| /* crypto/bn/bn_gf2m.c */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * The Elliptic Curve Public-Key Crypto Library (ECC Code) included |
| * herein is developed by SUN MICROSYSTEMS, INC., and is contributed |
| * to the OpenSSL project. |
| * |
| * The ECC Code is licensed pursuant to the OpenSSL open source |
| * license provided below. |
| * |
| * In addition, Sun covenants to all licensees who provide a reciprocal |
| * covenant with respect to their own patents if any, not to sue under |
| * current and future patent claims necessarily infringed by the making, |
| * using, practicing, selling, offering for sale and/or otherwise |
| * disposing of the ECC Code as delivered hereunder (or portions thereof), |
| * provided that such covenant shall not apply: |
| * 1) for code that a licensee deletes from the ECC Code; |
| * 2) separates from the ECC Code; or |
| * 3) for infringements caused by: |
| * i) the modification of the ECC Code or |
| * ii) the combination of the ECC Code with other software or |
| * devices where such combination causes the infringement. |
| * |
| * The software is originally written by Sheueling Chang Shantz and |
| * Douglas Stebila of Sun Microsystems Laboratories. |
| * |
| */ |
| |
| /* NOTE: This file is licensed pursuant to the OpenSSL license below |
| * and may be modified; but after modifications, the above covenant |
| * may no longer apply! In such cases, the corresponding paragraph |
| * ["In addition, Sun covenants ... causes the infringement."] and |
| * this note can be edited out; but please keep the Sun copyright |
| * notice and attribution. */ |
| |
| /* ==================================================================== |
| * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <stdio.h> |
| #include "cryptlib.h" |
| #include "bn_lcl.h" |
| |
| #ifndef OPENSSL_NO_EC2M |
| |
| /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ |
| #define MAX_ITERATIONS 50 |
| |
| static const BN_ULONG SQR_tb[16] = |
| { 0, 1, 4, 5, 16, 17, 20, 21, |
| 64, 65, 68, 69, 80, 81, 84, 85 }; |
| /* Platform-specific macros to accelerate squaring. */ |
| #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
| #define SQR1(w) \ |
| SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ |
| SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ |
| SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ |
| SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] |
| #define SQR0(w) \ |
| SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ |
| SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ |
| SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ |
| SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] |
| #endif |
| #ifdef THIRTY_TWO_BIT |
| #define SQR1(w) \ |
| SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ |
| SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] |
| #define SQR0(w) \ |
| SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ |
| SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] |
| #endif |
| |
| #if !defined(OPENSSL_BN_ASM_GF2m) |
| /* Product of two polynomials a, b each with degree < BN_BITS2 - 1, |
| * result is a polynomial r with degree < 2 * BN_BITS - 1 |
| * The caller MUST ensure that the variables have the right amount |
| * of space allocated. |
| */ |
| #ifdef THIRTY_TWO_BIT |
| static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) |
| { |
| register BN_ULONG h, l, s; |
| BN_ULONG tab[8], top2b = a >> 30; |
| register BN_ULONG a1, a2, a4; |
| |
| a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; |
| |
| tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; |
| tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; |
| |
| s = tab[b & 0x7]; l = s; |
| s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; |
| s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; |
| s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; |
| s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; |
| s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; |
| s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; |
