| /* crypto/bn/bn_asm.c */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| |
| #ifndef BN_DEBUG |
| # undef NDEBUG /* avoid conflicting definitions */ |
| # define NDEBUG |
| #endif |
| |
| #include <stdio.h> |
| #include <assert.h> |
| #include "cryptlib.h" |
| #include "bn_lcl.h" |
| |
| #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) |
| |
| BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) |
| { |
| BN_ULONG c1=0; |
| |
| assert(num >= 0); |
| if (num <= 0) return(c1); |
| |
| #ifndef OPENSSL_SMALL_FOOTPRINT |
| while (num&~3) |
| { |
| mul_add(rp[0],ap[0],w,c1); |
| mul_add(rp[1],ap[1],w,c1); |
| mul_add(rp[2],ap[2],w,c1); |
| mul_add(rp[3],ap[3],w,c1); |
| ap+=4; rp+=4; num-=4; |
| } |
| #endif |
| while (num) |
| { |
| mul_add(rp[0],ap[0],w,c1); |
| ap++; rp++; num--; |
| } |
| |
| return(c1); |
| } |
| |
| BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) |
| { |
| BN_ULONG c1=0; |
| |
| assert(num >= 0); |
| if (num <= 0) return(c1); |
| |
| #ifndef OPENSSL_SMALL_FOOTPRINT |
| while (num&~3) |
| { |
| mul(rp[0],ap[0],w,c1); |
| mul(rp[1],ap[1],w,c1); |
| mul(rp[2],ap[2],w,c1); |
| mul(rp[3],ap[3],w,c1); |
| ap+=4; rp+=4; num-=4; |
| } |
| #endif |
| while (num) |
| { |
| mul(rp[0],ap[0],w,c1); |
| ap++; rp++; num--; |
| } |
| return(c1); |
| } |
| |
| void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) |
| { |
| assert(n >= 0); |
| if (n <= 0) return; |
| |
| #ifndef OPENSSL_SMALL_FOOTPRINT |
| while (n&~3) |
| { |
| sqr(r[0],r[1],a[0]); |
| sqr(r[2],r[3],a[1]); |
| sqr(r[4],r[5],a[2]); |
| sqr(r[6],r[7],a[3]); |
| a+=4; r+=8; n-=4; |
| } |
| #endif |
| while (n) |
| { |
| sqr(r[0],r[1],a[0]); |
| a++; r+=2; n--; |
| } |
| } |
| |
| #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ |
| |
| BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) |
| { |
| BN_ULONG c=0; |
| BN_ULONG bl,bh; |
| |
| assert(num >= 0); |
| if (num <= 0) return((BN_ULONG)0); |
| |
| bl=LBITS(w); |
| bh=HBITS(w); |
| |
| #ifndef OPENSSL_SMALL_FOOTPRINT |
| while (num&~3) |
| { |
| mul_add(rp[0],ap[0],bl,bh,c); |
| mul_add(rp[1],ap[1],bl,bh,c); |
| mul_add(rp[2],ap[2],bl,bh,c); |
| mul_add(rp[3],ap[3],bl,bh,c); |
| ap+=4; rp+=4; num-=4; |
| } |
| #endif |
| while (num) |
| { |
| mul_add(rp[0],ap[0],bl,bh,c); |
| ap++; rp++; num--; |
| } |
| return(c); |
| } |
| |
| BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) |
| { |
| BN_ULONG carry=0; |
| BN_ULONG bl,bh; |
| |
| assert(num >= 0); |
| if (num <= 0) return((BN_ULONG)0); |
| |
| bl=LBITS(w); |
| bh=HBITS(w); |
| |
| #ifndef OPENSSL_SMALL_FOOTPRINT |
| while (num&~3) |
| { |
| mul(rp[0],ap[0],bl,bh,carry); |
| mul(rp[1],ap[1],bl,bh,carry); |
| mul(rp[2],ap[2],bl,bh,carry); |
| mul(rp[3],ap[3],bl,bh,carry); |
| ap+=4; rp+=4; num-=4; |
| } |
| #endif |
| while (num) |
| { |
| mul(rp[0],ap[0],bl,bh,carry); |
