| /* crypto/sha/sha256.c */ |
| /* ==================================================================== |
| * Copyright (c) 2004 The OpenSSL Project. All rights reserved |
| * according to the OpenSSL license [found in ../../LICENSE]. |
| * ==================================================================== |
| */ |
| #include <openssl/opensslconf.h> |
| #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256) |
| |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <openssl/crypto.h> |
| #include <openssl/sha.h> |
| #include <openssl/opensslv.h> |
| |
| const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT; |
| |
| fips_md_init_ctx(SHA224, SHA256) |
| { |
| memset (c,0,sizeof(*c)); |
| c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL; |
| c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL; |
| c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL; |
| c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL; |
| c->md_len=SHA224_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| fips_md_init(SHA256) |
| { |
| memset (c,0,sizeof(*c)); |
| c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL; |
| c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL; |
| c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL; |
| c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL; |
| c->md_len=SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md) |
| { |
| SHA256_CTX c; |
| static unsigned char m[SHA224_DIGEST_LENGTH]; |
| |
| if (md == NULL) md=m; |
| SHA224_Init(&c); |
| SHA256_Update(&c,d,n); |
| SHA256_Final(md,&c); |
| OPENSSL_cleanse(&c,sizeof(c)); |
| return(md); |
| } |
| |
| unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md) |
| { |
| SHA256_CTX c; |
| static unsigned char m[SHA256_DIGEST_LENGTH]; |
| |
| if (md == NULL) md=m; |
| SHA256_Init(&c); |
| SHA256_Update(&c,d,n); |
| SHA256_Final(md,&c); |
| OPENSSL_cleanse(&c,sizeof(c)); |
| return(md); |
| } |
| |
| int SHA224_Update(SHA256_CTX *c, const void *data, size_t len) |
| { return SHA256_Update (c,data,len); } |
| int SHA224_Final (unsigned char *md, SHA256_CTX *c) |
| { return SHA256_Final (md,c); } |
| |
| #define DATA_ORDER_IS_BIG_ENDIAN |
| |
| #define HASH_LONG SHA_LONG |
| #define HASH_CTX SHA256_CTX |
| #define HASH_CBLOCK SHA_CBLOCK |
| /* |
| * Note that FIPS180-2 discusses "Truncation of the Hash Function Output." |
| * default: case below covers for it. It's not clear however if it's |
| * permitted to truncate to amount of bytes not divisible by 4. I bet not, |
| * but if it is, then default: case shall be extended. For reference. |
| * Idea behind separate cases for pre-defined lenghts is to let the |
| * compiler decide if it's appropriate to unroll small loops. |
| */ |
| #define HASH_MAKE_STRING(c,s) do { \ |
| unsigned long ll; \ |
| unsigned int nn; \ |
| switch ((c)->md_len) \ |
| { case SHA224_DIGEST_LENGTH: \ |
| for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \ |
| { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ |
| break; \ |
| case SHA256_DIGEST_LENGTH: \ |
| for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \ |
| { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ |
| break; \ |
| default: \ |
| if ((c)->md_len > SHA256_DIGEST_LENGTH) \ |
| return 0; \ |
| for (nn=0;nn<(c)->md_len/4;nn++) \ |
| { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ |
| break; \ |
| } \ |
| } while (0) |
| |
| #define HASH_UPDATE SHA256_Update |
| #define HASH_TRANSFORM SHA256_Transform |
| #define HASH_FINAL SHA256_Final |
| #define HASH_BLOCK_DATA_ORDER sha256_block_data_order |
| #ifndef SHA256_ASM |
| static |
| #endif |
| void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num); |
| |
| #include "md32_common.h" |
| |
| #ifndef SHA256_ASM |
| static const SHA_LONG K256[64] = { |
| 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL, |
| 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL, |
| 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL, |
| 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL, |
| 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL, |
| 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL, |
| 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL, |
| 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL, |
| 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL, |
| 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL, |
| 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL, |
| 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL, |
| 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL, |
| 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL, |
| 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL, |
| 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL }; |
| |
| /* |
| * FIPS specification refers to right rotations, while our ROTATE macro |
| * is left one. This is why you might notice that rotation coefficients |
| * differ from those observed in FIPS document by 32-N... |
| */ |
| #define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10)) |
| #define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7)) |
| #define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3)) |
| #define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10)) |
| |
| #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
| #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| |
| #ifdef OPENSSL_SMALL_FOOTPRINT |
| |
| static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) |
| { |
| unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2; |
| SHA_LONG X[16],l; |
| int i; |
| const unsigned char *data=in; |
| |
| while (num--) { |
| |
| a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; |
| e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; |
| |
| for (i=0;i<16;i++) |
| { |
| HOST_c2l(data,l); T1 = X[i] = l; |
| T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; |
| T2 = Sigma0(a) + Maj(a,b,c); |
| h = g; g = f; f = e; e = d + T1; |
| d = c; c = b; b = a; a = T1 + T2; |
| } |
| |
| for (;i<64;i++) |
| { |
| s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); |
| s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); |
| |
| T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf]; |
| T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; |
| T2 = Sigma0(a) + Maj(a,b,c); |
| h = g; g = f; f = e; e = d + T1; |
| d = c; c = b; b = a; a = T1 + T2; |
| } |
| |
| ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; |
| ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; |
| |
| } |
| } |
| |
| #else |
| |
| #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ |
| T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \ |
| h = Sigma0(a) + Maj(a,b,c); \ |
| d += T1; h += T1; } while (0) |
| |
| #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \ |
| s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \ |
| s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \ |
| T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \ |
| ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0) |
| |
| static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) |
| { |
| unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1; |
| SHA_LONG X[16]; |
| int i; |
| const unsigned char *data=in; |
| const union { long one; char little; } is_endian = {1}; |
| |
| while (num--) { |
| |
| a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; |
| e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; |
| |
| if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0) |
| { |
| const SHA_LONG *W=(const SHA_LONG *)data; |
| |
| T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h); |
| T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g); |
| T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f); |
| T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e); |
| T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d); |
| T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c); |
| T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b); |
| T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a); |
| T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h); |
| T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g); |
| T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f); |
| T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e); |
| T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d); |
| T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c); |
| T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b); |
| T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a); |
| |
| data += SHA256_CBLOCK; |
| } |
| else |
| { |
| SHA_LONG l; |
| |
| HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h); |
| HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g); |
| HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f); |
| HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e); |
| HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d); |
| HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c); |
| HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b); |
| HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a); |
| HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h); |
| HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g); |
| HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f); |
| HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e); |
| HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d); |
| HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c); |
| HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b); |
| HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a); |
| } |
| |
| for (i=16;i<64;i+=8) |
| { |
| ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X); |
| ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X); |
| ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X); |
| ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X); |
| ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X); |
| ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X); |
| ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X); |
| ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X); |
| } |
| |
| ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; |
| ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; |
| |
| } |
| } |
| |
| #endif |
| #endif /* SHA256_ASM */ |
| |
| #endif /* OPENSSL_NO_SHA256 */ |