| #!/usr/bin/env perl |
| # |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| # |
| # May 2011 |
| # |
| # The module implements bn_GF2m_mul_2x2 polynomial multiplication used |
| # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for |
| # the time being... gcc 4.3 appeared to generate poor code, therefore |
| # the effort. And indeed, the module delivers 55%-90%(*) improvement |
| # on haviest ECDSA verify and ECDH benchmarks for 163- and 571-bit |
| # key lengths on z990, 30%-55%(*) - on z10, and 70%-110%(*) - on z196. |
| # This is for 64-bit build. In 32-bit "highgprs" case improvement is |
| # even higher, for example on z990 it was measured 80%-150%. ECDSA |
| # sign is modest 9%-12% faster. Keep in mind that these coefficients |
| # are not ones for bn_GF2m_mul_2x2 itself, as not all CPU time is |
| # burnt in it... |
| # |
| # (*) gcc 4.1 was observed to deliver better results than gcc 4.3, |
| # so that improvement coefficients can vary from one specific |
| # setup to another. |
| |
| $flavour = shift; |
| |
| if ($flavour =~ /3[12]/) { |
| $SIZE_T=4; |
| $g=""; |
| } else { |
| $SIZE_T=8; |
| $g="g"; |
| } |
| |
| while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} |
| open STDOUT,">$output"; |
| |
| $stdframe=16*$SIZE_T+4*8; |
| |
| $rp="%r2"; |
| $a1="%r3"; |
| $a0="%r4"; |
| $b1="%r5"; |
| $b0="%r6"; |
| |
| $ra="%r14"; |
| $sp="%r15"; |
| |
| @T=("%r0","%r1"); |
| @i=("%r12","%r13"); |
| |
| ($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(6..11)); |
| ($lo,$hi,$b)=map("%r$_",(3..5)); $a=$lo; $mask=$a8; |
| |
| $code.=<<___; |
| .text |
| |
| .type _mul_1x1,\@function |
| .align 16 |
| _mul_1x1: |
| lgr $a1,$a |
| sllg $a2,$a,1 |
| sllg $a4,$a,2 |
| sllg $a8,$a,3 |
| |
| srag $lo,$a1,63 # broadcast 63rd bit |
| nihh $a1,0x1fff |
| srag @i[0],$a2,63 # broadcast 62nd bit |
| nihh $a2,0x3fff |
| srag @i[1],$a4,63 # broadcast 61st bit |
| nihh $a4,0x7fff |
| ngr $lo,$b |
| ngr @i[0],$b |
| ngr @i[1],$b |
| |
| lghi @T[0],0 |
| lgr $a12,$a1 |
| stg @T[0],`$stdframe+0*8`($sp) # tab[0]=0 |
| xgr $a12,$a2 |
| stg $a1,`$stdframe+1*8`($sp) # tab[1]=a1 |
| lgr $a48,$a4 |
| stg $a2,`$stdframe+2*8`($sp) # tab[2]=a2 |
| xgr $a48,$a8 |
| stg $a12,`$stdframe+3*8`($sp) # tab[3]=a1^a2 |
| xgr $a1,$a4 |
| |
| stg $a4,`$stdframe+4*8`($sp) # tab[4]=a4 |
| xgr $a2,$a4 |
| stg $a1,`$stdframe+5*8`($sp) # tab[5]=a1^a4 |
| xgr $a12,$a4 |
| stg $a2,`$stdframe+6*8`($sp) # tab[6]=a2^a4 |
| xgr $a1,$a48 |
| stg $a12,`$stdframe+7*8`($sp) # tab[7]=a1^a2^a4 |
| xgr $a2,$a48 |
| |
| stg $a8,`$stdframe+8*8`($sp) # tab[8]=a8 |
| xgr $a12,$a48 |
| stg $a1,`$stdframe+9*8`($sp) # tab[9]=a1^a8 |
| xgr $a1,$a4 |
| stg $a2,`$stdframe+10*8`($sp) # tab[10]=a2^a8 |
| xgr $a2,$a4 |
