 insertions(+), 253 deletions(-) |
| create mode 100644 ssl/s3_cbc.c |
| |
| diff --git a/crypto/evp/c_allc.c b/crypto/evp/c_allc.c |
| index 2a45d43..e230e60 100644 |
| --- a/crypto/evp/c_allc.c |
| +++ b/crypto/evp/c_allc.c |
| @@ -195,11 +195,13 @@ void OpenSSL_add_all_ciphers(void) |
| EVP_add_cipher(EVP_aes_256_xts()); |
| EVP_add_cipher_alias(SN_aes_256_cbc,"AES256"); |
| EVP_add_cipher_alias(SN_aes_256_cbc,"aes256"); |
| +#if 0 /* Disabled because of timing side-channel leaks. */ |
| #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1) |
| EVP_add_cipher(EVP_aes_128_cbc_hmac_sha1()); |
| EVP_add_cipher(EVP_aes_256_cbc_hmac_sha1()); |
| #endif |
| #endif |
| +#endif |
| |
| #ifndef OPENSSL_NO_CAMELLIA |
| EVP_add_cipher(EVP_camellia_128_ecb()); |
| diff --git a/ssl/Makefile b/ssl/Makefile |
| index feaf3e3..bdb49e2 100644 |
| --- a/ssl/Makefile |
| +++ b/ssl/Makefile |
| @@ -22,7 +22,7 @@ LIB=$(TOP)/libssl.a |
| SHARED_LIB= libssl$(SHLIB_EXT) |
| LIBSRC= \ |
| s2_meth.c s2_srvr.c s2_clnt.c s2_lib.c s2_enc.c s2_pkt.c \ |
| - s3_meth.c s3_srvr.c s3_clnt.c s3_lib.c s3_enc.c s3_pkt.c s3_both.c \ |
| + s3_meth.c s3_srvr.c s3_clnt.c s3_lib.c s3_enc.c s3_pkt.c s3_both.c s3_cbc.c \ |
| s23_meth.c s23_srvr.c s23_clnt.c s23_lib.c s23_pkt.c \ |
| t1_meth.c t1_srvr.c t1_clnt.c t1_lib.c t1_enc.c \ |
| d1_meth.c d1_srvr.c d1_clnt.c d1_lib.c d1_pkt.c \ |
| @@ -33,7 +33,7 @@ LIBSRC= \ |
| bio_ssl.c ssl_err.c kssl.c tls_srp.c t1_reneg.c |
| LIBOBJ= \ |
| s2_meth.o s2_srvr.o s2_clnt.o s2_lib.o s2_enc.o s2_pkt.o \ |
| - s3_meth.o s3_srvr.o s3_clnt.o s3_lib.o s3_enc.o s3_pkt.o s3_both.o \ |
| + s3_meth.o s3_srvr.o s3_clnt.o s3_lib.o s3_enc.o s3_pkt.o s3_both.o s3_cbc.o \ |
| s23_meth.o s23_srvr.o s23_clnt.o s23_lib.o s23_pkt.o \ |
| t1_meth.o t1_srvr.o t1_clnt.o t1_lib.o t1_enc.o \ |
| d1_meth.o d1_srvr.o d1_clnt.o d1_lib.o d1_pkt.o \ |
| diff --git a/ssl/d1_enc.c b/ssl/d1_enc.c |
| index 07a5e97..712c464 100644 |
| --- a/ssl/d1_enc.c |
| +++ b/ssl/d1_enc.c |
| @@ -126,20 +126,28 @@ |
| #include <openssl/des.h> |
| #endif |
| |
| +/* dtls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. |
| + * |
| + * Returns: |
| + * 0: (in non-constant time) if the record is publically invalid (i.e. too |
| + * short etc). |
| + * 1: if the record's padding is valid / the encryption was successful. |
| + * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, |
| + * an internal error occured. */ |
| int dtls1_enc(SSL *s, int send) |
| { |
| SSL3_RECORD *rec; |
| EVP_CIPHER_CTX *ds; |
| unsigned long l; |
| - int bs,i,ii,j,k,n=0; |
| + int bs,i,j,k,mac_size=0; |
| const EVP_CIPHER *enc; |
| |
| if (send) |
| { |
| if (EVP_MD_CTX_md(s->write_hash)) |
| { |
| - n=EVP_MD_CTX_size(s->write_hash); |
| - if (n < 0) |
| + mac_size=EVP_MD_CTX_size(s->write_hash); |
| + if (mac_size < 0) |
| return -1; |
| } |
| ds=s->enc_write_ctx; |
| @@ -164,9 +172,8 @@ int dtls1_enc(SSL *s, int send) |
| { |
| if (EVP_MD_CTX_md(s->read_hash)) |
| { |
| - n=EVP_MD_CTX_size(s->read_hash); |
| - if (n < 0) |
| - return -1; |
| + mac_size=EVP_MD_CTX_size(s->read_hash); |
| + OPENSSL_assert(mac_size >= 0); |
| } |
| ds=s->enc_read_ctx; |
| rec= &(s->s3->rrec); |
| @@ -231,7 +238,7 @@ int dtls1_enc(SSL *s, int send) |
| if (!send) |
| { |
| if (l == 0 || l%bs != 0) |
| - return -1; |
| + return 0; |
| } |
| |
| EVP_Cipher(ds,rec->data,rec->input,l); |
| @@ -246,43 +253,7 @@ int dtls1_enc(SSL *s, int send) |
| #endif /* KSSL_DEBUG */ |
| |
| if ((bs != 1) && !send) |
| - { |
| - ii=i=rec->data[l-1]; /* padding_length */ |
| - i++; |
| - if (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) |
| - { |
| - /* First packet is even in size, so check */ |
| - if ((memcmp(s->s3->read_sequence, |
| - "\0\0\0\0\0\0\0\0",8) == 0) && !(ii & 1)) |
| - s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG; |
| - if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) |
| - i--; |
| - } |
| - /* TLS 1.0 does not bound the number of padding bytes by the block size. |
| - * All of them must have value 'padding_length'. */ |
| - if (i + bs > (int)rec->length) |
| - { |
| - /* Incorrect padding. SSLerr() and ssl3_alert are done |
| - * by caller: we don't want to reveal whether this is |
| - * a decryption error or a MAC verification failure |
| - * (see http://www.openssl.org/~bodo/tls-cbc.txt) |
| - */ |
| - return -1; |
| - } |
| - for (j=(int)(l-i); j<(int)l; j++) |
| - { |
| - if (rec->data[j] != ii) |
| - { |
| - /* Incorrect padding */ |
| - return -1; |
| - } |
| - } |
| - rec->length-=i; |
| - |
| - rec->data += bs; /* skip the implicit IV */ |
| - rec->input += bs; |
| - rec->length -= bs; |
| - } |
| + return tls1_cbc_remove_padding(s, rec, bs, mac_size); |
| } |
| return(1); |
| } |
| diff --git a/ssl/d1_pkt.c b/ssl/d1_pkt.c |
| index 5e2c56c..02c881a 100644 |
| --- a/ssl/d1_pkt.c |
| +++ b/ssl/d1_pkt.c |
| @@ -376,15 +376,11 @@ static int |
| dtls1_process_record(SSL *s) |
| { |
| int i,al; |
| - int clear=0; |
| int enc_err; |
| SSL_SESSION *sess; |
| SSL3_RECORD *rr; |
| unsigned int mac_size; |
| unsigned char md[EVP_MAX_MD_SIZE]; |
| - int decryption_failed_or_bad_record_mac = 0; |
| - unsigned char *mac = NULL; |
| - |
| |
| rr= &(s->s3->rrec); |
| sess = s->session; |
| @@ -414,14 +410,19 @@ dtls1_process_record(SSL *s) |
| |
| /* decrypt in place in 'rr->input' */ |
| rr->data=rr->input; |
| + rr->orig_len=rr->length; |
| |
| enc_err = s->method->ssl3_enc->enc(s,0); |
| - if (enc_err <= 0) |
| + /* enc_err is: |
| + * 0: (in non-constant time) if the record is publically invalid. |
| + * 1: if the padding is valid |
| + * -1: if the padding is invalid */ |
| + if (enc_err == 0) |
| { |
| - /* To minimize information leaked via timing, we will always |
| - * perform all computations before discarding the message. |
| - */ |
| - decryption_failed_or_bad_record_mac = 1; |
| + /* For DTLS we simply ignore bad packets. */ |
| + rr->length = 0; |
| + s->packet_length = 0; |
| + goto err; |
| } |
| |
| #ifdef TLS_DEBUG |
| @@ -431,45 +432,59 @@ printf("\n"); |
| #endif |
| |
| /* r->length is now the compressed data plus mac */ |
| - if ( (sess == NULL) || |
| - (s->enc_read_ctx == NULL) || |
| - (s->read_hash == NULL)) |
| - clear=1; |
| - |
| - if (!clear) |
| + if ((sess != NULL) && |
| + (s->enc_read_ctx != NULL) && |
| + (EVP_MD_CTX_md(s->read_hash) != NULL)) |
| { |
| - /* !clear => s->read_hash != NULL => mac_size != -1 */ |
| - int t; |
| - t=EVP_MD_CTX_size(s->read_hash); |
| - OPENSSL_assert(t >= 0); |
| - mac_size=t; |
| - |
| - if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH+mac_size) |
| + /* s->read_hash != NULL => mac_size != -1 */ |
| + unsigned char *mac = NULL; |
| + unsigned char mac_tmp[EVP_MAX_MD_SIZE]; |
| + mac_size=EVP_MD_CTX_size(s->read_hash); |
| + OPENSSL_assert(mac_size <= EVP_MAX_MD_SIZE); |
| + |
| + /* orig_len is the length of the record before any padding was |
| + * removed. This is public information, as is the MAC in use, |
| + * therefore we can safely process the record in a different |
