| #!/usr/bin/env perl |
| # |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| # |
| # April 2010 |
| # |
| # The module implements "4-bit" GCM GHASH function and underlying |
| # single multiplication operation in GF(2^128). "4-bit" means that it |
| # uses 256 bytes per-key table [+32 bytes shared table]. There is no |
| # experimental performance data available yet. The only approximation |
| # that can be made at this point is based on code size. Inner loop is |
| # 32 instructions long and on single-issue core should execute in <40 |
| # cycles. Having verified that gcc 3.4 didn't unroll corresponding |
| # loop, this assembler loop body was found to be ~3x smaller than |
| # compiler-generated one... |
| # |
| # July 2010 |
| # |
| # Rescheduling for dual-issue pipeline resulted in 8.5% improvement on |
| # Cortex A8 core and ~25 cycles per processed byte (which was observed |
| # to be ~3 times faster than gcc-generated code:-) |
| # |
| # February 2011 |
| # |
| # Profiler-assisted and platform-specific optimization resulted in 7% |
| # improvement on Cortex A8 core and ~23.5 cycles per byte. |
| # |
| # March 2011 |
| # |
| # Add NEON implementation featuring polynomial multiplication, i.e. no |
| # lookup tables involved. On Cortex A8 it was measured to process one |
| # byte in 15 cycles or 55% faster than integer-only code. |
| |
| # ==================================================================== |
| # Note about "528B" variant. In ARM case it makes lesser sense to |
| # implement it for following reasons: |
| # |
| # - performance improvement won't be anywhere near 50%, because 128- |
| # bit shift operation is neatly fused with 128-bit xor here, and |
| # "538B" variant would eliminate only 4-5 instructions out of 32 |
| # in the inner loop (meaning that estimated improvement is ~15%); |
| # - ARM-based systems are often embedded ones and extra memory |
| # consumption might be unappreciated (for so little improvement); |
| # |
| # Byte order [in]dependence. ========================================= |
| # |
| # Caller is expected to maintain specific *dword* order in Htable, |
| # namely with *least* significant dword of 128-bit value at *lower* |
| # address. This differs completely from C code and has everything to |
| # do with ldm instruction and order in which dwords are "consumed" by |
| # algorithm. *Byte* order within these dwords in turn is whatever |
| # *native* byte order on current platform. See gcm128.c for working |
| # example... |
| |
| while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} |
| open STDOUT,">$output"; |
| |
| $Xi="r0"; # argument block |
| $Htbl="r1"; |
| $inp="r2"; |
| $len="r3"; |
| |
| $Zll="r4"; # variables |
| $Zlh="r5"; |
| $Zhl="r6"; |
| $Zhh="r7"; |
| $Tll="r8"; |
| $Tlh="r9"; |
| $Thl="r10"; |
| $Thh="r11"; |
| $nlo="r12"; |
| ################# r13 is stack pointer |
| $nhi="r14"; |
| ################# r15 is program counter |
| |
| $rem_4bit=$inp; # used in gcm_gmult_4bit |
| $cnt=$len; |
| |
| sub Zsmash() { |
| my $i=12; |
| my @args=@_; |
| for ($Zll,$Zlh,$Zhl,$Zhh) { |
