| /* crypto/ec/ec2_smpl.c */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * The Elliptic Curve Public-Key Crypto Library (ECC Code) included |
| * herein is developed by SUN MICROSYSTEMS, INC., and is contributed |
| * to the OpenSSL project. |
| * |
| * The ECC Code is licensed pursuant to the OpenSSL open source |
| * license provided below. |
| * |
| * The software is originally written by Sheueling Chang Shantz and |
| * Douglas Stebila of Sun Microsystems Laboratories. |
| * |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| |
| #include <openssl/err.h> |
| |
| #include "ec_lcl.h" |
| |
| #ifndef OPENSSL_NO_EC2M |
| |
| #ifdef OPENSSL_FIPS |
| #include <openssl/fips.h> |
| #endif |
| |
| |
| const EC_METHOD *EC_GF2m_simple_method(void) |
| { |
| #ifdef OPENSSL_FIPS |
| return fips_ec_gf2m_simple_method(); |
| #else |
| static const EC_METHOD ret = { |
| EC_FLAGS_DEFAULT_OCT, |
| NID_X9_62_characteristic_two_field, |
| ec_GF2m_simple_group_init, |
| ec_GF2m_simple_group_finish, |
| ec_GF2m_simple_group_clear_finish, |
| ec_GF2m_simple_group_copy, |
| ec_GF2m_simple_group_set_curve, |
| ec_GF2m_simple_group_get_curve, |
| ec_GF2m_simple_group_get_degree, |
| ec_GF2m_simple_group_check_discriminant, |
| ec_GF2m_simple_point_init, |
| ec_GF2m_simple_point_finish, |
| ec_GF2m_simple_point_clear_finish, |
| ec_GF2m_simple_point_copy, |
| ec_GF2m_simple_point_set_to_infinity, |
| 0 /* set_Jprojective_coordinates_GFp */, |
| 0 /* get_Jprojective_coordinates_GFp */, |
| ec_GF2m_simple_point_set_affine_coordinates, |
| ec_GF2m_simple_point_get_affine_coordinates, |
| 0,0,0, |
| ec_GF2m_simple_add, |
| ec_GF2m_simple_dbl, |
| ec_GF2m_simple_invert, |
| ec_GF2m_simple_is_at_infinity, |
| ec_GF2m_simple_is_on_curve, |
| ec_GF2m_simple_cmp, |
| ec_GF2m_simple_make_affine, |
| ec_GF2m_simple_points_make_affine, |
| |
| /* the following three method functions are defined in ec2_mult.c */ |
| ec_GF2m_simple_mul, |
| ec_GF2m_precompute_mult, |
| ec_GF2m_have_precompute_mult, |
| |
| ec_GF2m_simple_field_mul, |
| ec_GF2m_simple_field_sqr, |
| ec_GF2m_simple_field_div, |
| 0 /* field_encode */, |
| 0 /* field_decode */, |
| 0 /* field_set_to_one */ }; |
| |
| return &ret; |
| #endif |
| } |
| |
| |
| /* Initialize a GF(2^m)-based EC_GROUP structure. |
| * Note that all other members are handled by EC_GROUP_new. |
| */ |
| int ec_GF2m_simple_group_init(EC_GROUP *group) |
| { |
| BN_init(&group->field); |
| BN_init(&group->a); |
| BN_init(&group->b); |
| return 1; |
| } |
| |
| |
| /* Free a GF(2^m)-based EC_GROUP structure. |
| * Note that all other members are handled by EC_GROUP_free. |
| */ |
| void ec_GF2m_simple_group_finish(EC_GROUP *group) |
| { |
| BN_free(&group->field); |
| BN_free(&group->a); |
| BN_free(&group->b); |
| } |
| |
| |
| /* Clear and free a GF(2^m)-based EC_GROUP structure. |
| * Note that all other members are handled by EC_GROUP_clear_free. |
| */ |
| void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) |
| { |
| BN_clear_free(&group->field); |
| BN_clear_free(&group->a); |
| BN_clear_free(&group->b); |
| group->poly[0] = 0; |
| group->poly[1] = 0; |
| group->poly[2] = 0; |
| group->poly[3] = 0; |
| group->poly[4] = 0; |
| group->poly[5] = -1; |
| } |
| |
| |
| /* Copy a GF(2^m)-based EC_GROUP structure. |
| * Note that all other members are handled by EC_GROUP_copy. |
| */ |
| int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) |
| { |
| int i; |
| if (!BN_copy(&dest->field, &src->field)) return 0; |
| if (!BN_copy(&dest->a, &src->a)) return 0; |
| if (!BN_copy(&dest->b, &src->b)) return 0; |
| dest->poly[0] = src->poly[0]; |
| dest->poly[1] = src->poly[1]; |
| dest->poly[2] = src->poly[2]; |
| dest->poly[3] = src->poly[3]; |
| dest->poly[4] = src->poly[4]; |
| dest->poly[5] = src->poly[5]; |
| if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; |
| if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) return 0; |
| for (i = dest->a.top; i < dest->a.dmax; i++) dest->a.d[i] = 0; |
| for (i = dest->b.top; i < dest->b.dmax; i++) dest->b.d[i] = 0; |
| return 1; |
| } |
| |
| |
| /* Set the curve parameters of an EC_GROUP structure. */ |
| int ec_GF2m_simple_group_set_curve(EC_GROUP *group, |
| const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| { |
| int ret = 0, i; |
| |
| /* group->field */ |
| if (!BN_copy(&group->field, p)) goto err; |
| i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; |
| if ((i != 5) && (i != 3)) |
| { |
| ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); |
| goto err; |
| } |
| |
| /* group->a */ |
| if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) goto err; |
| if(bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; |
| for (i = group->a.top; i < group->a.dmax; i++) group->a.d[i] = 0; |
| |
| /* group->b */ |
| if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) goto err; |
| if(bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) == NULL) goto err; |
| for (i = group->b.top; i < group->b.dmax; i++) group->b.d[i] = 0; |
| |
