| /* crypto/x509/x509_cmp.c */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| |
| #include <stdio.h> |
| #include <ctype.h> |
| #include "cryptlib.h" |
| #include <openssl/asn1.h> |
| #include <openssl/objects.h> |
| #include <openssl/x509.h> |
| #include <openssl/x509v3.h> |
| |
| int X509_issuer_and_serial_cmp(const X509 *a, const X509 *b) |
| { |
| int i; |
| X509_CINF *ai,*bi; |
| |
| ai=a->cert_info; |
| bi=b->cert_info; |
| i=M_ASN1_INTEGER_cmp(ai->serialNumber,bi->serialNumber); |
| if (i) return(i); |
| return(X509_NAME_cmp(ai->issuer,bi->issuer)); |
| } |
| |
| #ifndef OPENSSL_NO_MD5 |
| unsigned long X509_issuer_and_serial_hash(X509 *a) |
| { |
| unsigned long ret=0; |
| EVP_MD_CTX ctx; |
| unsigned char md[16]; |
| char *f; |
| |
| EVP_MD_CTX_init(&ctx); |
| f=X509_NAME_oneline(a->cert_info->issuer,NULL,0); |
| ret=strlen(f); |
| if (!EVP_DigestInit_ex(&ctx, EVP_md5(), NULL)) |
| goto err; |
| if (!EVP_DigestUpdate(&ctx,(unsigned char *)f,ret)) |
| goto err; |
| OPENSSL_free(f); |
| if(!EVP_DigestUpdate(&ctx,(unsigned char *)a->cert_info->serialNumber->data, |
| (unsigned long)a->cert_info->serialNumber->length)) |
| goto err; |
| if (!EVP_DigestFinal_ex(&ctx,&(md[0]),NULL)) |
| goto err; |
| ret=( ((unsigned long)md[0] )|((unsigned long)md[1]<<8L)| |
| ((unsigned long)md[2]<<16L)|((unsigned long)md[3]<<24L) |
| )&0xffffffffL; |
| err: |
| EVP_MD_CTX_cleanup(&ctx); |
| return(ret); |
| } |
| #endif |
| |
| int X509_issuer_name_cmp(const X509 *a, const X509 *b) |
| { |
| return(X509_NAME_cmp(a->cert_info->issuer,b->cert_info->issuer)); |
| } |
| |
| int X509_subject_name_cmp(const X509 *a, const X509 *b) |
| { |
| return(X509_NAME_cmp(a->cert_info->subject,b->cert_info->subject)); |
| } |
| |
| int X509_CRL_cmp(const X509_CRL *a, const X509_CRL *b) |
| { |
| return(X509_NAME_cmp(a->crl->issuer,b->crl->issuer)); |
| } |
| |
| #ifndef OPENSSL_NO_SHA |
| int X509_CRL_match(const X509_CRL *a, const X509_CRL *b) |
| { |
| return memcmp(a->sha1_hash, b->sha1_hash, 20); |
| } |
| #endif |
| |
| X509_NAME *X509_get_issuer_name(X509 *a) |
| { |
| return(a->cert_info->issuer); |
| } |
| |
| unsigned long X509_issuer_name_hash(X509 *x) |
| { |
| return(X509_NAME_hash(x->cert_info->issuer)); |
| } |
| |
| #ifndef OPENSSL_NO_MD5 |
| unsigned long X509_issuer_name_hash_old(X509 *x) |
| { |
| return(X509_NAME_hash_old(x->cert_info->issuer)); |
| } |
| #endif |
| |
| X509_NAME *X509_get_subject_name(X509 *a) |
| { |
| return(a->cert_info->subject); |
| } |
| |
| ASN1_INTEGER *X509_get_serialNumber(X509 *a) |
| { |
| return(a->cert_info->serialNumber); |
| } |
| |
| unsigned long X509_subject_name_hash(X509 *x) |
| { |
| return(X509_NAME_hash(x->cert_info->subject)); |
| } |
| |
| #ifndef OPENSSL_NO_MD5 |
| unsigned long X509_subject_name_hash_old(X509 *x) |
| { |
| return(X509_NAME_hash_old(x->cert_info->subject)); |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_SHA |
| /* Compare two certificates: they must be identical for |
| * this to work. NB: Although "cmp" operations are generally |
| * prototyped to take "const" arguments (eg. for use in |
| * STACKs), the way X509 handling is - these operations may |
| * involve ensuring the hashes are up-to-date and ensuring |
| * certain cert information is cached. So this is the point |
| * where the "depth-first" constification tree has to halt |
| * with an evil cast. |
| */ |
| int X509_cmp(const X509 *a, const X509 *b) |
| { |
| /* ensure hash is valid */ |
| X509_check_purpose((X509 *)a, -1, 0); |
| X509_check_purpose((X509 *)b, -1, 0); |
| |
| return memcmp(a->sha1_hash, b->sha1_hash, SHA_DIGEST_LENGTH); |
| } |
| #endif |
| |
| |