| + * amount of time if it's too short to possibly contain a MAC. |
| + */ |
| + if (rr->orig_len < mac_size || |
| + /* CBC records must have a padding length byte too. */ |
| + (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| + rr->orig_len < mac_size+1)) |
| { |
| -#if 0 /* OK only for stream ciphers (then rr->length is visible from ciphertext anyway) */ |
| - al=SSL_AD_RECORD_OVERFLOW; |
| - SSLerr(SSL_F_DTLS1_PROCESS_RECORD,SSL_R_PRE_MAC_LENGTH_TOO_LONG); |
| + al=SSL_AD_DECODE_ERROR; |
| + SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_LENGTH_TOO_SHORT); |
| goto f_err; |
| -#else |
| - decryption_failed_or_bad_record_mac = 1; |
| -#endif |
| } |
| - /* check the MAC for rr->input (it's in mac_size bytes at the tail) */ |
| - if (rr->length >= mac_size) |
| + |
| + if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) |
| { |
| + /* We update the length so that the TLS header bytes |
| + * can be constructed correctly but we need to extract |
| + * the MAC in constant time from within the record, |
| + * without leaking the contents of the padding bytes. |
| + * */ |
| + mac = mac_tmp; |
| + ssl3_cbc_copy_mac(mac_tmp, rr, mac_size); |
| rr->length -= mac_size; |
| - mac = &rr->data[rr->length]; |
| } |
| else |
| - rr->length = 0; |
| - i=s->method->ssl3_enc->mac(s,md,0); |
| - if (i < 0 || mac == NULL || CRYPTO_memcmp(md,mac,mac_size) != 0) |
| { |
| - decryption_failed_or_bad_record_mac = 1; |
| + /* In this case there's no padding, so |rec->orig_len| |
| + * equals |rec->length| and we checked that there's |
| + * enough bytes for |mac_size| above. */ |
| + rr->length -= mac_size; |
| + mac = &rr->data[rr->length]; |
| } |
| + |
| + i=s->method->ssl3_enc->mac(s,md,0 /* not send */); |
| + if (i < 0 || mac == NULL || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) |
| + enc_err = -1; |
| + if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH+mac_size) |
| + enc_err = -1; |
| } |
| |
| - if (decryption_failed_or_bad_record_mac) |
| + if (enc_err < 0) |
| { |
| /* decryption failed, silently discard message */ |
| rr->length = 0; |
| diff --git a/ssl/s3_cbc.c b/ssl/s3_cbc.c |
| new file mode 100644 |
| index 0000000..e9b112c |
| --- /dev/null |
| +++ b/ssl/s3_cbc.c |
| @@ -0,0 +1,696 @@ |
| +/* ssl/s3_cbc.c */ |
| +/* ==================================================================== |
| + * Copyright (c) 2012 The OpenSSL Project. All rights reserved. |
| + * |
| + * Redistribution and use in source and binary forms, with or without |
| + * modification, are permitted provided that the following conditions |
| + * are met: |
| + * |
| + * 1. Redistributions of source code must retain the above copyright |
| + * notice, this list of conditions and the following disclaimer. |
| + * |
| + * 2. Redistributions in binary form must reproduce the above copyright |
| + * notice, this list of conditions and the following disclaimer in |
| + * the documentation and/or other materials provided with the |
| + * distribution. |
| + * |
| + * 3. All advertising materials mentioning features or use of this |
| + * software must display the following acknowledgment: |
| + * "This product includes software developed by the OpenSSL Project |
| + * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| + * |
| + * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| + * endorse or promote products derived from this software without |
| + * prior written permission. For written permission, please contact |
| + * openssl-core@openssl.org. |
| + * |
| + * 5. Products derived from this software may not be called "OpenSSL" |
| + * nor may "OpenSSL" appear in their names without prior written |
| + * permission of the OpenSSL Project. |
| + * |
| + * 6. Redistributions of any form whatsoever must retain the following |
| + * acknowledgment: |
| + * "This product includes software developed by the OpenSSL Project |
| + * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| + * |
| + * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| + * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| + * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| + * OF THE POSSIBILITY OF SUCH DAMAGE. |
| + * ==================================================================== |
| + * |
| + * This product includes cryptographic software written by Eric Young |
| + * (eay@cryptsoft.com). This product includes software written by Tim |
| + * Hudson (tjh@cryptsoft.com). |
| + * |
| + */ |
| + |
| +#include <stdint.h> |
| + |
| +#include "ssl_locl.h" |
| + |
| +#include <openssl/md5.h> |
| +#include <openssl/sha.h> |
| + |
| +/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length |
| + * field. (SHA-384/512 have 128-bit length.) */ |
| +#define MAX_HASH_BIT_COUNT_BYTES 16 |
| + |
| +/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. |
| + * Currently SHA-384/512 has a 128-byte block size and that's the largest |
| + * supported by TLS.) */ |
| +#define MAX_HASH_BLOCK_SIZE 128 |
| + |
| +/* Some utility functions are needed: |
| + * |
| + * These macros return the given value with the MSB copied to all the other |
| + * bits. They use the fact that arithmetic shift shifts-in the sign bit. |
| + * However, this is not ensured by the C standard so you may need to replace |
| + * them with something else on odd CPUs. */ |
| +#define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) ) |
| +#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x))) |
| + |
| +/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */ |
| +static unsigned constant_time_ge(unsigned a, unsigned b) |
| + { |
| + a -= b; |
| + return DUPLICATE_MSB_TO_ALL(~a); |
| + } |
| + |
| +/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */ |
| +static unsigned char constant_time_eq_8(unsigned char a, unsigned char b) |
| + { |
| + unsigned c = a ^ b; |
| + c--; |
| + return DUPLICATE_MSB_TO_ALL_8(c); |
| + } |
| + |
| +/* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC |
| + * record in |rec| by updating |rec->length| in constant time. |
| + * |
| + * block_size: the block size of the cipher used to encrypt the record. |
| + * returns: |
| + * 0: (in non-constant time) if the record is publicly invalid. |
| + * 1: if the padding was valid |
| + * -1: otherwise. */ |
| +int ssl3_cbc_remove_padding(const SSL* s, |
| + SSL3_RECORD *rec, |
| + unsigned block_size, |
| + unsigned mac_size) |
| + { |
| + unsigned padding_length, good; |
| + const unsigned overhead = 1 /* padding length byte */ + mac_size; |
| + |
| + /* These lengths are all public so we can test them in non-constant |
| + * time. */ |
| + if (overhead > rec->length) |
| + return 0; |
| + |
| + padding_length = rec->data[rec->length-1]; |
| + good = constant_time_ge(rec->length, padding_length+overhead); |
| + /* SSLv3 requires that the padding is minimal. */ |
| + good &= constant_time_ge(block_size, padding_length+1); |
| + rec->length -= good & (padding_length+1); |
| + return (int)((good & 1) | (~good & -1)); |
| +} |
| + |
| +/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC |
| + * record in |rec| in constant time and returns 1 if the padding is valid and |
| + * -1 otherwise. It also removes any explicit IV from the start of the record |
| + * without leaking any timing about whether there was enough space after the |
| + * padding was removed. |
| + * |
| + * block_size: the block size of the cipher used to encrypt the record. |
| + * returns: |
| + * 0: (in non-constant time) if the record is publicly invalid. |
| + * 1: if the padding was valid |
| + * -1: otherwise. */ |
| +int tls1_cbc_remove_padding(const SSL* s, |
| + SSL3_RECORD *rec, |
| + unsigned block_size, |
| + unsigned mac_size) |
| + { |
| + unsigned padding_length, good, to_check, i; |
| + const char has_explicit_iv = |
| + s->version >= TLS1_1_VERSION || s->version == DTLS1_VERSION; |
| + const unsigned overhead = 1 /* padding length byte */ + |
| + mac_size + |
| + (has_explicit_iv ? block_size : 0); |
| + |
| + /* These lengths are all public so we can test them in non-constant |
| + * time. */ |
| + if (overhead > rec->length) |
| + return 0; |
| + |
| + padding_length = rec->data[rec->length-1]; |
| + |
| + /* NB: if compression is in operation the first packet may not be of |
| + * even length so the padding bug check cannot be performed. This bug |
| + * workaround has been around since SSLeay so hopefully it is either |
| + * fixed now or no buggy implementation supports compression [steve] |
| + */ |
| + if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) |
| + { |
| + /* First packet is even in size, so check */ |
| + if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) && |
| + !(padding_length & 1)) |
| + { |
| + s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG; |
| + } |
| + if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && |
| + padding_length > 0) |
| + { |
| + padding_length--; |
| + } |
| + } |
| + |
| + good = constant_time_ge(rec->length, overhead+padding_length); |
| + /* The padding consists of a length byte at the end of the record and |
| + * then that many bytes of padding, all with the same value as the |
| + * length byte. Thus, with the length byte included, there are i+1 |
| + * bytes of padding. |
| + * |
| + * We can't check just |padding_length+1| bytes because that leaks |
| + * decrypted information. Therefore we always have to check the maximum |
| + * amount of padding possible. (Again, the length of the record is |
| + * public information so we can use it.) */ |
| + to_check = 255; /* maximum amount of padding. */ |
| + if (to_check > rec->length-1) |
| + to_check = rec->length-1; |
| + |
| + for (i = 0; i < to_check; i++) |
| + { |
| + unsigned char mask = constant_time_ge(padding_length, i); |
| + unsigned char b = rec->data[rec->length-1-i]; |
| + /* The final |padding_length+1| bytes should all have the value |
| + * |padding_length|. Therefore the XOR should be zero. */ |
| + good &= ~(mask&(padding_length ^ b)); |
| + } |
| + |
| + /* If any of the final |padding_length+1| bytes had the wrong value, |
| + * one or more of the lower eight bits of |good| will be cleared. We |
| + * AND the bottom 8 bits together and duplicate the result to all the |
| + * bits. */ |
| + good &= good >> 4; |
| + good &= good >> 2; |
| + good &= good >> 1; |
| + good <<= sizeof(good)*8-1; |
| + good = DUPLICATE_MSB_TO_ALL(good); |
| + |
| + rec->length -= good & (padding_length+1); |
| + |
| + /* We can always safely skip the explicit IV. We check at the beginning |
| + * of this function that the record has at least enough space for the |
| + * IV, MAC and padding length byte. (These can be checked in |
| + * non-constant time because it's all public information.) So, if the |
| + * padding was invalid, then we didn't change |rec->length| and this is |
| + * safe. If the padding was valid then we know that we have at least |
| + * overhead+padding_length bytes of space and so this is still safe |
| + * because overhead accounts for the explicit IV. */ |
| + if (has_explicit_iv) |
| + { |
| + rec->data += block_size; |
| + rec->input += block_size; |
| + rec->length -= block_size; |
| + rec->orig_len -= block_size; |
| + } |
| + |
| + return (int)((good & 1) | (~good & -1)); |
| + } |
| + |
| +#if defined(_M_AMD64) || defined(__x86_64__) |
| +#define CBC_MAC_ROTATE_IN_PLACE |
| +#endif |
| + |
| +/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in |
| + * constant time (independent of the concrete value of rec->length, which may |
| + * vary within a 256-byte window). |
| + * |
| + * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to |
| + * this function. |
| + * |
| + * On entry: |
| + * rec->orig_len >= md_size |
| + * md_size <= EVP_MAX_MD_SIZE |
| + * |
| + * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with |
| + * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into |
| + * a single cache-line, then the variable memory accesses don't actually affect |
| + * the timing. This has been tested to be true on Intel amd64 chips. |
| + */ |
| +void ssl3_cbc_copy_mac(unsigned char* out, |
| + const SSL3_RECORD *rec, |
| + unsigned md_size) |
| + { |
| +#if defined(CBC_MAC_ROTATE_IN_PLACE) |
| + unsigned char rotated_mac_buf[EVP_MAX_MD_SIZE*2]; |
| + unsigned char *rotated_mac; |
| +#else |
| + unsigned char rotated_mac[EVP_MAX_MD_SIZE]; |
| +#endif |
| + |
| + /* mac_end is the index of |rec->data| just after the end of the MAC. */ |
| + unsigned mac_end = rec->length; |
| + unsigned mac_start = mac_end - md_size; |
| + /* scan_start contains the number of bytes that we can ignore because |
| + * the MAC's position can only vary by 255 bytes. */ |
| + unsigned scan_start = 0; |
| + unsigned i, j; |
| + unsigned div_spoiler; |
| + unsigned rotate_offset; |
| + |
| + OPENSSL_assert(rec->orig_len >= md_size); |
| + OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); |
| + |
| +#if defined(CBC_MAC_ROTATE_IN_PLACE) |
| + rotated_mac = (unsigned char*) (((intptr_t)(rotated_mac_buf + 64)) & ~63); |
| +#endif |
| + |
| + /* This information is public so it's safe to branch based on it. */ |
| + if (rec->orig_len > md_size + 255 + 1) |
| + scan_start = rec->orig_len - (md_size + 255 + 1); |
| + /* div_spoiler contains a multiple of md_size that is used to cause the |
| + * modulo operation to be constant time. Without this, the time varies |
| + * based on the amount of padding when running on Intel chips at least. |
| + * |
| + * The aim of right-shifting md_size is so that the compiler doesn't |
| + * figure out that it can remove div_spoiler as that would require it |
| + * to prove that md_size is always even, which I hope is beyond it. */ |
| + div_spoiler = md_size >> 1; |
| + div_spoiler <<= (sizeof(div_spoiler)-1)*8; |
| + rotate_offset = (div_spoiler + mac_start - scan_start) % md_size; |
| + |
| + memset(rotated_mac, 0, md_size); |
| + for (i = scan_start; i < rec->orig_len;) |
| + { |
| + for (j = 0; j < md_size && i < rec->orig_len; i++, j++) |
| + { |
| + unsigned char mac_started = constant_time_ge(i, mac_start); |