| s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; |
| s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; |
| s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; |
| s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; |
| |
| /* compensate for the top two bits of a */ |
| |
| if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } |
| if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } |
| |
| *r1 = h; *r0 = l; |
| } |
| #endif |
| #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
| static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) |
| { |
| register BN_ULONG h, l, s; |
| BN_ULONG tab[16], top3b = a >> 61; |
| register BN_ULONG a1, a2, a4, a8; |
| |
| a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1; |
| |
| tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; |
| tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; |
| tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; |
| tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; |
| |
| s = tab[b & 0xF]; l = s; |
| s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; |
| s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; |
| s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; |
| s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; |
| s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; |
| s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; |
| s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; |
| s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; |
| s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; |
| s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; |
| s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; |
| s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; |
| s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; |
| s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; |
| s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; |
| |
| /* compensate for the top three bits of a */ |
| |
| if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } |
| if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } |
| if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } |
| |
| *r1 = h; *r0 = l; |
| } |
| #endif |
| |
| /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, |
| * result is a polynomial r with degree < 4 * BN_BITS2 - 1 |
| * The caller MUST ensure that the variables have the right amount |
| * of space allocated. |
| */ |
| static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0) |
| { |
| BN_ULONG m1, m0; |
| /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
| bn_GF2m_mul_1x1(r+3, r+2, a1, b1); |
| bn_GF2m_mul_1x1(r+1, r, a0, b0); |
| bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
| /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
| r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
| r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
| } |
| #else |
| void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0); |
| #endif |
| |
| /* Add polynomials a and b and store result in r; r could be a or b, a and b |
| * could be equal; r is the bitwise XOR of a and b. |
| */ |
| int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) |
| { |
| int i; |
| const BIGNUM *at, *bt; |
| |
| bn_check_top(a); |
| bn_check_top(b); |
| |
| if (a->top < b->top) { at = b; bt = a; } |
| else { at = a; bt = b; } |
| |
| if(bn_wexpand(r, at->top) == NULL) |
| return 0; |
| |
| for (i = 0; i < bt->top; i++) |
| { |
| r->d[i] = at->d[i] ^ bt->d[i]; |
| } |
| for (; i < at->top; i++) |
| { |
| r->d[i] = at->d[i]; |
| } |
| |
| r->top = at->top; |
| bn_correct_top(r); |
| |
| return 1; |
| } |
| |
| |
| /* Some functions allow for representation of the irreducible polynomials |
| * as an int[], say p. The irreducible f(t) is then of the form: |
| * t^p[0] + t^p[1] + ... + t^p[k] |
| * where m = p[0] > p[1] > ... > p[k] = 0. |
| */ |
| |
| |
| /* Performs modular reduction of a and store result in r. r could be a. */ |
| int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) |
| { |