| ap++; rp++; num--; |
| } |
| return(carry); |
| } |
| |
| void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) |
| { |
| assert(n >= 0); |
| if (n <= 0) return; |
| |
| #ifndef OPENSSL_SMALL_FOOTPRINT |
| while (n&~3) |
| { |
| sqr64(r[0],r[1],a[0]); |
| sqr64(r[2],r[3],a[1]); |
| sqr64(r[4],r[5],a[2]); |
| sqr64(r[6],r[7],a[3]); |
| a+=4; r+=8; n-=4; |
| } |
| #endif |
| while (n) |
| { |
| sqr64(r[0],r[1],a[0]); |
| a++; r+=2; n--; |
| } |
| } |
| |
| #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ |
| |
| #if defined(BN_LLONG) && defined(BN_DIV2W) |
| |
| BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) |
| { |
| return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d)); |
| } |
| |
| #else |
| |
| /* Divide h,l by d and return the result. */ |
| /* I need to test this some more :-( */ |
| BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) |
| { |
| BN_ULONG dh,dl,q,ret=0,th,tl,t; |
| int i,count=2; |
| |
| if (d == 0) return(BN_MASK2); |
| |
| i=BN_num_bits_word(d); |
| assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i)); |
| |
| i=BN_BITS2-i; |
| if (h >= d) h-=d; |
| |
| if (i) |
| { |
| d<<=i; |
| h=(h<<i)|(l>>(BN_BITS2-i)); |
| l<<=i; |
| } |
| dh=(d&BN_MASK2h)>>BN_BITS4; |
| dl=(d&BN_MASK2l); |
| for (;;) |
| { |
| if ((h>>BN_BITS4) == dh) |
| q=BN_MASK2l; |
| else |
| q=h/dh; |
| |
| th=q*dh; |
| tl=dl*q; |
| for (;;) |
| { |
| t=h-th; |
| if ((t&BN_MASK2h) || |
| ((tl) <= ( |
| (t<<BN_BITS4)| |
| ((l&BN_MASK2h)>>BN_BITS4)))) |
| break; |
| q--; |
| th-=dh; |
| tl-=dl; |
| } |
| t=(tl>>BN_BITS4); |
| tl=(tl<<BN_BITS4)&BN_MASK2h; |
| th+=t; |
| |
| if (l < tl) th++; |
| l-=tl; |
| if (h < th) |
| { |
| h+=d; |
| q--; |
| } |
| h-=th; |
| |
| if (--count == 0) break; |
| |
| ret=q<<BN_BITS4; |
| h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2; |
| l=(l&BN_MASK2l)<<BN_BITS4; |
| } |
| ret|=q; |
| return(ret); |
| } |
| #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ |
| |
| #ifdef BN_LLONG |
| BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) |
| { |
| BN_ULLONG ll=0; |
| |
| assert(n >= 0); |
| if (n <= 0) return((BN_ULONG)0); |
| |
| #ifndef OPENSSL_SMALL_FOOTPRINT |
| while (n&~3) |
| { |
| ll+=(BN_ULLONG)a[0]+b[0]; |
| r[0]=(BN_ULONG)ll&BN_MASK2; |
| ll>>=BN_BITS2; |
| ll+=(BN_ULLONG)a[1]+b[1]; |
| r[1]=(BN_ULONG)ll&BN_MASK2; |
| ll>>=BN_BITS2; |
| ll+=(BN_ULLONG)a[2]+b[2]; |
| r[2]=(BN_ULONG)ll&BN_MASK2; |
| ll>>=BN_BITS2; |
| ll+=(BN_ULLONG)a[3]+b[3]; |
| r[3]=(BN_ULONG)ll&BN_MASK2; |
| ll>>=BN_BITS2; |
| a+=4; b+=4; r+=4; n-=4; |
| } |
| #endif |
| while (n) |
| { |
| ll+=(BN_ULLONG)a[0]+b[0]; |
| r[0]=(BN_ULONG)ll&BN_MASK2; |
| ll>>=BN_BITS2; |
| a++; b++; r++; n--; |
| } |
| return((BN_ULONG)ll); |
| } |
| #else /* !BN_LLONG */ |
| BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) |
