| #!/usr/bin/env perl |
| |
| # ==================================================================== |
| # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| |
| # At some point it became apparent that the original SSLeay RC4 |
| # assembler implementation performs suboptimally on latest IA-32 |
| # microarchitectures. After re-tuning performance has changed as |
| # following: |
| # |
| # Pentium -10% |
| # Pentium III +12% |
| # AMD +50%(*) |
| # P4 +250%(**) |
| # |
| # (*) This number is actually a trade-off:-) It's possible to |
| # achieve +72%, but at the cost of -48% off PIII performance. |
| # In other words code performing further 13% faster on AMD |
| # would perform almost 2 times slower on Intel PIII... |
| # For reference! This code delivers ~80% of rc4-amd64.pl |
| # performance on the same Opteron machine. |
| # (**) This number requires compressed key schedule set up by |
| # RC4_set_key [see commentary below for further details]. |
| # |
| # <appro@fy.chalmers.se> |
| |
| # May 2011 |
| # |
| # Optimize for Core2 and Westmere [and incidentally Opteron]. Current |
| # performance in cycles per processed byte (less is better) and |
| # improvement relative to previous version of this module is: |
| # |
| # Pentium 10.2 # original numbers |
| # Pentium III 7.8(*) |
| # Intel P4 7.5 |
| # |
| # Opteron 6.1/+20% # new MMX numbers |
| # Core2 5.3/+67%(**) |
| # Westmere 5.1/+94%(**) |
| # Sandy Bridge 5.0/+8% |
| # Atom 12.6/+6% |
| # |
| # (*) PIII can actually deliver 6.6 cycles per byte with MMX code, |
| # but this specific code performs poorly on Core2. And vice |
| # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs |
| # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU |
| # [anymore], I chose to discard PIII-specific code path and opt |
| # for original IALU-only code, which is why MMX/SSE code path |
| # is guarded by SSE2 bit (see below), not MMX/SSE. |
| # (**) Performance vs. block size on Core2 and Westmere had a maximum |
| # at ... 64 bytes block size. And it was quite a maximum, 40-60% |
| # in comparison to largest 8KB block size. Above improvement |
| # coefficients are for the largest block size. |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| push(@INC,"${dir}","${dir}../../perlasm"); |
| require "x86asm.pl"; |
| |
| &asm_init($ARGV[0],"rc4-586.pl"); |
| |
| $xx="eax"; |
| $yy="ebx"; |
| $tx="ecx"; |
| $ty="edx"; |
| $inp="esi"; |
| $out="ebp"; |
| $dat="edi"; |
| |
| sub RC4_loop { |
| my $i=shift; |
| my $func = ($i==0)?*mov:*or; |
| |
| &add (&LB($yy),&LB($tx)); |
| &mov ($ty,&DWP(0,$dat,$yy,4)); |
| &mov (&DWP(0,$dat,$yy,4),$tx); |
| &mov (&DWP(0,$dat,$xx,4),$ty); |
| &add ($ty,$tx); |
| &inc (&LB($xx)); |
| &and ($ty,0xff); |
| &ror ($out,8) if ($i!=0); |
| if ($i<3) { |
| &mov ($tx,&DWP(0,$dat,$xx,4)); |
| } else { |
| &mov ($tx,&wparam(3)); # reload [re-biased] out |
| } |
| &$func ($out,&DWP(0,$dat,$ty,4)); |
| } |
| |
| if ($alt=0) { |
| # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, |
| # but ~40% slower on Core2 and Westmere... Attempt to add movz |
| # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet |
| # on Core2 with movz it's almost 20% slower than below alternative |