| int j, k; |
| int n, dN, d0, d1; |
| BN_ULONG zz, *z; |
| |
| bn_check_top(a); |
| |
| if (!p[0]) |
| { |
| /* reduction mod 1 => return 0 */ |
| BN_zero(r); |
| return 1; |
| } |
| |
| /* Since the algorithm does reduction in the r value, if a != r, copy |
| * the contents of a into r so we can do reduction in r. |
| */ |
| if (a != r) |
| { |
| if (!bn_wexpand(r, a->top)) return 0; |
| for (j = 0; j < a->top; j++) |
| { |
| r->d[j] = a->d[j]; |
| } |
| r->top = a->top; |
| } |
| z = r->d; |
| |
| /* start reduction */ |
| dN = p[0] / BN_BITS2; |
| for (j = r->top - 1; j > dN;) |
| { |
| zz = z[j]; |
| if (z[j] == 0) { j--; continue; } |
| z[j] = 0; |
| |
| for (k = 1; p[k] != 0; k++) |
| { |
| /* reducing component t^p[k] */ |
| n = p[0] - p[k]; |
| d0 = n % BN_BITS2; d1 = BN_BITS2 - d0; |
| n /= BN_BITS2; |
| z[j-n] ^= (zz>>d0); |
| if (d0) z[j-n-1] ^= (zz<<d1); |
| } |
| |
| /* reducing component t^0 */ |
| n = dN; |
| d0 = p[0] % BN_BITS2; |
| d1 = BN_BITS2 - d0; |
| z[j-n] ^= (zz >> d0); |
| if (d0) z[j-n-1] ^= (zz << d1); |
| } |
| |
| /* final round of reduction */ |
| while (j == dN) |
| { |
| |
| d0 = p[0] % BN_BITS2; |
| zz = z[dN] >> d0; |
| if (zz == 0) break; |
| d1 = BN_BITS2 - d0; |
| |
| /* clear up the top d1 bits */ |
| if (d0) |
| z[dN] = (z[dN] << d1) >> d1; |
| else |
| z[dN] = 0; |
| z[0] ^= zz; /* reduction t^0 component */ |
| |
| for (k = 1; p[k] != 0; k++) |
| { |
| BN_ULONG tmp_ulong; |
| |
| /* reducing component t^p[k]*/ |
| n = p[k] / BN_BITS2; |
| d0 = p[k] % BN_BITS2; |
| d1 = BN_BITS2 - d0; |
| z[n] ^= (zz << d0); |
| tmp_ulong = zz >> d1; |
| if (d0 && tmp_ulong) |
| z[n+1] ^= tmp_ulong; |
| } |
| |
| |
| } |
| |
| bn_correct_top(r); |
| return 1; |
| } |
| |
| /* Performs modular reduction of a by p and store result in r. r could be a. |
| * |
| * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper |
| * function is only provided for convenience; for best performance, use the |
| * BN_GF2m_mod_arr function. |
| */ |
| int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) |
| { |
| int ret = 0; |
| int arr[6]; |
| bn_check_top(a); |
| bn_check_top(p); |
| ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0])); |
| if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0]))) |
| { |
| BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH); |
| return 0; |
| } |
| ret = BN_GF2m_mod_arr(r, a, arr); |
| bn_check_top(r); |
| return ret; |
| } |
| |
| |
| /* Compute the product of two polynomials a and b, reduce modulo p, and store |
| * the result in r. r could be a or b; a could be b. |
| */ |
| int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) |
| { |
| int zlen, i, j, k, ret = 0; |
| BIGNUM *s; |
| BN_ULONG x1, x0, y1, y0, zz[4]; |
| |
| bn_check_top(a); |
| bn_check_top(b); |
| |
| if (a == b) |
| { |
| return BN_GF2m_mod_sqr_arr(r, a, p, ctx); |
| } |
| |
| BN_CTX_start(ctx); |
| if ((s = BN_CTX_get(ctx)) == NULL) goto err; |
| |
| zlen = a->top + b->top + 4; |
| if (!bn_wexpand(s, zlen)) goto err; |
| s->top = zlen; |
| |
| for (i = 0; i < zlen; i++) s->d[i] = 0; |
| |
| for (j = 0; j < b->top; j += 2) |
| { |
| y0 = b->d[j]; |
| y1 = ((j+1) == b->top) ? 0 : b->d[j+1]; |
| for (i = 0; i < a->top; i += 2) |
| { |
| x0 = a->d[i]; |
| x1 = ((i+1) == a->top) ? 0 : a->d[i+1]; |
| bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); |
| for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k]; |
| } |
| } |
| |
| bn_correct_top(s); |
| if (BN_GF2m_mod_arr(r, s, p)) |
| ret = 1; |
| bn_check_top(r); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* Compute the product of two polynomials a and b, reduce modulo p, and store |
| * the result in r. r could be a or b; a could equal b. |
| * |
| * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper |
| * function is only provided for convenience; for best performance, use the |
| * BN_GF2m_mod_mul_arr function. |
| */ |
| int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) |
| { |
| int ret = 0; |
| const int max = BN_num_bits(p) + 1; |
| int *arr=NULL; |
| bn_check_top(a); |