| { |
| BN_ULONG c,l,t; |
| |
| assert(n >= 0); |
| if (n <= 0) return((BN_ULONG)0); |
| |
| c=0; |
| #ifndef OPENSSL_SMALL_FOOTPRINT |
| while (n&~3) |
| { |
| t=a[0]; |
| t=(t+c)&BN_MASK2; |
| c=(t < c); |
| l=(t+b[0])&BN_MASK2; |
| c+=(l < t); |
| r[0]=l; |
| t=a[1]; |
| t=(t+c)&BN_MASK2; |
| c=(t < c); |
| l=(t+b[1])&BN_MASK2; |
| c+=(l < t); |
| r[1]=l; |
| t=a[2]; |
| t=(t+c)&BN_MASK2; |
| c=(t < c); |
| l=(t+b[2])&BN_MASK2; |
| c+=(l < t); |
| r[2]=l; |
| t=a[3]; |
| t=(t+c)&BN_MASK2; |
| c=(t < c); |
| l=(t+b[3])&BN_MASK2; |
| c+=(l < t); |
| r[3]=l; |
| a+=4; b+=4; r+=4; n-=4; |
| } |
| #endif |
| while(n) |
| { |
| t=a[0]; |
| t=(t+c)&BN_MASK2; |
| c=(t < c); |
| l=(t+b[0])&BN_MASK2; |
| c+=(l < t); |
| r[0]=l; |
| a++; b++; r++; n--; |
| } |
| return((BN_ULONG)c); |
| } |
| #endif /* !BN_LLONG */ |
| |
| BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) |
| { |
| BN_ULONG t1,t2; |
| int c=0; |
| |
| assert(n >= 0); |
| if (n <= 0) return((BN_ULONG)0); |
| |
| #ifndef OPENSSL_SMALL_FOOTPRINT |
| while (n&~3) |
| { |
| t1=a[0]; t2=b[0]; |
| r[0]=(t1-t2-c)&BN_MASK2; |
| if (t1 != t2) c=(t1 < t2); |
| t1=a[1]; t2=b[1]; |
| r[1]=(t1-t2-c)&BN_MASK2; |
| if (t1 != t2) c=(t1 < t2); |
| t1=a[2]; t2=b[2]; |
| r[2]=(t1-t2-c)&BN_MASK2; |
| if (t1 != t2) c=(t1 < t2); |
| t1=a[3]; t2=b[3]; |
| r[3]=(t1-t2-c)&BN_MASK2; |
| if (t1 != t2) c=(t1 < t2); |
| a+=4; b+=4; r+=4; n-=4; |
| } |
| #endif |
| while (n) |
| { |
| t1=a[0]; t2=b[0]; |
| r[0]=(t1-t2-c)&BN_MASK2; |
| if (t1 != t2) c=(t1 < t2); |
| a++; b++; r++; n--; |
| } |
| return(c); |
| } |
| |
| #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| |
| #undef bn_mul_comba8 |
| #undef bn_mul_comba4 |
| #undef bn_sqr_comba8 |
| #undef bn_sqr_comba4 |
| |
| /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ |
| /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ |
| /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ |
| /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ |
| |
| #ifdef BN_LLONG |
| #define mul_add_c(a,b,c0,c1,c2) \ |
| t=(BN_ULLONG)a*b; \ |
| t1=(BN_ULONG)Lw(t); \ |
| t2=(BN_ULONG)Hw(t); \ |
| c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ |
| c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; |
| |
| #define mul_add_c2(a,b,c0,c1,c2) \ |
| t=(BN_ULLONG)a*b; \ |
| tt=(t+t)&BN_MASK; \ |
| if (tt < t) c2++; \ |
| t1=(BN_ULONG)Lw(tt); \ |
| t2=(BN_ULONG)Hw(tt); \ |
| c0=(c0+t1)&BN_MASK2; \ |
| if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ |
| c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; |
| |
| #define sqr_add_c(a,i,c0,c1,c2) \ |
| t=(BN_ULLONG)a[i]*a[i]; \ |
| t1=(BN_ULONG)Lw(t); \ |
| t2=(BN_ULONG)Hw(t); \ |
| c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ |
| c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; |
| |