| + unsigned char mac_ended = constant_time_ge(i, mac_end); |
| + unsigned char b = 0; |
| + b = rec->data[i]; |
| + rotated_mac[j] |= b & mac_started & ~mac_ended; |
| + } |
| + } |
| + |
| + /* Now rotate the MAC */ |
| +#if defined(CBC_MAC_ROTATE_IN_PLACE) |
| + j = 0; |
| + for (i = 0; i < md_size; i++) |
| + { |
| + unsigned char offset = (div_spoiler + rotate_offset + i) % md_size; |
| + out[j++] = rotated_mac[offset]; |
| + } |
| +#else |
| + memset(out, 0, md_size); |
| + for (i = 0; i < md_size; i++) |
| + { |
| + unsigned char offset = (div_spoiler + md_size - rotate_offset + i) % md_size; |
| + for (j = 0; j < md_size; j++) |
| + out[j] |= rotated_mac[i] & constant_time_eq_8(j, offset); |
| + } |
| +#endif |
| + } |
| + |
| +/* These functions serialize the state of a hash and thus perform the standard |
| + * "final" operation without adding the padding and length that such a function |
| + * typically does. */ |
| +static void tls1_md5_final_raw(void* ctx, unsigned char *md_out) |
| + { |
| + MD5_CTX *md5 = ctx; |
| + l2n(md5->A, md_out); |
| + l2n(md5->B, md_out); |
| + l2n(md5->C, md_out); |
| + l2n(md5->D, md_out); |
| + } |
| + |
| +static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out) |
| + { |
| + SHA_CTX *sha1 = ctx; |
| + l2n(sha1->h0, md_out); |
| + l2n(sha1->h1, md_out); |
| + l2n(sha1->h2, md_out); |
| + l2n(sha1->h3, md_out); |
| + l2n(sha1->h4, md_out); |
| + } |
| + |
| +static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out) |
| + { |
| + SHA256_CTX *sha256 = ctx; |
| + unsigned i; |
| + |
| + for (i = 0; i < 8; i++) |
| + { |
| + l2n(sha256->h[i], md_out); |
| + } |
| + } |
| + |
| +static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out) |
| + { |
| + SHA512_CTX *sha512 = ctx; |
| + unsigned i; |
| + |
| + for (i = 0; i < 8; i++) |
| + { |
| + l2n8(sha512->h[i], md_out); |
| + } |
| + } |
| + |
| +/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function |
| + * which ssl3_cbc_digest_record supports. */ |
| +char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx) |
| + { |
| + switch (ctx->digest->type) |
| + { |
| + case NID_md5: |
| + case NID_sha1: |
| + case NID_sha224: |
| + case NID_sha256: |
| + case NID_sha384: |
| + case NID_sha512: |
| + return 1; |
| + default: |
| + return 0; |
| + } |
| + } |
| + |
| +/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS |
| + * record. |
| + * |
| + * ctx: the EVP_MD_CTX from which we take the hash function. |
| + * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. |
| + * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. |
| + * md_out_size: if non-NULL, the number of output bytes is written here. |
| + * header: the 13-byte, TLS record header. |
| + * data: the record data itself, less any preceeding explicit IV. |
| + * data_plus_mac_size: the secret, reported length of the data and MAC |
| + * once the padding has been removed. |
| + * data_plus_mac_plus_padding_size: the public length of the whole |
| + * record, including padding. |
| + * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. |
| + * |
| + * On entry: by virtue of having been through one of the remove_padding |
| + * functions, above, we know that data_plus_mac_size is large enough to contain |
| + * a padding byte and MAC. (If the padding was invalid, it might contain the |
| + * padding too. ) */ |
| +void ssl3_cbc_digest_record( |
| + const EVP_MD_CTX *ctx, |
| + unsigned char* md_out, |
| + size_t* md_out_size, |
| + const unsigned char header[13], |
| + const unsigned char *data, |
| + size_t data_plus_mac_size, |
| + size_t data_plus_mac_plus_padding_size, |
| + const unsigned char *mac_secret, |
| + unsigned mac_secret_length, |
| + char is_sslv3) |
| + { |
| + unsigned char md_state[sizeof(SHA512_CTX)]; |
| + void (*md_final_raw)(void *ctx, unsigned char *md_out); |
| + void (*md_transform)(void *ctx, const unsigned char *block); |
| + unsigned md_size, md_block_size = 64; |
| + unsigned sslv3_pad_length = 40, header_length, variance_blocks, |
| + len, max_mac_bytes, num_blocks, |
| + num_starting_blocks, k, mac_end_offset, c, index_a, index_b; |
| + uint64_t bits; |
| + unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; |
| + /* hmac_pad is the masked HMAC key. */ |
| + unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; |
| + unsigned char first_block[MAX_HASH_BLOCK_SIZE]; |
| + unsigned char mac_out[EVP_MAX_MD_SIZE]; |
| + unsigned i, j, md_out_size_u; |
| + EVP_MD_CTX md_ctx; |
| + /* mdLengthSize is the number of bytes in the length field that terminates |
| + * the hash. */ |
| + unsigned md_length_size = 8; |
| + |
| + /* This is a, hopefully redundant, check that allows us to forget about |
| + * many possible overflows later in this function. */ |
| + OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024); |
| + |
| + switch (ctx->digest->type) |
| + { |
| + case NID_md5: |
| + MD5_Init((MD5_CTX*)md_state); |
| + md_final_raw = tls1_md5_final_raw; |
| + md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform; |
| + md_size = 16; |
| + sslv3_pad_length = 48; |
| + break; |
| + case NID_sha1: |
| + SHA1_Init((SHA_CTX*)md_state); |
| + md_final_raw = tls1_sha1_final_raw; |
| + md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform; |
| + md_size = 20; |
| + break; |
| + case NID_sha224: |
| + SHA224_Init((SHA256_CTX*)md_state); |
| + md_final_raw = tls1_sha256_final_raw; |
| + md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform; |
| + md_size = 224/8; |
| + break; |
| + case NID_sha256: |
| + SHA256_Init((SHA256_CTX*)md_state); |
| + md_final_raw = tls1_sha256_final_raw; |
| + md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform; |
| + md_size = 32; |
| + break; |
| + case NID_sha384: |
| + SHA384_Init((SHA512_CTX*)md_state); |
| + md_final_raw = tls1_sha512_final_raw; |
| + md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform; |
| + md_size = 384/8; |
| + md_block_size = 128; |
| + md_length_size = 16; |
| + break; |
| + case NID_sha512: |
| + SHA512_Init((SHA512_CTX*)md_state); |
| + md_final_raw = tls1_sha512_final_raw; |
| + md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform; |
| + md_size = 64; |
| + md_block_size = 128; |
| + md_length_size = 16; |
| + break; |
| + default: |
| + /* ssl3_cbc_record_digest_supported should have been |
| + * called first to check that the hash function is |
| + * supported. */ |
| + OPENSSL_assert(0); |
| + if (md_out_size) |
| + *md_out_size = -1; |
| + return; |
| + } |
| + |
| + OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES); |
| + OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE); |
| + OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); |
| + |
| + header_length = 13; |
| + if (is_sslv3) |
| + { |
| + header_length = |
| + mac_secret_length + |
| + sslv3_pad_length + |
| + 8 /* sequence number */ + |
| + 1 /* record type */ + |
| + 2 /* record length */; |
| + } |
| + |
| + /* variance_blocks is the number of blocks of the hash that we have to |
| + * calculate in constant time because they could be altered by the |