| # code... Yes, it's a total mess... |
| my @XX=($xx,$out); |
| $RC4_loop_mmx = sub { # SSE actually... |
| my $i=shift; |
| my $j=$i<=0?0:$i>>1; |
| my $mm=$i<=0?"mm0":"mm".($i&1); |
| |
| &add (&LB($yy),&LB($tx)); |
| &lea (@XX[1],&DWP(1,@XX[0])); |
| &pxor ("mm2","mm0") if ($i==0); |
| &psllq ("mm1",8) if ($i==0); |
| &and (@XX[1],0xff); |
| &pxor ("mm0","mm0") if ($i<=0); |
| &mov ($ty,&DWP(0,$dat,$yy,4)); |
| &mov (&DWP(0,$dat,$yy,4),$tx); |
| &pxor ("mm1","mm2") if ($i==0); |
| &mov (&DWP(0,$dat,$XX[0],4),$ty); |
| &add (&LB($ty),&LB($tx)); |
| &movd (@XX[0],"mm7") if ($i==0); |
| &mov ($tx,&DWP(0,$dat,@XX[1],4)); |
| &pxor ("mm1","mm1") if ($i==1); |
| &movq ("mm2",&QWP(0,$inp)) if ($i==1); |
| &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); |
| &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); |
| |
| push (@XX,shift(@XX)) if ($i>=0); |
| } |
| } else { |
| # Using pinsrw here improves performane on Intel CPUs by 2-3%, but |
| # brings down AMD by 7%... |
| $RC4_loop_mmx = sub { |
| my $i=shift; |
| |
| &add (&LB($yy),&LB($tx)); |
| &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); |
| &mov ($ty,&DWP(0,$dat,$yy,4)); |
| &mov (&DWP(0,$dat,$yy,4),$tx); |
| &mov (&DWP(0,$dat,$xx,4),$ty); |
| &inc ($xx); |
| &add ($ty,$tx); |
| &movz ($xx,&LB($xx)); # (*) |
| &movz ($ty,&LB($ty)); # (*) |
| &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); |
| &movq ("mm0",&QWP(0,$inp)) if ($i<=0); |
| &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); |
| &mov ($tx,&DWP(0,$dat,$xx,4)); |
| &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); |
| |
| # (*) This is the key to Core2 and Westmere performance. |
| # Whithout movz out-of-order execution logic confuses |
| # itself and fails to reorder loads and stores. Problem |
| # appears to be fixed in Sandy Bridge... |
| } |
| } |
| |
| &external_label("OPENSSL_ia32cap_P"); |
| |
| # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); |
| &function_begin("RC4"); |
| &mov ($dat,&wparam(0)); # load key schedule pointer |
| &mov ($ty, &wparam(1)); # load len |
| &mov ($inp,&wparam(2)); # load inp |
| &mov ($out,&wparam(3)); # load out |
| |
| &xor ($xx,$xx); # avoid partial register stalls |
| &xor ($yy,$yy); |
| |
| &cmp ($ty,0); # safety net |
| &je (&label("abort")); |
| |
| &mov (&LB($xx),&BP(0,$dat)); # load key->x |
| &mov (&LB($yy),&BP(4,$dat)); # load key->y |
| &add ($dat,8); |
| |
| &lea ($tx,&DWP(0,$inp,$ty)); |
| &sub ($out,$inp); # re-bias out |
| &mov (&wparam(1),$tx); # save input+len |
| |
| &inc (&LB($xx)); |
| |
| # detect compressed key schedule... |
| &cmp (&DWP(256,$dat),-1); |
| &je (&label("RC4_CHAR")); |
| |
| &mov ($tx,&DWP(0,$dat,$xx,4)); |
| |
| &and ($ty,-4); # how many 4-byte chunks? |
| &jz (&label("loop1")); |
| |
| &test ($ty,-8); |
| &mov (&wparam(3),$out); # $out as accumulator in these loops |
| &jz (&label("go4loop4")); |
| |
| &picmeup($out,"OPENSSL_ia32cap_P"); |
| &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX] |
| &jnc (&label("go4loop4")); |
| |
| &mov ($out,&wparam(3)) if (!$alt); |
| &movd ("mm7",&wparam(3)) if ($alt); |
| &and ($ty,-8); |
| &lea ($ty,&DWP(-8,$inp,$ty)); |
| &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 |
| |