| bn_check_top(b); |
| bn_check_top(p); |
| if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; |
| ret = BN_GF2m_poly2arr(p, arr, max); |
| if (!ret || ret > max) |
| { |
| BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH); |
| goto err; |
| } |
| ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); |
| bn_check_top(r); |
| err: |
| if (arr) OPENSSL_free(arr); |
| return ret; |
| } |
| |
| |
| /* Square a, reduce the result mod p, and store it in a. r could be a. */ |
| int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) |
| { |
| int i, ret = 0; |
| BIGNUM *s; |
| |
| bn_check_top(a); |
| BN_CTX_start(ctx); |
| if ((s = BN_CTX_get(ctx)) == NULL) return 0; |
| if (!bn_wexpand(s, 2 * a->top)) goto err; |
| |
| for (i = a->top - 1; i >= 0; i--) |
| { |
| s->d[2*i+1] = SQR1(a->d[i]); |
| s->d[2*i ] = SQR0(a->d[i]); |
| } |
| |
| s->top = 2 * a->top; |
| bn_correct_top(s); |
| if (!BN_GF2m_mod_arr(r, s, p)) goto err; |
| bn_check_top(r); |
| ret = 1; |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* Square a, reduce the result mod p, and store it in a. r could be a. |
| * |
| * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper |
| * function is only provided for convenience; for best performance, use the |
| * BN_GF2m_mod_sqr_arr function. |
| */ |
| int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| { |
| int ret = 0; |
| const int max = BN_num_bits(p) + 1; |
| int *arr=NULL; |
| |
| bn_check_top(a); |
| bn_check_top(p); |
| if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; |
| ret = BN_GF2m_poly2arr(p, arr, max); |
| if (!ret || ret > max) |
| { |
| BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH); |
| goto err; |
| } |
| ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); |
| bn_check_top(r); |
| err: |
| if (arr) OPENSSL_free(arr); |
| return ret; |
| } |
| |
| |
| /* Invert a, reduce modulo p, and store the result in r. r could be a. |
| * Uses Modified Almost Inverse Algorithm (Algorithm 10) from |
| * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation |
| * of Elliptic Curve Cryptography Over Binary Fields". |
| */ |
| int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| { |
| BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; |
| int ret = 0; |
| |
| bn_check_top(a); |
| bn_check_top(p); |
| |
| BN_CTX_start(ctx); |
| |
| if ((b = BN_CTX_get(ctx))==NULL) goto err; |
| if ((c = BN_CTX_get(ctx))==NULL) goto err; |
| if ((u = BN_CTX_get(ctx))==NULL) goto err; |
| if ((v = BN_CTX_get(ctx))==NULL) goto err; |
| |
| if (!BN_GF2m_mod(u, a, p)) goto err; |
| if (BN_is_zero(u)) goto err; |
| |
| if (!BN_copy(v, p)) goto err; |
| #if 0 |
| if (!BN_one(b)) goto err; |
| |
| while (1) |
| { |
| while (!BN_is_odd(u)) |
| { |
| if (BN_is_zero(u)) goto err; |
| if (!BN_rshift1(u, u)) goto err; |
| if (BN_is_odd(b)) |
| { |
| if (!BN_GF2m_add(b, b, p)) goto err; |
| } |
| if (!BN_rshift1(b, b)) goto err; |
| } |
| |
| if (BN_abs_is_word(u, 1)) break; |
| |
| if (BN_num_bits(u) < BN_num_bits(v)) |
| { |
| tmp = u; u = v; v = tmp; |
| tmp = b; b = c; c = tmp; |
| } |
| |
| if (!BN_GF2m_add(u, u, v)) goto err; |
| if (!BN_GF2m_add(b, b, c)) goto err; |
| } |
| #else |
| { |
| int i, ubits = BN_num_bits(u), |
| vbits = BN_num_bits(v), /* v is copy of p */ |
| top = p->top; |
| BN_ULONG *udp,*bdp,*vdp,*cdp; |
| |
| bn_wexpand(u,top); udp = u->d; |
| for (i=u->top;i<top;i++) udp[i] = 0; |
| u->top = top; |
| bn_wexpand(b,top); bdp = b->d; |
| bdp[0] = 1; |
| for (i=1;i<top;i++) bdp[i] = 0; |
| b->top = top; |
| bn_wexpand(c,top); cdp = c->d; |
| for (i=0;i<top;i++) cdp[i] = 0; |
| c->top = top; |
| vdp = v->d; /* It pays off to "cache" *->d pointers, because |
| * it allows optimizer to be more aggressive. |
| * But we don't have to "cache" p->d, because *p |
| * is declared 'const'... */ |
| while (1) |
| { |
| while (ubits && !(udp[0]&1)) |
| { |
| BN_ULONG u0,u1,b0,b1,mask; |
| |
| u0 = udp[0]; |
| b0 = bdp[0]; |
| mask = (BN_ULONG)0-(b0&1); |
| b0 ^= p->d[0]&mask; |
| for (i=0;i<top-1;i++) |
| { |
| u1 = udp[i+1]; |
| udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2; |
| u0 = u1; |
| b1 = bdp[i+1]^(p->d[i+1]&mask); |
| bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2; |
| b0 = b1; |
| } |
| udp[i] = u0>>1; |
| bdp[i] = b0>>1; |
| ubits--; |
| } |
| |
| if (ubits<=BN_BITS2 && udp[0]==1) break; |
| |
| if (ubits<vbits) |
| { |
| i = ubits; ubits = vbits; vbits = i; |
| tmp = u; u = v; v = tmp; |
| tmp = b; b = c; c = tmp; |
| udp = vdp; vdp = v->d; |
| bdp = cdp; cdp = c->d; |
| } |
| for(i=0;i<top;i++) |
| { |
| udp[i] ^= vdp[i]; |
| bdp[i] ^= cdp[i]; |
| } |
| if (ubits==vbits) |
| { |
| BN_ULONG ul; |
| int utop = (ubits-1)/BN_BITS2; |
| |
| while ((ul=udp[utop])==0 && utop) utop--; |
| ubits = utop*BN_BITS2 + BN_num_bits_word(ul); |
| } |
| } |
| bn_correct_top(b); |
| } |
| #endif |
| |
| if (!BN_copy(r, b)) goto err; |
| bn_check_top(r); |
| ret = 1; |
| |
| err: |
| #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */ |
| bn_correct_top(c); |
| bn_correct_top(u); |
| bn_correct_top(v); |
| #endif |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* Invert xx, reduce modulo p, and store the result in r. r could be xx. |
| * |
| * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper |
| * function is only provided for convenience; for best performance, use the |
| * BN_GF2m_mod_inv function. |
| */ |
| int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) |
| { |
| BIGNUM *field; |
| int ret = 0; |
| |
| bn_check_top(xx); |
| BN_CTX_start(ctx); |
| if ((field = BN_CTX_get(ctx)) == NULL) goto err; |
| if (!BN_GF2m_arr2poly(p, field)) goto err; |
| |
| ret = BN_GF2m_mod_inv(r, xx, field, ctx); |
| bn_check_top(r); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| |
| #ifndef OPENSSL_SUN_GF2M_DIV |
| /* Divide y by x, reduce modulo p, and store the result in r. r could be x |
| * or y, x could equal y. |
| */ |
| int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) |
| { |
| BIGNUM *xinv = NULL; |
| int ret = 0; |
| |
| bn_check_top(y); |
| bn_check_top(x); |
| bn_check_top(p); |
| |
| BN_CTX_start(ctx); |
| xinv = BN_CTX_get(ctx); |
| if (xinv == NULL) goto err; |
| |
| if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err; |
| if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err; |
| bn_check_top(r); |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| #else |
| /* Divide y by x, reduce modulo p, and store the result in r. r could be x |
| * or y, x could equal y. |
| * Uses algorithm Modular_Division_GF(2^m) from |
| * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to |
| * the Great Divide". |
| */ |
| int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) |
| { |
| BIGNUM *a, *b, *u, *v; |
| int ret = 0; |
| |
| bn_check_top(y); |
| bn_check_top(x); |
| bn_check_top(p); |
| |
| BN_CTX_start(ctx); |
| |
| a = BN_CTX_get(ctx); |
| b = BN_CTX_get(ctx); |
| u = BN_CTX_get(ctx); |
| v = BN_CTX_get(ctx); |
| if (v == NULL) goto err; |
| |
| /* reduce x and y mod p */ |
| if (!BN_GF2m_mod(u, y, p)) goto err; |
| if (!BN_GF2m_mod(a, x, p)) goto err; |
| if (!BN_copy(b, p)) goto err; |
| |
| while (!BN_is_odd(a)) |
| { |
| if (!BN_rshift1(a, a)) goto err; |
| if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; |
| if (!BN_rshift1(u, u)) goto err; |
| } |
| |
| do |
| { |
| if (BN_GF2m_cmp(b, a) > 0) |
| { |
| if (!BN_GF2m_add(b, b, a)) goto err; |
| if (!BN_GF2m_add(v, v, u)) goto err; |
| do |
| { |
| if (!BN_rshift1(b, b)) goto err; |
| if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err; |
| if (!BN_rshift1(v, v)) goto err; |
| } while (!BN_is_odd(b)); |
| } |
| else if (BN_abs_is_word(a, 1)) |
| break; |
| else |
| { |
| if (!BN_GF2m_add(a, a, b)) goto err; |
| if (!BN_GF2m_add(u, u, v)) goto err; |
| do |
| { |
| if (!BN_rshift1(a, a)) goto err; |
| if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; |
| if (!BN_rshift1(u, u)) goto err; |
| } while (!BN_is_odd(a)); |
| } |
| } while (1); |
| |
| if (!BN_copy(r, u)) goto err; |
| bn_check_top(r); |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| #endif |
| |
| /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx |
| * or yy, xx could equal yy. |
| * |
| * This function calls down to the BN_GF2m_mod_div implementation; this wrapper |
| * function is only provided for convenience; for best performance, use the |
| * BN_GF2m_mod_div function. |
| */ |
| int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx) |
| { |
| BIGNUM *field; |
| int ret = 0; |
| |
| bn_check_top(yy); |
| bn_check_top(xx); |
| |
| BN_CTX_start(ctx); |
| if ((field = BN_CTX_get(ctx)) == NULL) goto err; |
| if (!BN_GF2m_arr2poly(p, field)) goto err; |
| |
| ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); |
| bn_check_top(r); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| |
| /* Compute the bth power of a, reduce modulo p, and store |
| * the result in r. r could be a. |
| * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. |
| */ |
| int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) |
| { |
| int ret = 0, i, n; |
| BIGNUM *u; |
| |
| bn_check_top(a); |
| bn_check_top(b); |
| |
| if (BN_is_zero(b)) |
| return(BN_one(r)); |
| |
| if (BN_abs_is_word(b, 1)) |
| return (BN_copy(r, a) != NULL); |
| |
| BN_CTX_start(ctx); |
| if ((u = BN_CTX_get(ctx)) == NULL) goto err; |
| |
| if (!BN_GF2m_mod_arr(u, a, p)) goto err; |
| |
| n = BN_num_bits(b) - 1; |
| for (i = n - 1; i >= 0; i--) |
| { |
| if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err; |
| if (BN_is_bit_set(b, i)) |
| { |
| if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err; |
| } |
| } |
| if (!BN_copy(r, u)) goto err; |
| bn_check_top(r); |
| ret = 1; |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* Compute the bth power of a, reduce modulo p, and store |
| * the result in r. r could be a. |
| * |
| * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper |
| * function is only provided for convenience; for best performance, use the |
| * BN_GF2m_mod_exp_arr function. |
| */ |
| int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) |
| { |
| int ret = 0; |
| const int max = BN_num_bits(p) + 1; |
| int *arr=NULL; |
| bn_check_top(a); |
| bn_check_top(b); |
| bn_check_top(p); |
| if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; |
| ret = BN_GF2m_poly2arr(p, arr, max); |
| if (!ret || ret > max) |
| { |
| BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH); |
| goto err; |
| } |
| ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); |
| bn_check_top(r); |
| err: |
| if (arr) OPENSSL_free(arr); |
| return ret; |
| } |
| |
| /* Compute the square root of a, reduce modulo p, and store |
| * the result in r. r could be a. |
| * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. |
| */ |
| int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) |
| { |
| int ret = 0; |
| BIGNUM *u; |
| |
| bn_check_top(a); |
| |
| if (!p[0]) |
| { |
| /* reduction mod 1 => return 0 */ |
| BN_zero(r); |
| return 1; |
| } |
| |
| BN_CTX_start(ctx); |
| if ((u = BN_CTX_get(ctx)) == NULL) goto err; |
| |
| if (!BN_set_bit(u, p[0] - 1)) goto err; |
| ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); |
| bn_check_top(r); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* Compute the square root of a, reduce modulo p, and store |
| * the result in r. r could be a. |
| * |
| * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper |
| * function is only provided for convenience; for best performance, use the |
| * BN_GF2m_mod_sqrt_arr function. |
| */ |
| int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| { |
| int ret = 0; |
| const int max = BN_num_bits(p) + 1; |
| int *arr=NULL; |
| bn_check_top(a); |
| bn_check_top(p); |
| if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; |
| ret = BN_GF2m_poly2arr(p, arr, max); |
| if (!ret || ret > max) |
| { |
| BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH); |
| goto err; |
| } |
| ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); |
| bn_check_top(r); |
| err: |
| if (arr) OPENSSL_free(arr); |
| return ret; |
| } |
| |
| /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. |
| * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. |