| + * padding value. |
| + * |
| + * In SSLv3, the padding must be minimal so the end of the plaintext |
| + * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that |
| + * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash |
| + * termination (0x80 + 64-bit length) don't fit in the final block, we |
| + * say that the final two blocks can vary based on the padding. |
| + * |
| + * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not |
| + * required to be minimal. Therefore we say that the final six blocks |
| + * can vary based on the padding. |
| + * |
| + * Later in the function, if the message is short and there obviously |
| + * cannot be this many blocks then variance_blocks can be reduced. */ |
| + variance_blocks = is_sslv3 ? 2 : 6; |
| + /* From now on we're dealing with the MAC, which conceptually has 13 |
| + * bytes of `header' before the start of the data (TLS) or 71/75 bytes |
| + * (SSLv3) */ |
| + len = data_plus_mac_plus_padding_size + header_length; |
| + /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including |
| + * |header|, assuming that there's no padding. */ |
| + max_mac_bytes = len - md_size - 1; |
| + /* num_blocks is the maximum number of hash blocks. */ |
| + num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size; |
| + /* In order to calculate the MAC in constant time we have to handle |
| + * the final blocks specially because the padding value could cause the |
| + * end to appear somewhere in the final |variance_blocks| blocks and we |
| + * can't leak where. However, |num_starting_blocks| worth of data can |
| + * be hashed right away because no padding value can affect whether |
| + * they are plaintext. */ |
| + num_starting_blocks = 0; |
| + /* k is the starting byte offset into the conceptual header||data where |
| + * we start processing. */ |
| + k = 0; |
| + /* mac_end_offset is the index just past the end of the data to be |
| + * MACed. */ |
| + mac_end_offset = data_plus_mac_size + header_length - md_size; |
| + /* c is the index of the 0x80 byte in the final hash block that |
| + * contains application data. */ |
| + c = mac_end_offset % md_block_size; |
| + /* index_a is the hash block number that contains the 0x80 terminating |
| + * value. */ |
| + index_a = mac_end_offset / md_block_size; |
| + /* index_b is the hash block number that contains the 64-bit hash |
| + * length, in bits. */ |
| + index_b = (mac_end_offset + md_length_size) / md_block_size; |
| + /* bits is the hash-length in bits. It includes the additional hash |
| + * block for the masked HMAC key, or whole of |header| in the case of |
| + * SSLv3. */ |
| + |
| + /* For SSLv3, if we're going to have any starting blocks then we need |
| + * at least two because the header is larger than a single block. */ |
| + if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) |
| + { |
| + num_starting_blocks = num_blocks - variance_blocks; |
| + k = md_block_size*num_starting_blocks; |
| + } |
| + |
| + bits = 8*mac_end_offset; |
| + if (!is_sslv3) |
| + { |
| + /* Compute the initial HMAC block. For SSLv3, the padding and |
| + * secret bytes are included in |header| because they take more |
| + * than a single block. */ |
| + bits += 8*md_block_size; |
| + memset(hmac_pad, 0, md_block_size); |
| + OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad)); |
| + memcpy(hmac_pad, mac_secret, mac_secret_length); |
| + for (i = 0; i < md_block_size; i++) |
| + hmac_pad[i] ^= 0x36; |
| + |
| + md_transform(md_state, hmac_pad); |
| + } |
| + |
| + j = 0; |
| + if (md_length_size == 16) |
| + { |
| + memset(length_bytes, 0, 8); |
| + j = 8; |
| + } |
| + for (i = 0; i < 8; i++) |
| + length_bytes[i+j] = bits >> (8*(7-i)); |
| + |
| + if (k > 0) |
| + { |
| + if (is_sslv3) |
| + { |
| + /* The SSLv3 header is larger than a single block. |
| + * overhang is the number of bytes beyond a single |
| + * block that the header consumes: either 7 bytes |
| + * (SHA1) or 11 bytes (MD5). */ |
| + unsigned overhang = header_length-md_block_size; |
| + md_transform(md_state, header); |
| + memcpy(first_block, header + md_block_size, overhang); |
| + memcpy(first_block + overhang, data, md_block_size-overhang); |
| + md_transform(md_state, first_block); |
| + for (i = 1; i < k/md_block_size - 1; i++) |
| + md_transform(md_state, data + md_block_size*i - overhang); |
| + } |
| + else |
| + { |
| + /* k is a multiple of md_block_size. */ |
| + memcpy(first_block, header, 13); |
| + memcpy(first_block+13, data, md_block_size-13); |
| + md_transform(md_state, first_block); |
| + for (i = 1; i < k/md_block_size; i++) |
| + md_transform(md_state, data + md_block_size*i - 13); |
| + } |
| + } |
| + |
| + memset(mac_out, 0, sizeof(mac_out)); |
| + |
| + /* We now process the final hash blocks. For each block, we construct |
| + * it in constant time. If the |i==index_a| then we'll include the 0x80 |
| + * bytes and zero pad etc. For each block we selectively copy it, in |
| + * constant time, to |mac_out|. */ |
| + for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++) |
| + { |
| + unsigned char block[MAX_HASH_BLOCK_SIZE]; |
| + unsigned char is_block_a = constant_time_eq_8(i, index_a); |
| + unsigned char is_block_b = constant_time_eq_8(i, index_b); |
| + for (j = 0; j < md_block_size; j++) |
| + { |
| + unsigned char b = 0, is_past_c, is_past_cp1; |
| + if (k < header_length) |
| + b = header[k]; |
| + else if (k < data_plus_mac_plus_padding_size + header_length) |
| + b = data[k-header_length]; |
| + k++; |
| + |
| + is_past_c = is_block_a & constant_time_ge(j, c); |
| + is_past_cp1 = is_block_a & constant_time_ge(j, c+1); |
| + /* If this is the block containing the end of the |
| + * application data, and we are at the offset for the |
| + * 0x80 value, then overwrite b with 0x80. */ |
| + b = (b&~is_past_c) | (0x80&is_past_c); |
| + /* If this the the block containing the end of the |
| + * application data and we're past the 0x80 value then |
| + * just write zero. */ |
| + b = b&~is_past_cp1; |
| + /* If this is index_b (the final block), but not |
| + * index_a (the end of the data), then the 64-bit |
| + * length didn't fit into index_a and we're having to |
| + * add an extra block of zeros. */ |
| + b &= ~is_block_b | is_block_a; |
| + |
| + /* The final bytes of one of the blocks contains the |
| + * length. */ |
| + if (j >= md_block_size - md_length_size) |
| + { |
| + /* If this is index_b, write a length byte. */ |
| + b = (b&~is_block_b) | (is_block_b&length_bytes[j-(md_block_size-md_length_size)]); |
| + } |
| + block[j] = b; |
| + } |
| + |
| + md_transform(md_state, block); |
| + md_final_raw(md_state, block); |
| + /* If this is index_b, copy the hash value to |mac_out|. */ |
| + for (j = 0; j < md_size; j++) |
| + mac_out[j] |= block[j]&is_block_b; |
| + } |
| + |
| + EVP_MD_CTX_init(&md_ctx); |
| + EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */); |
| + if (is_sslv3) |
| + { |
| + /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ |
| + memset(hmac_pad, 0x5c, sslv3_pad_length); |