| int X509_NAME_cmp(const X509_NAME *a, const X509_NAME *b) |
| { |
| int ret; |
| |
| /* Ensure canonical encoding is present and up to date */ |
| |
| if (!a->canon_enc || a->modified) |
| { |
| ret = i2d_X509_NAME((X509_NAME *)a, NULL); |
| if (ret < 0) |
| return -2; |
| } |
| |
| if (!b->canon_enc || b->modified) |
| { |
| ret = i2d_X509_NAME((X509_NAME *)b, NULL); |
| if (ret < 0) |
| return -2; |
| } |
| |
| ret = a->canon_enclen - b->canon_enclen; |
| |
| if (ret) |
| return ret; |
| |
| return memcmp(a->canon_enc, b->canon_enc, a->canon_enclen); |
| |
| } |
| |
| unsigned long X509_NAME_hash(X509_NAME *x) |
| { |
| unsigned long ret=0; |
| unsigned char md[SHA_DIGEST_LENGTH]; |
| |
| /* Make sure X509_NAME structure contains valid cached encoding */ |
| i2d_X509_NAME(x,NULL); |
| if (!EVP_Digest(x->canon_enc, x->canon_enclen, md, NULL, EVP_sha1(), |
| NULL)) |
| return 0; |
| |
| ret=( ((unsigned long)md[0] )|((unsigned long)md[1]<<8L)| |
| ((unsigned long)md[2]<<16L)|((unsigned long)md[3]<<24L) |
| )&0xffffffffL; |
| return(ret); |
| } |
| |
| |
| #ifndef OPENSSL_NO_MD5 |
| /* I now DER encode the name and hash it. Since I cache the DER encoding, |
| * this is reasonably efficient. */ |
| |
| unsigned long X509_NAME_hash_old(X509_NAME *x) |
| { |
| EVP_MD_CTX md_ctx; |
| unsigned long ret=0; |
| unsigned char md[16]; |
| |
| /* Make sure X509_NAME structure contains valid cached encoding */ |
| i2d_X509_NAME(x,NULL); |
| EVP_MD_CTX_init(&md_ctx); |
| EVP_MD_CTX_set_flags(&md_ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW); |
| EVP_DigestInit_ex(&md_ctx, EVP_md5(), NULL); |
| EVP_DigestUpdate(&md_ctx, x->bytes->data, x->bytes->length); |
| EVP_DigestFinal_ex(&md_ctx,md,NULL); |
| EVP_MD_CTX_cleanup(&md_ctx); |
| |
| ret=( ((unsigned long)md[0] )|((unsigned long)md[1]<<8L)| |
| ((unsigned long)md[2]<<16L)|((unsigned long)md[3]<<24L) |
| )&0xffffffffL; |
| return(ret); |
| } |
| #endif |
| |
| /* Search a stack of X509 for a match */ |
| X509 *X509_find_by_issuer_and_serial(STACK_OF(X509) *sk, X509_NAME *name, |
| ASN1_INTEGER *serial) |
| { |
| int i; |
| X509_CINF cinf; |
| X509 x,*x509=NULL; |
| |
| if(!sk) return NULL; |
| |
| x.cert_info= &cinf; |
| cinf.serialNumber=serial; |
| cinf.issuer=name; |
| |
| for (i=0; i<sk_X509_num(sk); i++) |
| { |
| x509=sk_X509_value(sk,i); |
| if (X509_issuer_and_serial_cmp(x509,&x) == 0) |
| return(x509); |
| } |
| return(NULL); |
| } |
| |
| X509 *X509_find_by_subject(STACK_OF(X509) *sk, X509_NAME *name) |
| { |
| X509 *x509; |
| int i; |
| |
| for (i=0; i<sk_X509_num(sk); i++) |
| { |
| x509=sk_X509_value(sk,i); |
| if (X509_NAME_cmp(X509_get_subject_name(x509),name) == 0) |
| return(x509); |
| } |
| return(NULL); |
| } |
| |
| EVP_PKEY *X509_get_pubkey(X509 *x) |
| { |
| if ((x == NULL) || (x->cert_info == NULL)) |
| return(NULL); |
| return(X509_PUBKEY_get(x->cert_info->key)); |
| } |
| |
| ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) |
| { |
| if(!x) return NULL; |
| return x->cert_info->key->public_key; |
| } |
| |
| int X509_check_private_key(X509 *x, EVP_PKEY *k) |
| { |
| EVP_PKEY *xk; |
| int ret; |
| |
| xk=X509_get_pubkey(x); |
| |
| if (xk) |
| ret = EVP_PKEY_cmp(xk, k); |
| else |
| ret = -2; |
| |
| switch (ret) |
| { |
| case 1: |
| break; |
| case 0: |
| X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_KEY_VALUES_MISMATCH); |
| break; |
| case -1: |
| X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_KEY_TYPE_MISMATCH); |
| break; |
| case -2: |
| X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_UNKNOWN_KEY_TYPE); |
| } |
| if (xk) |
| EVP_PKEY_free(xk); |
| if (ret > 0) |
| return 1; |
| return 0; |
| } |