| */ |
| int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx) |
| { |
| int ret = 0, count = 0, j; |
| BIGNUM *a, *z, *rho, *w, *w2, *tmp; |
| |
| bn_check_top(a_); |
| |
| if (!p[0]) |
| { |
| /* reduction mod 1 => return 0 */ |
| BN_zero(r); |
| return 1; |
| } |
| |
| BN_CTX_start(ctx); |
| a = BN_CTX_get(ctx); |
| z = BN_CTX_get(ctx); |
| w = BN_CTX_get(ctx); |
| if (w == NULL) goto err; |
| |
| if (!BN_GF2m_mod_arr(a, a_, p)) goto err; |
| |
| if (BN_is_zero(a)) |
| { |
| BN_zero(r); |
| ret = 1; |
| goto err; |
| } |
| |
| if (p[0] & 0x1) /* m is odd */ |
| { |
| /* compute half-trace of a */ |
| if (!BN_copy(z, a)) goto err; |
| for (j = 1; j <= (p[0] - 1) / 2; j++) |
| { |
| if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; |
| if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; |
| if (!BN_GF2m_add(z, z, a)) goto err; |
| } |
| |
| } |
| else /* m is even */ |
| { |
| rho = BN_CTX_get(ctx); |
| w2 = BN_CTX_get(ctx); |
| tmp = BN_CTX_get(ctx); |
| if (tmp == NULL) goto err; |
| do |
| { |
| if (!BN_rand(rho, p[0], 0, 0)) goto err; |
| if (!BN_GF2m_mod_arr(rho, rho, p)) goto err; |
| BN_zero(z); |
| if (!BN_copy(w, rho)) goto err; |
| for (j = 1; j <= p[0] - 1; j++) |
| { |
| if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; |
| if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err; |
| if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err; |
| if (!BN_GF2m_add(z, z, tmp)) goto err; |
| if (!BN_GF2m_add(w, w2, rho)) goto err; |
| } |
| count++; |
| } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); |
| if (BN_is_zero(w)) |
| { |
| BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS); |
| goto err; |
| } |
| } |
| |
| if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err; |
| if (!BN_GF2m_add(w, z, w)) goto err; |
| if (BN_GF2m_cmp(w, a)) |
| { |
| BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); |
| goto err; |
| } |
| |
| if (!BN_copy(r, z)) goto err; |
| bn_check_top(r); |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. |
| * |
| * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper |
| * function is only provided for convenience; for best performance, use the |
| * BN_GF2m_mod_solve_quad_arr function. |
| */ |
| int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| { |
| int ret = 0; |
| const int max = BN_num_bits(p) + 1; |
| int *arr=NULL; |
| bn_check_top(a); |
| bn_check_top(p); |
| if ((arr = (int *)OPENSSL_malloc(sizeof(int) * |
| max)) == NULL) goto err; |
| ret = BN_GF2m_poly2arr(p, arr, max); |
| if (!ret || ret > max) |
| { |
| BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH); |
| goto err; |
| } |
| ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); |
| bn_check_top(r); |
| err: |
| if (arr) OPENSSL_free(arr); |
| return ret; |
| } |
| |
| /* Convert the bit-string representation of a polynomial |
| * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding |
| * to the bits with non-zero coefficient. Array is terminated with -1. |
| * Up to max elements of the array will be filled. Return value is total |
| * number of array elements that would be filled if array was large enough. |
| */ |
| int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) |
| { |
| int i, j, k = 0; |
| BN_ULONG mask; |
| |
| if (BN_is_zero(a)) |
| return 0; |
| |
| for (i = a->top - 1; i >= 0; i--) |
| { |
| if (!a->d[i]) |
| /* skip word if a->d[i] == 0 */ |
| continue; |
| mask = BN_TBIT; |
| for (j = BN_BITS2 - 1; j >= 0; j--) |
| { |
| if (a->d[i] & mask) |
| { |
| if (k < max) p[k] = BN_BITS2 * i + j; |
| k++; |
| } |
| mask >>= 1; |
| } |
| } |
| |
| if (k < max) { |
| p[k] = -1; |
| k++; |
| } |
| |
| return k; |
| } |
| |
| /* Convert the coefficient array representation of a polynomial to a |
| * bit-string. The array must be terminated by -1. |
| */ |
| int BN_GF2m_arr2poly(const int p[], BIGNUM *a) |
| { |
| int i; |
| |
| bn_check_top(a); |
| BN_zero(a); |
| for (i = 0; p[i] != -1; i++) |
| { |
| if (BN_set_bit(a, p[i]) == 0) |
| return 0; |
| } |
| bn_check_top(a); |
| |
| return 1; |
| } |
| |
| #endif |