| + |
| + EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length); |
| + EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length); |
| + EVP_DigestUpdate(&md_ctx, mac_out, md_size); |
| + } |
| + else |
| + { |
| + /* Complete the HMAC in the standard manner. */ |
| + for (i = 0; i < md_block_size; i++) |
| + hmac_pad[i] ^= 0x6a; |
| + |
| + EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size); |
| + EVP_DigestUpdate(&md_ctx, mac_out, md_size); |
| + } |
| + EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u); |
| + if (md_out_size) |
| + *md_out_size = md_out_size_u; |
| + EVP_MD_CTX_cleanup(&md_ctx); |
| + } |
| diff --git a/ssl/s3_enc.c b/ssl/s3_enc.c |
| index c5df2cb..a0eac77 100644 |
| --- a/ssl/s3_enc.c |
| +++ b/ssl/s3_enc.c |
| @@ -466,12 +466,21 @@ void ssl3_cleanup_key_block(SSL *s) |
| s->s3->tmp.key_block_length=0; |
| } |
| |
| +/* ssl3_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. |
| + * |
| + * Returns: |
| + * 0: (in non-constant time) if the record is publically invalid (i.e. too |
| + * short etc). |
| + * 1: if the record's padding is valid / the encryption was successful. |
| + * -1: if the record's padding is invalid or, if sending, an internal error |
| + * occured. |
| + */ |
| int ssl3_enc(SSL *s, int send) |
| { |
| SSL3_RECORD *rec; |
| EVP_CIPHER_CTX *ds; |
| unsigned long l; |
| - int bs,i; |
| + int bs,i,mac_size=0; |
| const EVP_CIPHER *enc; |
| |
| if (send) |
| @@ -522,32 +531,16 @@ int ssl3_enc(SSL *s, int send) |
| if (!send) |
| { |
| if (l == 0 || l%bs != 0) |
| - { |
| - SSLerr(SSL_F_SSL3_ENC,SSL_R_BLOCK_CIPHER_PAD_IS_WRONG); |
| - ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECRYPTION_FAILED); |
| return 0; |
| - } |
| /* otherwise, rec->length >= bs */ |
| } |
| |
| EVP_Cipher(ds,rec->data,rec->input,l); |
| |
| + if (EVP_MD_CTX_md(s->read_hash) != NULL) |
| + mac_size = EVP_MD_CTX_size(s->read_hash); |
| if ((bs != 1) && !send) |
| - { |
| - i=rec->data[l-1]+1; |
| - /* SSL 3.0 bounds the number of padding bytes by the block size; |
| - * padding bytes (except the last one) are arbitrary */ |
| - if (i > bs) |
| - { |
| - /* Incorrect padding. SSLerr() and ssl3_alert are done |
| - * by caller: we don't want to reveal whether this is |
| - * a decryption error or a MAC verification failure |
| - * (see http://www.openssl.org/~bodo/tls-cbc.txt) */ |
| - return -1; |
| - } |
| - /* now i <= bs <= rec->length */ |
| - rec->length-=i; |
| - } |
| + return ssl3_cbc_remove_padding(s, rec, bs, mac_size); |
| } |
| return(1); |
| } |
| @@ -716,7 +709,7 @@ int n_ssl3_mac(SSL *ssl, unsigned char *md, int send) |
| EVP_MD_CTX md_ctx; |
| const EVP_MD_CTX *hash; |
| unsigned char *p,rec_char; |
| - unsigned int md_size; |
| + size_t md_size; |
| int npad; |
| int t; |
| |
| @@ -741,28 +734,68 @@ int n_ssl3_mac(SSL *ssl, unsigned char *md, int send) |
| md_size=t; |
| npad=(48/md_size)*md_size; |
| |
| - /* Chop the digest off the end :-) */ |
| - EVP_MD_CTX_init(&md_ctx); |
| - |
| - EVP_MD_CTX_copy_ex( &md_ctx,hash); |
| - EVP_DigestUpdate(&md_ctx,mac_sec,md_size); |
| - EVP_DigestUpdate(&md_ctx,ssl3_pad_1,npad); |
| - EVP_DigestUpdate(&md_ctx,seq,8); |
| - rec_char=rec->type; |
| - EVP_DigestUpdate(&md_ctx,&rec_char,1); |
| - p=md; |
| - s2n(rec->length,p); |
| - EVP_DigestUpdate(&md_ctx,md,2); |
| - EVP_DigestUpdate(&md_ctx,rec->input,rec->length); |
| - EVP_DigestFinal_ex( &md_ctx,md,NULL); |
| - |
| - EVP_MD_CTX_copy_ex( &md_ctx,hash); |
| - EVP_DigestUpdate(&md_ctx,mac_sec,md_size); |
| - EVP_DigestUpdate(&md_ctx,ssl3_pad_2,npad); |
| - EVP_DigestUpdate(&md_ctx,md,md_size); |
| - EVP_DigestFinal_ex( &md_ctx,md,&md_size); |
| - |
| - EVP_MD_CTX_cleanup(&md_ctx); |
| + if (!send && |
| + EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| + ssl3_cbc_record_digest_supported(hash)) |
| + { |
| + /* This is a CBC-encrypted record. We must avoid leaking any |
| + * timing-side channel information about how many blocks of |
| + * data we are hashing because that gives an attacker a |
| + * timing-oracle. */ |
| + |
| + /* npad is, at most, 48 bytes and that's with MD5: |
| + * 16 + 48 + 8 (sequence bytes) + 1 + 2 = 75. |
| + * |
| + * With SHA-1 (the largest hash speced for SSLv3) the hash size |
| + * goes up 4, but npad goes down by 8, resulting in a smaller |
| + * total size. */ |
| + unsigned char header[75]; |
| + unsigned j = 0; |
| + memcpy(header+j, mac_sec, md_size); |
| + j += md_size; |
| + memcpy(header+j, ssl3_pad_1, npad); |
| + j += npad; |
| + memcpy(header+j, seq, 8); |
| + j += 8; |
| + header[j++] = rec->type; |
| + header[j++] = rec->length >> 8; |
| + header[j++] = rec->length & 0xff; |
| + |
| + ssl3_cbc_digest_record( |
| + hash, |
| + md, &md_size, |
| + header, rec->input, |
| + rec->length + md_size, rec->orig_len, |
| + mac_sec, md_size, |
| + 1 /* is SSLv3 */); |
| + } |
| + else |
| + { |
| + unsigned int md_size_u; |
| + /* Chop the digest off the end :-) */ |
| + EVP_MD_CTX_init(&md_ctx); |
| + |
| + EVP_MD_CTX_copy_ex( &md_ctx,hash); |
| + EVP_DigestUpdate(&md_ctx,mac_sec,md_size); |
| + EVP_DigestUpdate(&md_ctx,ssl3_pad_1,npad); |
| + EVP_DigestUpdate(&md_ctx,seq,8); |
| + rec_char=rec->type; |
| + EVP_DigestUpdate(&md_ctx,&rec_char,1); |
| + p=md; |
| + s2n(rec->length,p); |
| + EVP_DigestUpdate(&md_ctx,md,2); |
| + EVP_DigestUpdate(&md_ctx,rec->input,rec->length); |
| + EVP_DigestFinal_ex( &md_ctx,md,NULL); |
| + |
| + EVP_MD_CTX_copy_ex( &md_ctx,hash); |
| + EVP_DigestUpdate(&md_ctx,mac_sec,md_size); |
| + EVP_DigestUpdate(&md_ctx,ssl3_pad_2,npad); |
| + EVP_DigestUpdate(&md_ctx,md,md_size); |
| + EVP_DigestFinal_ex( &md_ctx,md,&md_size_u); |
| + md_size = md_size_u; |
| + |
| + EVP_MD_CTX_cleanup(&md_ctx); |
| + } |
| |
| ssl3_record_sequence_update(seq); |
| return(md_size); |
| diff --git a/ssl/s3_pkt.c b/ssl/s3_pkt.c |
| index 3e11140..dba6653 100644 |
| --- a/ssl/s3_pkt.c |
| +++ b/ssl/s3_pkt.c |
| @@ -290,11 +290,8 @@ static int ssl3_get_record(SSL *s) |
| unsigned char *p; |
| unsigned char md[EVP_MAX_MD_SIZE]; |
| short version; |
| - int mac_size; |
| - int clear=0; |
| + unsigned mac_size; |
| size_t extra; |
| - int decryption_failed_or_bad_record_mac = 0; |
| - unsigned char *mac = NULL; |
| |
| rr= &(s->s3->rrec); |
| sess=s->session; |
| @@ -401,19 +398,18 @@ fprintf(stderr, "Record type=%d, Length=%d\n", rr->type, rr->length); |
| |
| /* decrypt in place in 'rr->input' */ |
| rr->data=rr->input; |
| + rr->orig_len=rr->length; |
| |
| enc_err = s->method->ssl3_enc->enc(s,0); |
| - if (enc_err <= 0) |
| + /* enc_err is: |
| + * 0: (in non-constant time) if the record is publically invalid. |
| + * 1: if the padding is valid |
| + * -1: if the padding is invalid */ |
| + if (enc_err == 0) |
| { |
| - if (enc_err == 0) |
| - /* SSLerr() and ssl3_send_alert() have been called */ |
| - goto err; |
| - |
| - /* Otherwise enc_err == -1, which indicates bad padding |
| - * (rec->length has not been changed in this case). |
| - * To minimize information leaked via timing, we will perform |