| stg $a12,`$stdframe+11*8`($sp) # tab[11]=a1^a2^a8 |
| |
| xgr $a12,$a4 |
| stg $a48,`$stdframe+12*8`($sp) # tab[12]=a4^a8 |
| srlg $hi,$lo,1 |
| stg $a1,`$stdframe+13*8`($sp) # tab[13]=a1^a4^a8 |
| sllg $lo,$lo,63 |
| stg $a2,`$stdframe+14*8`($sp) # tab[14]=a2^a4^a8 |
| srlg @T[0],@i[0],2 |
| stg $a12,`$stdframe+15*8`($sp) # tab[15]=a1^a2^a4^a8 |
| |
| lghi $mask,`0xf<<3` |
| sllg $a1,@i[0],62 |
| sllg @i[0],$b,3 |
| srlg @T[1],@i[1],3 |
| ngr @i[0],$mask |
| sllg $a2,@i[1],61 |
| srlg @i[1],$b,4-3 |
| xgr $hi,@T[0] |
| ngr @i[1],$mask |
| xgr $lo,$a1 |
| xgr $hi,@T[1] |
| xgr $lo,$a2 |
| |
| xg $lo,$stdframe(@i[0],$sp) |
| srlg @i[0],$b,8-3 |
| ngr @i[0],$mask |
| ___ |
| for($n=1;$n<14;$n++) { |
| $code.=<<___; |
| lg @T[1],$stdframe(@i[1],$sp) |
| srlg @i[1],$b,`($n+2)*4`-3 |
| sllg @T[0],@T[1],`$n*4` |
| ngr @i[1],$mask |
| srlg @T[1],@T[1],`64-$n*4` |
| xgr $lo,@T[0] |
| xgr $hi,@T[1] |
| ___ |
| push(@i,shift(@i)); push(@T,shift(@T)); |
| } |
| $code.=<<___; |
| lg @T[1],$stdframe(@i[1],$sp) |
| sllg @T[0],@T[1],`$n*4` |
| srlg @T[1],@T[1],`64-$n*4` |
| xgr $lo,@T[0] |
| xgr $hi,@T[1] |
| |
| lg @T[0],$stdframe(@i[0],$sp) |
| sllg @T[1],@T[0],`($n+1)*4` |
| srlg @T[0],@T[0],`64-($n+1)*4` |
| xgr $lo,@T[1] |
| xgr $hi,@T[0] |
| |
| br $ra |
| .size _mul_1x1,.-_mul_1x1 |
| |
| .globl bn_GF2m_mul_2x2 |
| .type bn_GF2m_mul_2x2,\@function |
| .align 16 |
| bn_GF2m_mul_2x2: |
| stm${g} %r3,%r15,3*$SIZE_T($sp) |
| |
| lghi %r1,-$stdframe-128 |
| la %r0,0($sp) |
| la $sp,0(%r1,$sp) # alloca |
| st${g} %r0,0($sp) # back chain |
| ___ |
| if ($SIZE_T==8) { |
| my @r=map("%r$_",(6..9)); |
| $code.=<<___; |
| bras $ra,_mul_1x1 # a1·b1 |
| stmg $lo,$hi,16($rp) |
| |
| lg $a,`$stdframe+128+4*$SIZE_T`($sp) |
| lg $b,`$stdframe+128+6*$SIZE_T`($sp) |
| bras $ra,_mul_1x1 # a0·b0 |
| stmg $lo,$hi,0($rp) |
| |
| lg $a,`$stdframe+128+3*$SIZE_T`($sp) |
| lg $b,`$stdframe+128+5*$SIZE_T`($sp) |
| xg $a,`$stdframe+128+4*$SIZE_T`($sp) |
| xg $b,`$stdframe+128+6*$SIZE_T`($sp) |
| bras $ra,_mul_1x1 # (a0+a1)·(b0+b1) |
| lmg @r[0],@r[3],0($rp) |
| |
| xgr $lo,$hi |
| xgr $hi,@r[1] |
| xgr $lo,@r[0] |
| xgr $hi,@r[2] |
| xgr $lo,@r[3] |
| xgr $hi,@r[3] |
| xgr $lo,$hi |
| stg $hi,16($rp) |
| stg $lo,8($rp) |
| ___ |
| } else { |
| $code.=<<___; |
| sllg %r3,%r3,32 |
| sllg %r5,%r5,32 |
| or %r3,%r4 |
| or %r5,%r6 |
| bras $ra,_mul_1x1 |
| rllg $lo,$lo,32 |
| rllg $hi,$hi,32 |
| stmg $lo,$hi,0($rp) |
| ___ |
| } |
| $code.=<<___; |
| lm${g} %r6,%r15,`$stdframe+128+6*$SIZE_T`($sp) |
| br $ra |
| .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 |
| .string "GF(2^m) Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>" |
| ___ |
| |
| $code =~ s/\`([^\`]*)\`/eval($1)/gem; |
| print $code; |
| close STDOUT; |