| #!/usr/bin/env perl |
| |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| |
| # April 2007. |
| # |
| # Performance improvement over vanilla C code varies from 85% to 45% |
| # depending on key length and benchmark. Unfortunately in this context |
| # these are not very impressive results [for code that utilizes "wide" |
| # 64x64=128-bit multiplication, which is not commonly available to C |
| # programmers], at least hand-coded bn_asm.c replacement is known to |
| # provide 30-40% better results for longest keys. Well, on a second |
| # thought it's not very surprising, because z-CPUs are single-issue |
| # and _strictly_ in-order execution, while bn_mul_mont is more or less |
| # dependent on CPU ability to pipe-line instructions and have several |
| # of them "in-flight" at the same time. I mean while other methods, |
| # for example Karatsuba, aim to minimize amount of multiplications at |
| # the cost of other operations increase, bn_mul_mont aim to neatly |
| # "overlap" multiplications and the other operations [and on most |
| # platforms even minimize the amount of the other operations, in |
| # particular references to memory]. But it's possible to improve this |
| # module performance by implementing dedicated squaring code-path and |
| # possibly by unrolling loops... |
| |
| # January 2009. |
| # |
| # Reschedule to minimize/avoid Address Generation Interlock hazard, |
| # make inner loops counter-based. |
| |
| # November 2010. |
| # |
| # Adapt for -m31 build. If kernel supports what's called "highgprs" |
| # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit |
| # instructions and achieve "64-bit" performance even in 31-bit legacy |
| # application context. The feature is not specific to any particular |
| # processor, as long as it's "z-CPU". Latter implies that the code |
| # remains z/Architecture specific. Compatibility with 32-bit BN_ULONG |
| # is achieved by swapping words after 64-bit loads, follow _dswap-s. |
| # On z990 it was measured to perform 2.6-2.2 times better than |
| # compiler-generated code, less for longer keys... |
| |
| $flavour = shift; |
| |
| if ($flavour =~ /3[12]/) { |
| $SIZE_T=4; |
| $g=""; |
| } else { |
| $SIZE_T=8; |
| $g="g"; |
| } |
| |
| while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} |
| open STDOUT,">$output"; |
| |
| $stdframe=16*$SIZE_T+4*8; |
| |
| $mn0="%r0"; |
| $num="%r1"; |
| |
| # int bn_mul_mont( |
| $rp="%r2"; # BN_ULONG *rp, |
| $ap="%r3"; # const BN_ULONG *ap, |
| $bp="%r4"; # const BN_ULONG *bp, |
| $np="%r5"; # const BN_ULONG *np, |
| $n0="%r6"; # const BN_ULONG *n0, |
| #$num="160(%r15)" # int num); |
| |
| $bi="%r2"; # zaps rp |
| $j="%r7"; |
| |
| $ahi="%r8"; |
| $alo="%r9"; |
| $nhi="%r10"; |
| $nlo="%r11"; |
| $AHI="%r12"; |
| $NHI="%r13"; |
| $count="%r14"; |
| $sp="%r15"; |
| |
| $code.=<<___; |
| .text |
| .globl bn_mul_mont |
| .type bn_mul_mont,\@function |
| bn_mul_mont: |
| lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num |
| sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes |
| la $bp,0($num,$bp) |
| |
| st${g} %r2,2*$SIZE_T($sp) |
| |
| cghi $num,16 # |
| lghi %r2,0 # |
| blr %r14 # if($num<16) return 0; |
| ___ |
| $code.=<<___ if ($flavour =~ /3[12]/); |
| tmll $num,4 |
| bnzr %r14 # if ($num&1) return 0; |
| ___ |
| $code.=<<___ if ($flavour !~ /3[12]/); |
| cghi $num,96 # |
| bhr %r14 # if($num>96) return 0; |
| ___ |
| $code.=<<___; |
| stm${g} %r3,%r15,3*$SIZE_T($sp) |
| |
| lghi $rp,-$stdframe-8 # leave room for carry bit |
| lcgr $j,$num # -$num |
| lgr %r0,$sp |
| la $rp,0($rp,$sp) |