| - * the MAC computation anyway. */ |
| - decryption_failed_or_bad_record_mac = 1; |
| + al=SSL_AD_DECRYPTION_FAILED; |
| + SSLerr(SSL_F_TLS1_ENC,SSL_R_BLOCK_CIPHER_PAD_IS_WRONG); |
| + goto f_err; |
| } |
| |
| #ifdef TLS_DEBUG |
| @@ -423,53 +419,59 @@ printf("\n"); |
| #endif |
| |
| /* r->length is now the compressed data plus mac */ |
| - if ( (sess == NULL) || |
| - (s->enc_read_ctx == NULL) || |
| - (EVP_MD_CTX_md(s->read_hash) == NULL)) |
| - clear=1; |
| - |
| - if (!clear) |
| + if ((sess != NULL) && |
| + (s->enc_read_ctx != NULL) && |
| + (EVP_MD_CTX_md(s->read_hash) != NULL)) |
| { |
| - /* !clear => s->read_hash != NULL => mac_size != -1 */ |
| + /* s->read_hash != NULL => mac_size != -1 */ |
| + unsigned char *mac = NULL; |
| + unsigned char mac_tmp[EVP_MAX_MD_SIZE]; |
| mac_size=EVP_MD_CTX_size(s->read_hash); |
| - OPENSSL_assert(mac_size >= 0); |
| + OPENSSL_assert(mac_size <= EVP_MAX_MD_SIZE); |
| |
| - if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH+extra+mac_size) |
| + /* orig_len is the length of the record before any padding was |
| + * removed. This is public information, as is the MAC in use, |
| + * therefore we can safely process the record in a different |
| + * amount of time if it's too short to possibly contain a MAC. |
| + */ |
| + if (rr->orig_len < mac_size || |
| + /* CBC records must have a padding length byte too. */ |
| + (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| + rr->orig_len < mac_size+1)) |
| { |
| -#if 0 /* OK only for stream ciphers (then rr->length is visible from ciphertext anyway) */ |
| - al=SSL_AD_RECORD_OVERFLOW; |
| - SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_PRE_MAC_LENGTH_TOO_LONG); |
| + al=SSL_AD_DECODE_ERROR; |
| + SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_LENGTH_TOO_SHORT); |
| goto f_err; |
| -#else |
| - decryption_failed_or_bad_record_mac = 1; |
| -#endif |
| } |
| - /* check the MAC for rr->input (it's in mac_size bytes at the tail) */ |
| - if (rr->length >= (unsigned int)mac_size) |
| + |
| + if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) |
| { |
| + /* We update the length so that the TLS header bytes |
| + * can be constructed correctly but we need to extract |
| + * the MAC in constant time from within the record, |
| + * without leaking the contents of the padding bytes. |
| + * */ |
| + mac = mac_tmp; |
| + ssl3_cbc_copy_mac(mac_tmp, rr, mac_size); |
| rr->length -= mac_size; |
| - mac = &rr->data[rr->length]; |
| } |
| else |
| { |
| - /* record (minus padding) is too short to contain a MAC */ |
| -#if 0 /* OK only for stream ciphers */ |
| - al=SSL_AD_DECODE_ERROR; |
| - SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_LENGTH_TOO_SHORT); |
| - goto f_err; |
| -#else |
| - decryption_failed_or_bad_record_mac = 1; |
| - rr->length = 0; |
| -#endif |
| + /* In this case there's no padding, so |rec->orig_len| |
| + * equals |rec->length| and we checked that there's |
| + * enough bytes for |mac_size| above. */ |
| + rr->length -= mac_size; |
| + mac = &rr->data[rr->length]; |
| } |
| - i=s->method->ssl3_enc->mac(s,md,0); |
| + |
| + i=s->method->ssl3_enc->mac(s,md,0 /* not send */); |
| if (i < 0 || mac == NULL || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) |
| - { |
| - decryption_failed_or_bad_record_mac = 1; |
| - } |
| + enc_err = -1; |
| + if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH+extra+mac_size) |
| + enc_err = -1; |
| } |
| |
| - if (decryption_failed_or_bad_record_mac) |
| + if (enc_err < 0) |
| { |
| /* A separate 'decryption_failed' alert was introduced with TLS 1.0, |
| * SSL 3.0 only has 'bad_record_mac'. But unless a decryption |
| diff --git a/ssl/ssl3.h b/ssl/ssl3.h |
| index 247e88c..87d3e0f 100644 |
| --- a/ssl/ssl3.h |
| +++ b/ssl/ssl3.h |
| @@ -355,6 +355,10 @@ typedef struct ssl3_record_st |
| /*r */ unsigned char *comp; /* only used with decompression - malloc()ed */ |
| /*r */ unsigned long epoch; /* epoch number, needed by DTLS1 */ |
| /*r */ unsigned char seq_num[8]; /* sequence number, needed by DTLS1 */ |
| +/*rw*/ unsigned int orig_len; /* How many bytes were available before padding |
| + was removed? This is used to implement the |
| + MAC check in constant time for CBC records. |
| + */ |
| } SSL3_RECORD; |
| |
| typedef struct ssl3_buffer_st |
| diff --git a/ssl/ssl_algs.c b/ssl/ssl_algs.c |
| index d443143..41ccbaa 100644 |
| --- a/ssl/ssl_algs.c |
| +++ b/ssl/ssl_algs.c |
| @@ -90,11 +90,14 @@ int SSL_library_init(void) |
| EVP_add_cipher(EVP_aes_256_cbc()); |
| EVP_add_cipher(EVP_aes_128_gcm()); |
| EVP_add_cipher(EVP_aes_256_gcm()); |
| +#if 0 /* Disabled because of timing side-channel leaks. */ |
| #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1) |
| EVP_add_cipher(EVP_aes_128_cbc_hmac_sha1()); |
| EVP_add_cipher(EVP_aes_256_cbc_hmac_sha1()); |
| #endif |
| #endif |
| + |
| +#endif |
| #ifndef OPENSSL_NO_CAMELLIA |
| EVP_add_cipher(EVP_camellia_128_cbc()); |
| EVP_add_cipher(EVP_camellia_256_cbc()); |
| diff --git a/ssl/ssl_locl.h b/ssl/ssl_locl.h |
| index 0572e10..dd8388c 100644 |
| --- a/ssl/ssl_locl.h |
| +++ b/ssl/ssl_locl.h |
| @@ -215,6 +215,15 @@ |
| *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ |
| *((c)++)=(unsigned char)(((l) )&0xff)) |
| |
| +#define l2n8(l,c) (*((c)++)=(unsigned char)(((l)>>56)&0xff), \ |
| + *((c)++)=(unsigned char)(((l)>>48)&0xff), \ |
| + *((c)++)=(unsigned char)(((l)>>40)&0xff), \ |
| + *((c)++)=(unsigned char)(((l)>>32)&0xff), \ |
| + *((c)++)=(unsigned char)(((l)>>24)&0xff), \ |
| + *((c)++)=(unsigned char)(((l)>>16)&0xff), \ |
| + *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ |
| + *((c)++)=(unsigned char)(((l) )&0xff)) |
| + |
| #define n2l6(c,l) (l =((BN_ULLONG)(*((c)++)))<<40, \ |
| l|=((BN_ULLONG)(*((c)++)))<<32, \ |
| l|=((BN_ULLONG)(*((c)++)))<<24, \ |
| @@ -1133,4 +1142,29 @@ int ssl_parse_clienthello_use_srtp_ext(SSL *s, unsigned char *d, int len,int *al |
| int ssl_add_serverhello_use_srtp_ext(SSL *s, unsigned char *p, int *len, int maxlen); |
| int ssl_parse_serverhello_use_srtp_ext(SSL *s, unsigned char *d, int len,int *al); |
| |
| +/* s3_cbc.c */ |
| +void ssl3_cbc_copy_mac(unsigned char* out, |
| + const SSL3_RECORD *rec, |
| + unsigned md_size); |
| +int ssl3_cbc_remove_padding(const SSL* s, |
| + SSL3_RECORD *rec, |
| + unsigned block_size, |
| + unsigned mac_size); |
| +int tls1_cbc_remove_padding(const SSL* s, |
| + SSL3_RECORD *rec, |
| + unsigned block_size, |
| + unsigned mac_size); |
| +char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx); |
| +void ssl3_cbc_digest_record( |
| + const EVP_MD_CTX *ctx, |
| + unsigned char* md_out, |
| + size_t* md_out_size, |
| + const unsigned char header[13], |
| + const unsigned char *data, |
| + size_t data_plus_mac_size, |
| + size_t data_plus_mac_plus_padding_size, |
| + const unsigned char *mac_secret, |
| + unsigned mac_secret_length, |
| + char is_sslv3); |
| + |
| #endif |
| diff --git a/ssl/t1_enc.c b/ssl/t1_enc.c |
| index b37678f..bb46f7f 100644 |
| --- a/ssl/t1_enc.c |