| &$RC4_loop_mmx(-1); |
| &jmp(&label("loop_mmx_enter")); |
| |
| &set_label("loop_mmx",16); |
| &$RC4_loop_mmx(0); |
| &set_label("loop_mmx_enter"); |
| for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } |
| &mov ($ty,$yy); |
| &xor ($yy,$yy); # this is second key to Core2 |
| &mov (&LB($yy),&LB($ty)); # and Westmere performance... |
| &cmp ($inp,&DWP(-4,$dat)); |
| &lea ($inp,&DWP(8,$inp)); |
| &jb (&label("loop_mmx")); |
| |
| if ($alt) { |
| &movd ($out,"mm7"); |
| &pxor ("mm2","mm0"); |
| &psllq ("mm1",8); |
| &pxor ("mm1","mm2"); |
| &movq (&QWP(-8,$out,$inp),"mm1"); |
| } else { |
| &psllq ("mm1",56); |
| &pxor ("mm2","mm1"); |
| &movq (&QWP(-8,$out,$inp),"mm2"); |
| } |
| &emms (); |
| |
| &cmp ($inp,&wparam(1)); # compare to input+len |
| &je (&label("done")); |
| &jmp (&label("loop1")); |
| |
| &set_label("go4loop4",16); |
| &lea ($ty,&DWP(-4,$inp,$ty)); |
| &mov (&wparam(2),$ty); # save input+(len/4)*4-4 |
| |
| &set_label("loop4"); |
| for ($i=0;$i<4;$i++) { RC4_loop($i); } |
| &ror ($out,8); |
| &xor ($out,&DWP(0,$inp)); |
| &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 |
| &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here |
| &lea ($inp,&DWP(4,$inp)); |
| &mov ($tx,&DWP(0,$dat,$xx,4)); |
| &jb (&label("loop4")); |
| |
| &cmp ($inp,&wparam(1)); # compare to input+len |
| &je (&label("done")); |
| &mov ($out,&wparam(3)); # restore $out |
| |
| &set_label("loop1",16); |
| &add (&LB($yy),&LB($tx)); |
| &mov ($ty,&DWP(0,$dat,$yy,4)); |
| &mov (&DWP(0,$dat,$yy,4),$tx); |
| &mov (&DWP(0,$dat,$xx,4),$ty); |
| &add ($ty,$tx); |
| &inc (&LB($xx)); |
| &and ($ty,0xff); |
| &mov ($ty,&DWP(0,$dat,$ty,4)); |
| &xor (&LB($ty),&BP(0,$inp)); |
| &lea ($inp,&DWP(1,$inp)); |
| &mov ($tx,&DWP(0,$dat,$xx,4)); |
| &cmp ($inp,&wparam(1)); # compare to input+len |
| &mov (&BP(-1,$out,$inp),&LB($ty)); |
| &jb (&label("loop1")); |
| |
| &jmp (&label("done")); |
| |
| # this is essentially Intel P4 specific codepath... |
| &set_label("RC4_CHAR",16); |
| &movz ($tx,&BP(0,$dat,$xx)); |
| # strangely enough unrolled loop performs over 20% slower... |
| &set_label("cloop1"); |
| &add (&LB($yy),&LB($tx)); |
| &movz ($ty,&BP(0,$dat,$yy)); |
| &mov (&BP(0,$dat,$yy),&LB($tx)); |
| &mov (&BP(0,$dat,$xx),&LB($ty)); |
| &add (&LB($ty),&LB($tx)); |
| &movz ($ty,&BP(0,$dat,$ty)); |
| &add (&LB($xx),1); |
| &xor (&LB($ty),&BP(0,$inp)); |
| &lea ($inp,&DWP(1,$inp)); |
| &movz ($tx,&BP(0,$dat,$xx)); |
| &cmp ($inp,&wparam(1)); |
| &mov (&BP(-1,$out,$inp),&LB($ty)); |
| &jb (&label("cloop1")); |
| |
| &set_label("done"); |
| &dec (&LB($xx)); |
| &mov (&DWP(-4,$dat),$yy); # save key->y |
| &mov (&BP(-8,$dat),&LB($xx)); # save key->x |
| &set_label("abort"); |
| &function_end("RC4"); |
| |
| ######################################################################## |
| |
| $inp="esi"; |
| $out="edi"; |
| $idi="ebp"; |
| $ido="ecx"; |
| $idx="edx"; |
| |
| # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); |
| &function_begin("private_RC4_set_key"); |
| &mov ($out,&wparam(0)); # load key |
| &mov ($idi,&wparam(1)); # load len |
| &mov ($inp,&wparam(2)); # load data |
| &picmeup($idx,"OPENSSL_ia32cap_P"); |
| |
| &lea ($out,&DWP(2*4,$out)); # &key->data |