| #define sqr_add_c2(a,i,j,c0,c1,c2) \ |
| mul_add_c2((a)[i],(a)[j],c0,c1,c2) |
| |
| #elif defined(BN_UMULT_LOHI) |
| |
| #define mul_add_c(a,b,c0,c1,c2) { \ |
| BN_ULONG ta=(a),tb=(b); \ |
| BN_UMULT_LOHI(t1,t2,ta,tb); \ |
| c0 += t1; t2 += (c0<t1)?1:0; \ |
| c1 += t2; c2 += (c1<t2)?1:0; \ |
| } |
| |
| #define mul_add_c2(a,b,c0,c1,c2) { \ |
| BN_ULONG ta=(a),tb=(b),t0; \ |
| BN_UMULT_LOHI(t0,t1,ta,tb); \ |
| t2 = t1+t1; c2 += (t2<t1)?1:0; \ |
| t1 = t0+t0; t2 += (t1<t0)?1:0; \ |
| c0 += t1; t2 += (c0<t1)?1:0; \ |
| c1 += t2; c2 += (c1<t2)?1:0; \ |
| } |
| |
| #define sqr_add_c(a,i,c0,c1,c2) { \ |
| BN_ULONG ta=(a)[i]; \ |
| BN_UMULT_LOHI(t1,t2,ta,ta); \ |
| c0 += t1; t2 += (c0<t1)?1:0; \ |
| c1 += t2; c2 += (c1<t2)?1:0; \ |
| } |
| |
| #define sqr_add_c2(a,i,j,c0,c1,c2) \ |
| mul_add_c2((a)[i],(a)[j],c0,c1,c2) |
| |
| #elif defined(BN_UMULT_HIGH) |
| |
| #define mul_add_c(a,b,c0,c1,c2) { \ |
| BN_ULONG ta=(a),tb=(b); \ |
| t1 = ta * tb; \ |
| t2 = BN_UMULT_HIGH(ta,tb); \ |
| c0 += t1; t2 += (c0<t1)?1:0; \ |
| c1 += t2; c2 += (c1<t2)?1:0; \ |
| } |
| |
| #define mul_add_c2(a,b,c0,c1,c2) { \ |
| BN_ULONG ta=(a),tb=(b),t0; \ |
| t1 = BN_UMULT_HIGH(ta,tb); \ |
| t0 = ta * tb; \ |
| t2 = t1+t1; c2 += (t2<t1)?1:0; \ |
| t1 = t0+t0; t2 += (t1<t0)?1:0; \ |
| c0 += t1; t2 += (c0<t1)?1:0; \ |
| c1 += t2; c2 += (c1<t2)?1:0; \ |
| } |
| |
| #define sqr_add_c(a,i,c0,c1,c2) { \ |
| BN_ULONG ta=(a)[i]; \ |
| t1 = ta * ta; \ |
| t2 = BN_UMULT_HIGH(ta,ta); \ |
| c0 += t1; t2 += (c0<t1)?1:0; \ |
| c1 += t2; c2 += (c1<t2)?1:0; \ |
| } |
| |
| #define sqr_add_c2(a,i,j,c0,c1,c2) \ |
| mul_add_c2((a)[i],(a)[j],c0,c1,c2) |
| |
| #else /* !BN_LLONG */ |
| #define mul_add_c(a,b,c0,c1,c2) \ |
| t1=LBITS(a); t2=HBITS(a); \ |
| bl=LBITS(b); bh=HBITS(b); \ |
| mul64(t1,t2,bl,bh); \ |
| c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ |
| c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; |
| |
| #define mul_add_c2(a,b,c0,c1,c2) \ |
| t1=LBITS(a); t2=HBITS(a); \ |
| bl=LBITS(b); bh=HBITS(b); \ |
| mul64(t1,t2,bl,bh); \ |
| if (t2 & BN_TBIT) c2++; \ |
| t2=(t2+t2)&BN_MASK2; \ |
| if (t1 & BN_TBIT) t2++; \ |
| t1=(t1+t1)&BN_MASK2; \ |
| c0=(c0+t1)&BN_MASK2; \ |
| if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ |
| c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; |
| |
| #define sqr_add_c(a,i,c0,c1,c2) \ |
| sqr64(t1,t2,(a)[i]); \ |
| c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ |
| c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; |
| |
| #define sqr_add_c2(a,i,j,c0,c1,c2) \ |
| mul_add_c2((a)[i],(a)[j],c0,c1,c2) |
| #endif /* !BN_LLONG */ |
| |
| void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
| { |
| #ifdef BN_LLONG |
| BN_ULLONG t; |
| #else |
| BN_ULONG bl,bh; |
| #endif |
| BN_ULONG t1,t2; |
| BN_ULONG c1,c2,c3; |
| |
| c1=0; |
| c2=0; |
| c3=0; |