| $code.=<<___; |
| #if __ARM_ARCH__>=7 && defined(__ARMEL__) |
| rev $_,$_ |
| str $_,[$Xi,#$i] |
| #elif defined(__ARMEB__) |
| str $_,[$Xi,#$i] |
| #else |
| mov $Tlh,$_,lsr#8 |
| strb $_,[$Xi,#$i+3] |
| mov $Thl,$_,lsr#16 |
| strb $Tlh,[$Xi,#$i+2] |
| mov $Thh,$_,lsr#24 |
| strb $Thl,[$Xi,#$i+1] |
| strb $Thh,[$Xi,#$i] |
| #endif |
| ___ |
| $code.="\t".shift(@args)."\n"; |
| $i-=4; |
| } |
| } |
| |
| $code=<<___; |
| #include "arm_arch.h" |
| |
| .text |
| .code 32 |
| |
| .type rem_4bit,%object |
| .align 5 |
| rem_4bit: |
| .short 0x0000,0x1C20,0x3840,0x2460 |
| .short 0x7080,0x6CA0,0x48C0,0x54E0 |
| .short 0xE100,0xFD20,0xD940,0xC560 |
| .short 0x9180,0x8DA0,0xA9C0,0xB5E0 |
| .size rem_4bit,.-rem_4bit |
| |
| .type rem_4bit_get,%function |
| rem_4bit_get: |
| sub $rem_4bit,pc,#8 |
| sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit |
| b .Lrem_4bit_got |
| nop |
| .size rem_4bit_get,.-rem_4bit_get |
| |
| .global gcm_ghash_4bit |
| .type gcm_ghash_4bit,%function |
| gcm_ghash_4bit: |
| sub r12,pc,#8 |
| add $len,$inp,$len @ $len to point at the end |
| stmdb sp!,{r3-r11,lr} @ save $len/end too |
| sub r12,r12,#48 @ &rem_4bit |
| |
| ldmia r12,{r4-r11} @ copy rem_4bit ... |
| stmdb sp!,{r4-r11} @ ... to stack |
| |
| ldrb $nlo,[$inp,#15] |
| ldrb $nhi,[$Xi,#15] |
| .Louter: |
| eor $nlo,$nlo,$nhi |
| and $nhi,$nlo,#0xf0 |
| and $nlo,$nlo,#0x0f |
| mov $cnt,#14 |
| |
| add $Zhh,$Htbl,$nlo,lsl#4 |
| ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] |
| add $Thh,$Htbl,$nhi |
| ldrb $nlo,[$inp,#14] |
| |
| and $nhi,$Zll,#0xf @ rem |
| ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] |
| add $nhi,$nhi,$nhi |
| eor $Zll,$Tll,$Zll,lsr#4 |
| ldrh $Tll,[sp,$nhi] @ rem_4bit[rem] |
| eor $Zll,$Zll,$Zlh,lsl#28 |
| ldrb $nhi,[$Xi,#14] |
| eor $Zlh,$Tlh,$Zlh,lsr#4 |
| eor $Zlh,$Zlh,$Zhl,lsl#28 |
| eor $Zhl,$Thl,$Zhl,lsr#4 |
| eor $Zhl,$Zhl,$Zhh,lsl#28 |
| eor $Zhh,$Thh,$Zhh,lsr#4 |
| eor $nlo,$nlo,$nhi |
| and $nhi,$nlo,#0xf0 |
| and $nlo,$nlo,#0x0f |
| eor $Zhh,$Zhh,$Tll,lsl#16 |
| |
| .Linner: |
| add $Thh,$Htbl,$nlo,lsl#4 |
| and $nlo,$Zll,#0xf @ rem |
| subs $cnt,$cnt,#1 |
| add $nlo,$nlo,$nlo |
| ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] |
| eor $Zll,$Tll,$Zll,lsr#4 |
| eor $Zll,$Zll,$Zlh,lsl#28 |
| eor $Zlh,$Tlh,$Zlh,lsr#4 |
| eor $Zlh,$Zlh,$Zhl,lsl#28 |
| ldrh $Tll,[sp,$nlo] @ rem_4bit[rem] |
| eor $Zhl,$Thl,$Zhl,lsr#4 |
| ldrplb $nlo,[$inp,$cnt] |
| eor $Zhl,$Zhl,$Zhh,lsl#28 |
| eor $Zhh,$Thh,$Zhh,lsr#4 |
| |
| add $Thh,$Htbl,$nhi |
| and $nhi,$Zll,#0xf @ rem |
| eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] |
| add $nhi,$nhi,$nhi |
| ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] |
| eor $Zll,$Tll,$Zll,lsr#4 |
| ldrplb $Tll,[$Xi,$cnt] |
| eor $Zll,$Zll,$Zlh,lsl#28 |
| eor $Zlh,$Tlh,$Zlh,lsr#4 |
| ldrh $Tlh,[sp,$nhi] |
| eor $Zlh,$Zlh,$Zhl,lsl#28 |
| eor $Zhl,$Thl,$Zhl,lsr#4 |
| eor $Zhl,$Zhl,$Zhh,lsl#28 |
| eorpl $nlo,$nlo,$Tll |
| eor $Zhh,$Thh,$Zhh,lsr#4 |
| andpl $nhi,$nlo,#0xf0 |
| andpl $nlo,$nlo,#0x0f |
| eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem] |
| bpl .Linner |
| |