| &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end |
| &neg ($idi); |
| &xor ("eax","eax"); |
| &mov (&DWP(-4,$out),$idi); # borrow key->y |
| |
| &bt (&DWP(0,$idx),20); # check for bit#20 |
| &jc (&label("c1stloop")); |
| |
| &set_label("w1stloop",16); |
| &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; |
| &add (&LB("eax"),1); # i++; |
| &jnc (&label("w1stloop")); |
| |
| &xor ($ido,$ido); |
| &xor ($idx,$idx); |
| |
| &set_label("w2ndloop",16); |
| &mov ("eax",&DWP(0,$out,$ido,4)); |
| &add (&LB($idx),&BP(0,$inp,$idi)); |
| &add (&LB($idx),&LB("eax")); |
| &add ($idi,1); |
| &mov ("ebx",&DWP(0,$out,$idx,4)); |
| &jnz (&label("wnowrap")); |
| &mov ($idi,&DWP(-4,$out)); |
| &set_label("wnowrap"); |
| &mov (&DWP(0,$out,$idx,4),"eax"); |
| &mov (&DWP(0,$out,$ido,4),"ebx"); |
| &add (&LB($ido),1); |
| &jnc (&label("w2ndloop")); |
| &jmp (&label("exit")); |
| |
| # Unlike all other x86 [and x86_64] implementations, Intel P4 core |
| # [including EM64T] was found to perform poorly with above "32-bit" key |
| # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded |
| # assembler turned out to be 3.5x if re-coded for compressed 8-bit one, |
| # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit |
| # schedule for x86[_64], because non-P4 implementations suffer from |
| # significant performance losses then, e.g. PIII exhibits >2x |
| # deterioration, and so does Opteron. In order to assure optimal |
| # all-round performance, we detect P4 at run-time and set up compressed |
| # key schedule, which is recognized by RC4 procedure. |
| |
| &set_label("c1stloop",16); |
| &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; |
| &add (&LB("eax"),1); # i++; |
| &jnc (&label("c1stloop")); |
| |
| &xor ($ido,$ido); |
| &xor ($idx,$idx); |
| &xor ("ebx","ebx"); |
| |
| &set_label("c2ndloop",16); |
| &mov (&LB("eax"),&BP(0,$out,$ido)); |
| &add (&LB($idx),&BP(0,$inp,$idi)); |
| &add (&LB($idx),&LB("eax")); |
| &add ($idi,1); |
| &mov (&LB("ebx"),&BP(0,$out,$idx)); |
| &jnz (&label("cnowrap")); |
| &mov ($idi,&DWP(-4,$out)); |
| &set_label("cnowrap"); |
| &mov (&BP(0,$out,$idx),&LB("eax")); |
| &mov (&BP(0,$out,$ido),&LB("ebx")); |
| &add (&LB($ido),1); |
| &jnc (&label("c2ndloop")); |
| |
| &mov (&DWP(256,$out),-1); # mark schedule as compressed |
| |
| &set_label("exit"); |
| &xor ("eax","eax"); |
| &mov (&DWP(-8,$out),"eax"); # key->x=0; |
| &mov (&DWP(-4,$out),"eax"); # key->y=0; |
| &function_end("private_RC4_set_key"); |
| |
| # const char *RC4_options(void); |
| &function_begin_B("RC4_options"); |
| &call (&label("pic_point")); |
| &set_label("pic_point"); |
| &blindpop("eax"); |
| &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); |
| &picmeup("edx","OPENSSL_ia32cap_P"); |
| &mov ("edx",&DWP(0,"edx")); |
| &bt ("edx",20); |
| &jc (&label("1xchar")); |
| &bt ("edx",26); |
| &jnc (&label("ret")); |
| &add ("eax",25); |
| &ret (); |
| &set_label("1xchar"); |
| &add ("eax",12); |
| &set_label("ret"); |
| &ret (); |
| &set_label("opts",64); |
| &asciz ("rc4(4x,int)"); |
| &asciz ("rc4(1x,char)"); |
| &asciz ("rc4(8x,mmx)"); |
| &asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); |
| &align (64); |
| &function_end_B("RC4_options"); |
| |
| &asm_finish(); |
| |