| mul_add_c(a[0],b[0],c1,c2,c3); |
| r[0]=c1; |
| c1=0; |
| mul_add_c(a[0],b[1],c2,c3,c1); |
| mul_add_c(a[1],b[0],c2,c3,c1); |
| r[1]=c2; |
| c2=0; |
| mul_add_c(a[2],b[0],c3,c1,c2); |
| mul_add_c(a[1],b[1],c3,c1,c2); |
| mul_add_c(a[0],b[2],c3,c1,c2); |
| r[2]=c3; |
| c3=0; |
| mul_add_c(a[0],b[3],c1,c2,c3); |
| mul_add_c(a[1],b[2],c1,c2,c3); |
| mul_add_c(a[2],b[1],c1,c2,c3); |
| mul_add_c(a[3],b[0],c1,c2,c3); |
| r[3]=c1; |
| c1=0; |
| mul_add_c(a[4],b[0],c2,c3,c1); |
| mul_add_c(a[3],b[1],c2,c3,c1); |
| mul_add_c(a[2],b[2],c2,c3,c1); |
| mul_add_c(a[1],b[3],c2,c3,c1); |
| mul_add_c(a[0],b[4],c2,c3,c1); |
| r[4]=c2; |
| c2=0; |
| mul_add_c(a[0],b[5],c3,c1,c2); |
| mul_add_c(a[1],b[4],c3,c1,c2); |
| mul_add_c(a[2],b[3],c3,c1,c2); |
| mul_add_c(a[3],b[2],c3,c1,c2); |
| mul_add_c(a[4],b[1],c3,c1,c2); |
| mul_add_c(a[5],b[0],c3,c1,c2); |
| r[5]=c3; |
| c3=0; |
| mul_add_c(a[6],b[0],c1,c2,c3); |
| mul_add_c(a[5],b[1],c1,c2,c3); |
| mul_add_c(a[4],b[2],c1,c2,c3); |
| mul_add_c(a[3],b[3],c1,c2,c3); |
| mul_add_c(a[2],b[4],c1,c2,c3); |
| mul_add_c(a[1],b[5],c1,c2,c3); |
| mul_add_c(a[0],b[6],c1,c2,c3); |
| r[6]=c1; |
| c1=0; |
| mul_add_c(a[0],b[7],c2,c3,c1); |
| mul_add_c(a[1],b[6],c2,c3,c1); |
| mul_add_c(a[2],b[5],c2,c3,c1); |
| mul_add_c(a[3],b[4],c2,c3,c1); |
| mul_add_c(a[4],b[3],c2,c3,c1); |
| mul_add_c(a[5],b[2],c2,c3,c1); |
| mul_add_c(a[6],b[1],c2,c3,c1); |
| mul_add_c(a[7],b[0],c2,c3,c1); |
| r[7]=c2; |
| c2=0; |
| mul_add_c(a[7],b[1],c3,c1,c2); |
| mul_add_c(a[6],b[2],c3,c1,c2); |
| mul_add_c(a[5],b[3],c3,c1,c2); |
| mul_add_c(a[4],b[4],c3,c1,c2); |
| mul_add_c(a[3],b[5],c3,c1,c2); |
| mul_add_c(a[2],b[6],c3,c1,c2); |
| mul_add_c(a[1],b[7],c3,c1,c2); |
| r[8]=c3; |
| c3=0; |
| mul_add_c(a[2],b[7],c1,c2,c3); |
| mul_add_c(a[3],b[6],c1,c2,c3); |
| mul_add_c(a[4],b[5],c1,c2,c3); |
| mul_add_c(a[5],b[4],c1,c2,c3); |
| mul_add_c(a[6],b[3],c1,c2,c3); |
| mul_add_c(a[7],b[2],c1,c2,c3); |
| r[9]=c1; |
| c1=0; |
| mul_add_c(a[7],b[3],c2,c3,c1); |
| mul_add_c(a[6],b[4],c2,c3,c1); |
| mul_add_c(a[5],b[5],c2,c3,c1); |
| mul_add_c(a[4],b[6],c2,c3,c1); |
| mul_add_c(a[3],b[7],c2,c3,c1); |
| r[10]=c2; |
| c2=0; |
| mul_add_c(a[4],b[7],c3,c1,c2); |
| mul_add_c(a[5],b[6],c3,c1,c2); |
| mul_add_c(a[6],b[5],c3,c1,c2); |
| mul_add_c(a[7],b[4],c3,c1,c2); |
| r[11]=c3; |
| c3=0; |
| mul_add_c(a[7],b[5],c1,c2,c3); |
| mul_add_c(a[6],b[6],c1,c2,c3); |
| mul_add_c(a[5],b[7],c1,c2,c3); |
| r[12]=c1; |
| c1=0; |
| mul_add_c(a[6],b[7],c2,c3,c1); |
| mul_add_c(a[7],b[6],c2,c3,c1); |
| r[13]=c2; |
| c2=0; |
| mul_add_c(a[7],b[7],c3,c1,c2); |
| r[14]=c3; |
| r[15]=c1; |
| } |
| |
| void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
| { |
| #ifdef BN_LLONG |
| BN_ULLONG t; |
| #else |
| BN_ULONG bl,bh; |
| #endif |
| BN_ULONG t1,t2; |
| BN_ULONG c1,c2,c3; |
| |
| c1=0; |
| c2=0; |
| c3=0; |