| ldr $len,[sp,#32] @ re-load $len/end |
| add $inp,$inp,#16 |
| mov $nhi,$Zll |
| ___ |
| &Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]"); |
| $code.=<<___; |
| bne .Louter |
| |
| add sp,sp,#36 |
| #if __ARM_ARCH__>=5 |
| ldmia sp!,{r4-r11,pc} |
| #else |
| ldmia sp!,{r4-r11,lr} |
| tst lr,#1 |
| moveq pc,lr @ be binary compatible with V4, yet |
| bx lr @ interoperable with Thumb ISA:-) |
| #endif |
| .size gcm_ghash_4bit,.-gcm_ghash_4bit |
| |
| .global gcm_gmult_4bit |
| .type gcm_gmult_4bit,%function |
| gcm_gmult_4bit: |
| stmdb sp!,{r4-r11,lr} |
| ldrb $nlo,[$Xi,#15] |
| b rem_4bit_get |
| .Lrem_4bit_got: |
| and $nhi,$nlo,#0xf0 |
| and $nlo,$nlo,#0x0f |
| mov $cnt,#14 |
| |
| add $Zhh,$Htbl,$nlo,lsl#4 |
| ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] |
| ldrb $nlo,[$Xi,#14] |
| |
| add $Thh,$Htbl,$nhi |
| and $nhi,$Zll,#0xf @ rem |
| ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] |
| add $nhi,$nhi,$nhi |
| eor $Zll,$Tll,$Zll,lsr#4 |
| ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] |
| eor $Zll,$Zll,$Zlh,lsl#28 |
| eor $Zlh,$Tlh,$Zlh,lsr#4 |
| eor $Zlh,$Zlh,$Zhl,lsl#28 |
| eor $Zhl,$Thl,$Zhl,lsr#4 |
| eor $Zhl,$Zhl,$Zhh,lsl#28 |
| eor $Zhh,$Thh,$Zhh,lsr#4 |
| and $nhi,$nlo,#0xf0 |
| eor $Zhh,$Zhh,$Tll,lsl#16 |
| and $nlo,$nlo,#0x0f |
| |
| .Loop: |
| add $Thh,$Htbl,$nlo,lsl#4 |
| and $nlo,$Zll,#0xf @ rem |
| subs $cnt,$cnt,#1 |
| add $nlo,$nlo,$nlo |
| ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] |
| eor $Zll,$Tll,$Zll,lsr#4 |
| eor $Zll,$Zll,$Zlh,lsl#28 |
| eor $Zlh,$Tlh,$Zlh,lsr#4 |
| eor $Zlh,$Zlh,$Zhl,lsl#28 |
| ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem] |
| eor $Zhl,$Thl,$Zhl,lsr#4 |
| ldrplb $nlo,[$Xi,$cnt] |
| eor $Zhl,$Zhl,$Zhh,lsl#28 |
| eor $Zhh,$Thh,$Zhh,lsr#4 |
| |
| add $Thh,$Htbl,$nhi |
| and $nhi,$Zll,#0xf @ rem |
| eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] |
| add $nhi,$nhi,$nhi |
| ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] |
| eor $Zll,$Tll,$Zll,lsr#4 |
| eor $Zll,$Zll,$Zlh,lsl#28 |
| eor $Zlh,$Tlh,$Zlh,lsr#4 |
| ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] |
| eor $Zlh,$Zlh,$Zhl,lsl#28 |
| eor $Zhl,$Thl,$Zhl,lsr#4 |
| eor $Zhl,$Zhl,$Zhh,lsl#28 |
| eor $Zhh,$Thh,$Zhh,lsr#4 |
| andpl $nhi,$nlo,#0xf0 |
| andpl $nlo,$nlo,#0x0f |
| eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] |
| bpl .Loop |
| ___ |
| &Zsmash(); |
| $code.=<<___; |
| #if __ARM_ARCH__>=5 |
| ldmia sp!,{r4-r11,pc} |
| #else |
| ldmia sp!,{r4-r11,lr} |
| tst lr,#1 |
| moveq pc,lr @ be binary compatible with V4, yet |
| bx lr @ interoperable with Thumb ISA:-) |
| #endif |
| .size gcm_gmult_4bit,.-gcm_gmult_4bit |
| ___ |
| { |
| my $cnt=$Htbl; # $Htbl is used once in the very beginning |
| |
| my ($Hhi, $Hlo, $Zo, $T, $xi, $mod) = map("d$_",(0..7)); |
| my ($Qhi, $Qlo, $Z, $R, $zero, $Qpost, $IN) = map("q$_",(8..15)); |
| |
| # Z:Zo keeps 128-bit result shifted by 1 to the right, with bottom bit |
| # in Zo. Or should I say "top bit", because GHASH is specified in |
| # reverse bit order? Otherwise straightforward 128-bt H by one input |