| +++ b/ssl/t1_enc.c |
| @@ -667,12 +667,21 @@ err: |
| return(ret); |
| } |
| |
| +/* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively. |
| + * |
| + * Returns: |
| + * 0: (in non-constant time) if the record is publically invalid (i.e. too |
| + * short etc). |
| + * 1: if the record's padding is valid / the encryption was successful. |
| + * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, |
| + * an internal error occured. |
| + */ |
| int tls1_enc(SSL *s, int send) |
| { |
| SSL3_RECORD *rec; |
| EVP_CIPHER_CTX *ds; |
| unsigned long l; |
| - int bs,i,ii,j,k,pad=0; |
| + int bs,i,j,k,pad=0,ret,mac_size=0; |
| const EVP_CIPHER *enc; |
| |
| if (send) |
| @@ -729,11 +738,11 @@ int tls1_enc(SSL *s, int send) |
| printf("tls1_enc(%d)\n", send); |
| #endif /* KSSL_DEBUG */ |
| |
| - if ((s->session == NULL) || (ds == NULL) || |
| - (enc == NULL)) |
| + if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) |
| { |
| memmove(rec->data,rec->input,rec->length); |
| rec->input=rec->data; |
| + ret = 1; |
| } |
| else |
| { |
| @@ -797,13 +806,13 @@ int tls1_enc(SSL *s, int send) |
| |
| #ifdef KSSL_DEBUG |
| { |
| - unsigned long ui; |
| + unsigned long ui; |
| printf("EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n", |
| - ds,rec->data,rec->input,l); |
| + ds,rec->data,rec->input,l); |
| printf("\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%d %d], %d iv_len\n", |
| - ds->buf_len, ds->cipher->key_len, |
| - DES_KEY_SZ, DES_SCHEDULE_SZ, |
| - ds->cipher->iv_len); |
| + ds->buf_len, ds->cipher->key_len, |
| + DES_KEY_SZ, DES_SCHEDULE_SZ, |
| + ds->cipher->iv_len); |
| printf("\t\tIV: "); |
| for (i=0; i<ds->cipher->iv_len; i++) printf("%02X", ds->iv[i]); |
| printf("\n"); |
| @@ -816,13 +825,7 @@ int tls1_enc(SSL *s, int send) |
| if (!send) |
| { |
| if (l == 0 || l%bs != 0) |
| - { |
| - if (s->version >= TLS1_1_VERSION) |
| - return -1; |
| - SSLerr(SSL_F_TLS1_ENC,SSL_R_BLOCK_CIPHER_PAD_IS_WRONG); |
| - ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECRYPTION_FAILED); |
| return 0; |
| - } |
| } |
| |
| i = EVP_Cipher(ds,rec->data,rec->input,l); |
| @@ -839,68 +842,24 @@ int tls1_enc(SSL *s, int send) |
| |
| #ifdef KSSL_DEBUG |
| { |
| - unsigned long i; |
| - printf("\trec->data="); |
| + unsigned long i; |
| + printf("\trec->data="); |
| for (i=0; i<l; i++) |
| - printf(" %02x", rec->data[i]); printf("\n"); |
| - } |
| + printf(" %02x", rec->data[i]); printf("\n"); |
| + } |
| #endif /* KSSL_DEBUG */ |
| |
| + ret = 1; |
| + if (EVP_MD_CTX_md(s->read_hash) != NULL) |
| + mac_size = EVP_MD_CTX_size(s->read_hash); |
| if ((bs != 1) && !send) |
| - { |
| - ii=i=rec->data[l-1]; /* padding_length */ |
| - i++; |
| - /* NB: if compression is in operation the first packet |
| - * may not be of even length so the padding bug check |
| - * cannot be performed. This bug workaround has been |
| - * around since SSLeay so hopefully it is either fixed |
| - * now or no buggy implementation supports compression |
| - * [steve] |
| - */ |
| - if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) |
| - && !s->expand) |
| - { |
| - /* First packet is even in size, so check */ |
| - if ((memcmp(s->s3->read_sequence, |
| - "\0\0\0\0\0\0\0\0",8) == 0) && !(ii & 1)) |
| - s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG; |
| - if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) |
| - i--; |
| - } |
| - /* TLS 1.0 does not bound the number of padding bytes by the block size. |
| - * All of them must have value 'padding_length'. */ |
| - if (i > (int)rec->length) |
| - { |
| - /* Incorrect padding. SSLerr() and ssl3_alert are done |
| - * by caller: we don't want to reveal whether this is |
| - * a decryption error or a MAC verification failure |
| - * (see http://www.openssl.org/~bodo/tls-cbc.txt) */ |
| - return -1; |
| - } |
| - for (j=(int)(l-i); j<(int)l; j++) |
| - { |
| - if (rec->data[j] != ii) |
| - { |
| - /* Incorrect padding */ |
| - return -1; |
| - } |
| - } |
| - rec->length -=i; |
| - if (s->version >= TLS1_1_VERSION |
| - && EVP_CIPHER_CTX_mode(ds) == EVP_CIPH_CBC_MODE) |
| - { |
| - if (bs > (int)rec->length) |
| - return -1; |
| - rec->data += bs; /* skip the explicit IV */ |
| - rec->input += bs; |
| - rec->length -= bs; |
| - } |
| - } |
| + ret = tls1_cbc_remove_padding(s, rec, bs, mac_size); |
| if (pad && !send) |
| rec->length -= pad; |
| } |
| - return(1); |
| + return ret; |
| } |
| + |
| int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out) |
| { |
| unsigned int ret; |
| @@ -993,7 +952,7 @@ int tls1_mac(SSL *ssl, unsigned char *md, int send) |
| size_t md_size; |
| int i; |
| EVP_MD_CTX hmac, *mac_ctx; |
| - unsigned char buf[5]; |
| + unsigned char header[13]; |
| int stream_mac = (send?(ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM):(ssl->mac_flags&SSL_MAC_FLAG_READ_MAC_STREAM)); |
| int t; |
| |
| @@ -1014,12 +973,6 @@ int tls1_mac(SSL *ssl, unsigned char *md, int send) |
| OPENSSL_assert(t >= 0); |
| md_size=t; |
| |
| - buf[0]=rec->type; |
| - buf[1]=(unsigned char)(ssl->version>>8); |
| - buf[2]=(unsigned char)(ssl->version); |
| - buf[3]=rec->length>>8; |
| - buf[4]=rec->length&0xff; |
| - |
| /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */ |
| if (stream_mac) |
| { |
| @@ -1038,17 +991,44 @@ int tls1_mac(SSL *ssl, unsigned char *md, int send) |
| s2n(send?ssl->d1->w_epoch:ssl->d1->r_epoch, p); |
| memcpy (p,&seq[2],6); |
| |
| - EVP_DigestSignUpdate(mac_ctx,dtlsseq,8); |
| + memcpy(header, dtlsseq, 8); |
| } |
| else |
| - EVP_DigestSignUpdate(mac_ctx,seq,8); |
| + memcpy(header, seq, 8); |
| |
| - EVP_DigestSignUpdate(mac_ctx,buf,5); |
| - EVP_DigestSignUpdate(mac_ctx,rec->input,rec->length); |
| - t=EVP_DigestSignFinal(mac_ctx,md,&md_size); |
| - OPENSSL_assert(t > 0); |
| + header[8]=rec->type; |
| + header[9]=(unsigned char)(ssl->version>>8); |
| + header[10]=(unsigned char)(ssl->version); |
| + header[11]=(rec->length)>>8; |
| + header[12]=(rec->length)&0xff; |
| + |
| + if (!send && |
| + EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| + ssl3_cbc_record_digest_supported(mac_ctx)) |
| + { |
| + /* This is a CBC-encrypted record. We must avoid leaking any |
| + * timing-side channel information about how many blocks of |
| + * data we are hashing because that gives an attacker a |
| + * timing-oracle. */ |
| + ssl3_cbc_digest_record( |
| + mac_ctx, |
| + md, &md_size, |
| + header, rec->input, |
| + rec->length + md_size, rec->orig_len, |
| + ssl->s3->read_mac_secret, |
| + ssl->s3->read_mac_secret_size, |
| + 0 /* not SSLv3 */); |
| + } |
| + else |
| + { |
| + EVP_DigestSignUpdate(mac_ctx,header,sizeof(header)); |
| + EVP_DigestSignUpdate(mac_ctx,rec->input,rec->length); |
| + t=EVP_DigestSignFinal(mac_ctx,md,&md_size); |
| + OPENSSL_assert(t > 0); |
| + } |
| |
| - if (!stream_mac) EVP_MD_CTX_cleanup(&hmac); |
| + if (!stream_mac) |
| + EVP_MD_CTX_cleanup(&hmac); |
| #ifdef TLS_DEBUG |
| printf("sec="); |
| {unsigned int z; for (z=0; z<md_size; z++) printf("%02X ",mac_sec[z]); printf("\n"); } |
| -- |
| 1.8.1 |
| |