| mul_add_c(a[0],b[0],c1,c2,c3); |
| r[0]=c1; |
| c1=0; |
| mul_add_c(a[0],b[1],c2,c3,c1); |
| mul_add_c(a[1],b[0],c2,c3,c1); |
| r[1]=c2; |
| c2=0; |
| mul_add_c(a[2],b[0],c3,c1,c2); |
| mul_add_c(a[1],b[1],c3,c1,c2); |
| mul_add_c(a[0],b[2],c3,c1,c2); |
| r[2]=c3; |
| c3=0; |
| mul_add_c(a[0],b[3],c1,c2,c3); |
| mul_add_c(a[1],b[2],c1,c2,c3); |
| mul_add_c(a[2],b[1],c1,c2,c3); |
| mul_add_c(a[3],b[0],c1,c2,c3); |
| r[3]=c1; |
| c1=0; |
| mul_add_c(a[3],b[1],c2,c3,c1); |
| mul_add_c(a[2],b[2],c2,c3,c1); |
| mul_add_c(a[1],b[3],c2,c3,c1); |
| r[4]=c2; |
| c2=0; |
| mul_add_c(a[2],b[3],c3,c1,c2); |
| mul_add_c(a[3],b[2],c3,c1,c2); |
| r[5]=c3; |
| c3=0; |
| mul_add_c(a[3],b[3],c1,c2,c3); |
| r[6]=c1; |
| r[7]=c2; |
| } |
| |
| void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) |
| { |
| #ifdef BN_LLONG |
| BN_ULLONG t,tt; |
| #else |
| BN_ULONG bl,bh; |
| #endif |
| BN_ULONG t1,t2; |
| BN_ULONG c1,c2,c3; |
| |
| c1=0; |
| c2=0; |
| c3=0; |
| sqr_add_c(a,0,c1,c2,c3); |
| r[0]=c1; |
| c1=0; |
| sqr_add_c2(a,1,0,c2,c3,c1); |
| r[1]=c2; |
| c2=0; |
| sqr_add_c(a,1,c3,c1,c2); |
| sqr_add_c2(a,2,0,c3,c1,c2); |
| r[2]=c3; |
| c3=0; |
| sqr_add_c2(a,3,0,c1,c2,c3); |
| sqr_add_c2(a,2,1,c1,c2,c3); |
| r[3]=c1; |
| c1=0; |
| sqr_add_c(a,2,c2,c3,c1); |
| sqr_add_c2(a,3,1,c2,c3,c1); |
| sqr_add_c2(a,4,0,c2,c3,c1); |
| r[4]=c2; |
| c2=0; |
| sqr_add_c2(a,5,0,c3,c1,c2); |
| sqr_add_c2(a,4,1,c3,c1,c2); |
| sqr_add_c2(a,3,2,c3,c1,c2); |
| r[5]=c3; |
| c3=0; |
| sqr_add_c(a,3,c1,c2,c3); |
| sqr_add_c2(a,4,2,c1,c2,c3); |
| sqr_add_c2(a,5,1,c1,c2,c3); |
| sqr_add_c2(a,6,0,c1,c2,c3); |
| r[6]=c1; |
| c1=0; |
| sqr_add_c2(a,7,0,c2,c3,c1); |
| sqr_add_c2(a,6,1,c2,c3,c1); |
| sqr_add_c2(a,5,2,c2,c3,c1); |
| sqr_add_c2(a,4,3,c2,c3,c1); |
| r[7]=c2; |
| c2=0; |
| sqr_add_c(a,4,c3,c1,c2); |
| sqr_add_c2(a,5,3,c3,c1,c2); |
| sqr_add_c2(a,6,2,c3,c1,c2); |
| sqr_add_c2(a,7,1,c3,c1,c2); |
| r[8]=c3; |
| c3=0; |
| sqr_add_c2(a,7,2,c1,c2,c3); |
| sqr_add_c2(a,6,3,c1,c2,c3); |
| sqr_add_c2(a,5,4,c1,c2,c3); |
| r[9]=c1; |
| c1=0; |
| sqr_add_c(a,5,c2,c3,c1); |
| sqr_add_c2(a,6,4,c2,c3,c1); |
| sqr_add_c2(a,7,3,c2,c3,c1); |
| r[10]=c2; |
| c2=0; |
| sqr_add_c2(a,7,4,c3,c1,c2); |
| sqr_add_c2(a,6,5,c3,c1,c2); |
| r[11]=c3; |
| c3=0; |
| sqr_add_c(a,6,c1,c2,c3); |
| sqr_add_c2(a,7,5,c1,c2,c3); |
| r[12]=c1; |
| c1=0; |
| sqr_add_c2(a,7,6,c2,c3,c1); |
| r[13]=c2; |
| c2=0; |
| sqr_add_c(a,7,c3,c1,c2); |
| r[14]=c3; |
| r[15]=c1; |
| } |
| |
| void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) |
| { |
| #ifdef BN_LLONG |
| BN_ULLONG t,tt; |
| #else |
| BN_ULONG bl,bh; |
| #endif |
| BN_ULONG t1,t2; |
| BN_ULONG c1,c2,c3; |
| |
| c1=0; |
| c2=0; |
| c3=0; |
| sqr_add_c(a,0,c1,c2,c3); |
| r[0]=c1; |
| c1=0; |
| sqr_add_c2(a,1,0,c2,c3,c1); |
| r[1]=c2; |
| c2=0; |
| sqr_add_c(a,1,c3,c1,c2); |
| sqr_add_c2(a,2,0,c3,c1,c2); |