| # byte multiplication and modulo-reduction, times 16. |
| |
| sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; } |
| sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; } |
| sub Q() { shift=~m|d([1-3]?[02468])|?"q".($1/2):""; } |
| |
| $code.=<<___; |
| #if __ARM_ARCH__>=7 |
| .fpu neon |
| |
| .global gcm_gmult_neon |
| .type gcm_gmult_neon,%function |
| .align 4 |
| gcm_gmult_neon: |
| sub $Htbl,#16 @ point at H in GCM128_CTX |
| vld1.64 `&Dhi("$IN")`,[$Xi,:64]!@ load Xi |
| vmov.i32 $mod,#0xe1 @ our irreducible polynomial |
| vld1.64 `&Dlo("$IN")`,[$Xi,:64]! |
| vshr.u64 $mod,#32 |
| vldmia $Htbl,{$Hhi-$Hlo} @ load H |
| veor $zero,$zero |
| #ifdef __ARMEL__ |
| vrev64.8 $IN,$IN |
| #endif |
| veor $Qpost,$Qpost |
| veor $R,$R |
| mov $cnt,#16 |
| veor $Z,$Z |
| mov $len,#16 |
| veor $Zo,$Zo |
| vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte |
| b .Linner_neon |
| .size gcm_gmult_neon,.-gcm_gmult_neon |
| |
| .global gcm_ghash_neon |
| .type gcm_ghash_neon,%function |
| .align 4 |
| gcm_ghash_neon: |
| vld1.64 `&Dhi("$Z")`,[$Xi,:64]! @ load Xi |
| vmov.i32 $mod,#0xe1 @ our irreducible polynomial |
| vld1.64 `&Dlo("$Z")`,[$Xi,:64]! |
| vshr.u64 $mod,#32 |
| vldmia $Xi,{$Hhi-$Hlo} @ load H |
| veor $zero,$zero |
| nop |
| #ifdef __ARMEL__ |
| vrev64.8 $Z,$Z |
| #endif |
| .Louter_neon: |
| vld1.64 `&Dhi($IN)`,[$inp]! @ load inp |
| veor $Qpost,$Qpost |
| vld1.64 `&Dlo($IN)`,[$inp]! |
| veor $R,$R |
| mov $cnt,#16 |
| #ifdef __ARMEL__ |
| vrev64.8 $IN,$IN |
| #endif |
| veor $Zo,$Zo |
| veor $IN,$Z @ inp^=Xi |
| veor $Z,$Z |
| vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte |
| .Linner_neon: |
| subs $cnt,$cnt,#1 |
| vmull.p8 $Qlo,$Hlo,$xi @ H.lo·Xi[i] |
| vmull.p8 $Qhi,$Hhi,$xi @ H.hi·Xi[i] |
| vext.8 $IN,$zero,#1 @ IN>>=8 |
| |
| veor $Z,$Qpost @ modulo-scheduled part |
| vshl.i64 `&Dlo("$R")`,#48 |
| vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte |
| veor $T,`&Dlo("$Qlo")`,`&Dlo("$Z")` |
| |
| veor `&Dhi("$Z")`,`&Dlo("$R")` |
| vuzp.8 $Qlo,$Qhi |
| vsli.8 $Zo,$T,#1 @ compose the "carry" byte |
| vext.8 $Z,$zero,#1 @ Z>>=8 |
| |
| vmull.p8 $R,$Zo,$mod @ "carry"·0xe1 |
| vshr.u8 $Zo,$T,#7 @ save Z's bottom bit |
| vext.8 $Qpost,$Qlo,$zero,#1 @ Qlo>>=8 |
| veor $Z,$Qhi |
| bne .Linner_neon |
| |
| veor $Z,$Qpost @ modulo-scheduled artefact |
| vshl.i64 `&Dlo("$R")`,#48 |
| veor `&Dhi("$Z")`,`&Dlo("$R")` |
| |
| @ finalization, normalize Z:Zo |
| vand $Zo,$mod @ suffices to mask the bit |
| vshr.u64 `&Dhi(&Q("$Zo"))`,`&Dlo("$Z")`,#63 |
| vshl.i64 $Z,#1 |
| subs $len,#16 |
| vorr $Z,`&Q("$Zo")` @ Z=Z:Zo<<1 |
| bne .Louter_neon |
| |
| #ifdef __ARMEL__ |
| vrev64.8 $Z,$Z |
| #endif |
| sub $Xi,#16 |
| vst1.64 `&Dhi("$Z")`,[$Xi,:64]! @ write out Xi |
| vst1.64 `&Dlo("$Z")`,[$Xi,:64] |
| |
| bx lr |
| .size gcm_ghash_neon,.-gcm_ghash_neon |
| #endif |
| ___ |
| } |
| $code.=<<___; |
| .asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>" |
| .align 2 |
| ___ |
| |
| $code =~ s/\`([^\`]*)\`/eval $1/gem; |
| $code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4 |
| print $code; |
| close STDOUT; # enforce flush |