| la $sp,0($j,$rp) # alloca |
| st${g} %r0,0($sp) # back chain |
| |
| sra $num,3 # restore $num |
| la $bp,0($j,$bp) # restore $bp |
| ahi $num,-1 # adjust $num for inner loop |
| lg $n0,0($n0) # pull n0 |
| _dswap $n0 |
| |
| lg $bi,0($bp) |
| _dswap $bi |
| lg $alo,0($ap) |
| _dswap $alo |
| mlgr $ahi,$bi # ap[0]*bp[0] |
| lgr $AHI,$ahi |
| |
| lgr $mn0,$alo # "tp[0]"*n0 |
| msgr $mn0,$n0 |
| |
| lg $nlo,0($np) # |
| _dswap $nlo |
| mlgr $nhi,$mn0 # np[0]*m1 |
| algr $nlo,$alo # +="tp[0]" |
| lghi $NHI,0 |
| alcgr $NHI,$nhi |
| |
| la $j,8(%r0) # j=1 |
| lr $count,$num |
| |
| .align 16 |
| .L1st: |
| lg $alo,0($j,$ap) |
| _dswap $alo |
| mlgr $ahi,$bi # ap[j]*bp[0] |
| algr $alo,$AHI |
| lghi $AHI,0 |
| alcgr $AHI,$ahi |
| |
| lg $nlo,0($j,$np) |
| _dswap $nlo |
| mlgr $nhi,$mn0 # np[j]*m1 |
| algr $nlo,$NHI |
| lghi $NHI,0 |
| alcgr $nhi,$NHI # +="tp[j]" |
| algr $nlo,$alo |
| alcgr $NHI,$nhi |
| |
| stg $nlo,$stdframe-8($j,$sp) # tp[j-1]= |
| la $j,8($j) # j++ |
| brct $count,.L1st |
| |
| algr $NHI,$AHI |
| lghi $AHI,0 |
| alcgr $AHI,$AHI # upmost overflow bit |
| stg $NHI,$stdframe-8($j,$sp) |
| stg $AHI,$stdframe($j,$sp) |
| la $bp,8($bp) # bp++ |
| |
| .Louter: |
| lg $bi,0($bp) # bp[i] |
| _dswap $bi |
| lg $alo,0($ap) |
| _dswap $alo |
| mlgr $ahi,$bi # ap[0]*bp[i] |
| alg $alo,$stdframe($sp) # +=tp[0] |
| lghi $AHI,0 |
| alcgr $AHI,$ahi |
| |
| lgr $mn0,$alo |
| msgr $mn0,$n0 # tp[0]*n0 |
| |
| lg $nlo,0($np) # np[0] |
| _dswap $nlo |
| mlgr $nhi,$mn0 # np[0]*m1 |
| algr $nlo,$alo # +="tp[0]" |
| lghi $NHI,0 |
| alcgr $NHI,$nhi |
| |
| la $j,8(%r0) # j=1 |
| lr $count,$num |
| |
| .align 16 |
| .Linner: |
| lg $alo,0($j,$ap) |
| _dswap $alo |
| mlgr $ahi,$bi # ap[j]*bp[i] |
| algr $alo,$AHI |
| lghi $AHI,0 |
| alcgr $ahi,$AHI |
| alg $alo,$stdframe($j,$sp)# +=tp[j] |
| alcgr $AHI,$ahi |
| |
| lg $nlo,0($j,$np) |
| _dswap $nlo |
| mlgr $nhi,$mn0 # np[j]*m1 |
| algr $nlo,$NHI |
| lghi $NHI,0 |
| alcgr $nhi,$NHI |
| algr $nlo,$alo # +="tp[j]" |
| alcgr $NHI,$nhi |
| |
| stg $nlo,$stdframe-8($j,$sp) # tp[j-1]= |
| la $j,8($j) # j++ |
| brct $count,.Linner |
| |
| algr $NHI,$AHI |
| lghi $AHI,0 |
| alcgr $AHI,$AHI |
| alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit |
| lghi $ahi,0 |
| alcgr $AHI,$ahi # new upmost overflow bit |
| stg $NHI,$stdframe-8($j,$sp) |
| stg $AHI,$stdframe($j,$sp) |
| |
| la $bp,8($bp) # bp++ |
| cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num] |
| jne .Louter |
| |
| l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp |
| la $ap,$stdframe($sp) |
| ahi $num,1 # restore $num, incidentally clears "borrow" |
| |
| la $j,0(%r0) |
| lr $count,$num |
| .Lsub: lg $alo,0($j,$ap) |
| lg $nlo,0($j,$np) |
| _dswap $nlo |
| slbgr $alo,$nlo |
| stg $alo,0($j,$rp) |
| la $j,8($j) |
| brct $count,.Lsub |
| lghi $ahi,0 |
| slbgr $AHI,$ahi # handle upmost carry |
| |
| ngr $ap,$AHI |
| lghi $np,-1 |
| xgr $np,$AHI |
| ngr $np,$rp |
| ogr $ap,$np # ap=borrow?tp:rp |
| |
| la $j,0(%r0) |
| lgr $count,$num |
| .Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh |
| _dswap $alo |
| stg $j,$stdframe($j,$sp) # zap tp |
| stg $alo,0($j,$rp) |
| la $j,8($j) |
| brct $count,.Lcopy |
| |
| la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp) |
| lm${g} %r6,%r15,0(%r1) |
| lghi %r2,1 # signal "processed" |
| br %r14 |
| .size bn_mul_mont,.-bn_mul_mont |
| .string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>" |
| ___ |
| |
| foreach (split("\n",$code)) { |
| s/\`([^\`]*)\`/eval $1/ge; |
| s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e; |
| print $_,"\n"; |
| } |
| close STDOUT; |