| r[2]=c3; |
| c3=0; |
| sqr_add_c2(a,3,0,c1,c2,c3); |
| sqr_add_c2(a,2,1,c1,c2,c3); |
| r[3]=c1; |
| c1=0; |
| sqr_add_c(a,2,c2,c3,c1); |
| sqr_add_c2(a,3,1,c2,c3,c1); |
| r[4]=c2; |
| c2=0; |
| sqr_add_c2(a,3,2,c3,c1,c2); |
| r[5]=c3; |
| c3=0; |
| sqr_add_c(a,3,c1,c2,c3); |
| r[6]=c1; |
| r[7]=c2; |
| } |
| |
| #ifdef OPENSSL_NO_ASM |
| #ifdef OPENSSL_BN_ASM_MONT |
| #include <alloca.h> |
| /* |
| * This is essentially reference implementation, which may or may not |
| * result in performance improvement. E.g. on IA-32 this routine was |
| * observed to give 40% faster rsa1024 private key operations and 10% |
| * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only |
| * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a |
| * reference implementation, one to be used as starting point for |
| * platform-specific assembler. Mentioned numbers apply to compiler |
| * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and |
| * can vary not only from platform to platform, but even for compiler |
| * versions. Assembler vs. assembler improvement coefficients can |
| * [and are known to] differ and are to be documented elsewhere. |
| */ |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) |
| { |
| BN_ULONG c0,c1,ml,*tp,n0; |
| #ifdef mul64 |
| BN_ULONG mh; |
| #endif |
| volatile BN_ULONG *vp; |
| int i=0,j; |
| |
| #if 0 /* template for platform-specific implementation */ |
| if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num); |
| #endif |
| vp = tp = alloca((num+2)*sizeof(BN_ULONG)); |
| |
| n0 = *n0p; |
| |
| c0 = 0; |
| ml = bp[0]; |
| #ifdef mul64 |
| mh = HBITS(ml); |
| ml = LBITS(ml); |
| for (j=0;j<num;++j) |
| mul(tp[j],ap[j],ml,mh,c0); |
| #else |
| for (j=0;j<num;++j) |
| mul(tp[j],ap[j],ml,c0); |
| #endif |
| |
| tp[num] = c0; |
| tp[num+1] = 0; |
| goto enter; |
| |
| for(i=0;i<num;i++) |
| { |
| c0 = 0; |
| ml = bp[i]; |
| #ifdef mul64 |
| mh = HBITS(ml); |
| ml = LBITS(ml); |
| for (j=0;j<num;++j) |
| mul_add(tp[j],ap[j],ml,mh,c0); |
| #else |
| for (j=0;j<num;++j) |
| mul_add(tp[j],ap[j],ml,c0); |
| #endif |
| c1 = (tp[num] + c0)&BN_MASK2; |
| tp[num] = c1; |
| tp[num+1] = (c1<c0?1:0); |
| enter: |
| c1 = tp[0]; |
| ml = (c1*n0)&BN_MASK2; |
| c0 = 0; |
| #ifdef mul64 |
| mh = HBITS(ml); |
| ml = LBITS(ml); |
| mul_add(c1,np[0],ml,mh,c0); |
| #else |
| mul_add(c1,ml,np[0],c0); |
| #endif |
| for(j=1;j<num;j++) |
| { |
| c1 = tp[j]; |
| #ifdef mul64 |
| mul_add(c1,np[j],ml,mh,c0); |
| #else |
| mul_add(c1,ml,np[j],c0); |
| #endif |
| tp[j-1] = c1&BN_MASK2; |
| } |
| c1 = (tp[num] + c0)&BN_MASK2; |
| tp[num-1] = c1; |
| tp[num] = tp[num+1] + (c1<c0?1:0); |
| } |
| |
| if (tp[num]!=0 || tp[num-1]>=np[num-1]) |
| { |
| c0 = bn_sub_words(rp,tp,np,num); |
| if (tp[num]!=0 || c0==0) |
| { |
| for(i=0;i<num+2;i++) vp[i] = 0; |
| return 1; |
| } |
| } |
| for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; |
| vp[num] = 0; |
| vp[num+1] = 0; |
| return 1; |
| } |
| #else |
| /* |
| * Return value of 0 indicates that multiplication/convolution was not |
| * performed to signal the caller to fall down to alternative/original |
| * code-path. |
| */ |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) |
| { return 0; } |
| #endif /* OPENSSL_BN_ASM_MONT */ |
| #endif |
| |
| #else /* !BN_MUL_COMBA */ |
| |
| /* hmm... is it faster just to do a multiply? */ |
| #undef bn_sqr_comba4 |
| void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) |
| { |
| BN_ULONG t[8]; |
| bn_sqr_normal(r,a,4,t); |
| } |
| |
| #undef bn_sqr_comba8 |
| void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) |
| { |
| BN_ULONG t[16]; |
| bn_sqr_normal(r,a,8,t); |
| } |
| |
| void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
| { |
| r[4]=bn_mul_words( &(r[0]),a,4,b[0]); |
| r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]); |
| r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]); |
| r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]); |
| } |
| |
| void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) |
| { |
| r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); |
| r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); |
| r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); |
| r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); |
| r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); |
| r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); |
| r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); |
| r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); |
| } |
| |
| #ifdef OPENSSL_NO_ASM |
| #ifdef OPENSSL_BN_ASM_MONT |
| #include <alloca.h> |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) |
| { |
| BN_ULONG c0,c1,*tp,n0=*n0p; |
| volatile BN_ULONG *vp; |
| int i=0,j; |
| |
| vp = tp = alloca((num+2)*sizeof(BN_ULONG)); |
| |
| for(i=0;i<=num;i++) tp[i]=0; |
| |
| for(i=0;i<num;i++) |
| { |
| c0 = bn_mul_add_words(tp,ap,num,bp[i]); |
| c1 = (tp[num] + c0)&BN_MASK2; |
| tp[num] = c1; |
| tp[num+1] = (c1<c0?1:0); |
| |
| c0 = bn_mul_add_words(tp,np,num,tp[0]*n0); |
| c1 = (tp[num] + c0)&BN_MASK2; |
| tp[num] = c1; |
| tp[num+1] += (c1<c0?1:0); |
| for(j=0;j<=num;j++) tp[j]=tp[j+1]; |
| } |
| |
| if (tp[num]!=0 || tp[num-1]>=np[num-1]) |
| { |
| c0 = bn_sub_words(rp,tp,np,num); |
| if (tp[num]!=0 || c0==0) |
| { |
| for(i=0;i<num+2;i++) vp[i] = 0; |
| return 1; |
| } |
| } |
| for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; |
| vp[num] = 0; |
| vp[num+1] = 0; |
| return 1; |
| } |
| #else |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) |
| { return 0; } |
| #endif /* OPENSSL_BN_ASM_MONT */ |
| #endif |
| |
| #endif /* !BN_MUL_COMBA */ |