| ret = 1; |
| err: |
| return ret; |
| } |
| |
| |
| /* Get the curve parameters of an EC_GROUP structure. |
| * If p, a, or b are NULL then there values will not be set but the method will return with success. |
| */ |
| int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) |
| { |
| int ret = 0; |
| |
| if (p != NULL) |
| { |
| if (!BN_copy(p, &group->field)) return 0; |
| } |
| |
| if (a != NULL) |
| { |
| if (!BN_copy(a, &group->a)) goto err; |
| } |
| |
| if (b != NULL) |
| { |
| if (!BN_copy(b, &group->b)) goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| return ret; |
| } |
| |
| |
| /* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */ |
| int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) |
| { |
| return BN_num_bits(&group->field)-1; |
| } |
| |
| |
| /* Checks the discriminant of the curve. |
| * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) |
| */ |
| int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) |
| { |
| int ret = 0; |
| BIGNUM *b; |
| BN_CTX *new_ctx = NULL; |
| |
| if (ctx == NULL) |
| { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| { |
| ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| } |
| BN_CTX_start(ctx); |
| b = BN_CTX_get(ctx); |
| if (b == NULL) goto err; |
| |
| if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) goto err; |
| |
| /* check the discriminant: |
| * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p) |
| */ |
| if (BN_is_zero(b)) goto err; |
| |
| ret = 1; |
| |
| err: |
| if (ctx != NULL) |
| BN_CTX_end(ctx); |
| if (new_ctx != NULL) |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| |
| /* Initializes an EC_POINT. */ |
| int ec_GF2m_simple_point_init(EC_POINT *point) |
| { |
| BN_init(&point->X); |
| BN_init(&point->Y); |
| BN_init(&point->Z); |
| return 1; |
| } |
| |
| |
| /* Frees an EC_POINT. */ |
| void ec_GF2m_simple_point_finish(EC_POINT *point) |
| { |
| BN_free(&point->X); |
| BN_free(&point->Y); |
| BN_free(&point->Z); |
| } |
| |
| |
| /* Clears and frees an EC_POINT. */ |
| void ec_GF2m_simple_point_clear_finish(EC_POINT *point) |
| { |
| BN_clear_free(&point->X); |
| BN_clear_free(&point->Y); |
| BN_clear_free(&point->Z); |
| point->Z_is_one = 0; |
| } |
| |
| |
| /* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */ |
| int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) |
| { |
| if (!BN_copy(&dest->X, &src->X)) return 0; |
| if (!BN_copy(&dest->Y, &src->Y)) return 0; |
| if (!BN_copy(&dest->Z, &src->Z)) return 0; |
| dest->Z_is_one = src->Z_is_one; |
| |
| return 1; |
| } |
| |
| |
| /* Set an EC_POINT to the point at infinity. |
| * A point at infinity is represented by having Z=0. |
| */ |
| int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) |
| { |
| point->Z_is_one = 0; |
| BN_zero(&point->Z); |
| return 1; |
| } |
| |
| |
| /* Set the coordinates of an EC_POINT using affine coordinates. |
| * Note that the simple implementation only uses affine coordinates. |
| */ |
| int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, |
| const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) |
| { |
| int ret = 0; |
| if (x == NULL || y == NULL) |
| { |
| ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| if (!BN_copy(&point->X, x)) goto err; |
| BN_set_negative(&point->X, 0); |
| if (!BN_copy(&point->Y, y)) goto err; |
| BN_set_negative(&point->Y, 0); |
| if (!BN_copy(&point->Z, BN_value_one())) goto err; |
| BN_set_negative(&point->Z, 0); |
| point->Z_is_one = 1; |
| ret = 1; |
| |
| err: |
| return ret; |
| } |
| |
| |
| /* Gets the affine coordinates of an EC_POINT. |
| * Note that the simple implementation only uses affine coordinates. |
| */ |
| int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, |
| BIGNUM *x, BIGNUM *y, BN_CTX *ctx) |
| { |
| int ret = 0; |
| |
| if (EC_POINT_is_at_infinity(group, point)) |
| { |
| ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| |
| if (BN_cmp(&point->Z, BN_value_one())) |
| { |
| ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| if (x != NULL) |
| { |
| if (!BN_copy(x, &point->X)) goto err; |
| BN_set_negative(x, 0); |
| } |
| if (y != NULL) |
| { |
| if (!BN_copy(y, &point->Y)) goto err; |
| BN_set_negative(y, 0); |
| } |
| ret = 1; |
| |
| err: |
| return ret; |
| } |
| |
| /* Computes a + b and stores the result in r. r could be a or b, a could be b. |
| * Uses algorithm A.10.2 of IEEE P1363. |
| */ |
| int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) |
| { |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; |
| int ret = 0; |
| |
| if (EC_POINT_is_at_infinity(group, a)) |
| { |
| if (!EC_POINT_copy(r, b)) return 0; |
| return 1; |
| } |
| |
| if (EC_POINT_is_at_infinity(group, b)) |
| { |
| if (!EC_POINT_copy(r, a)) return 0; |
| return 1; |
| } |
| |
| if (ctx == NULL) |
| { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| return 0; |
| } |
| |
| BN_CTX_start(ctx); |
| x0 = BN_CTX_get(ctx); |
| y0 = BN_CTX_get(ctx); |
| x1 = BN_CTX_get(ctx); |
| y1 = BN_CTX_get(ctx); |
| x2 = BN_CTX_get(ctx); |
| y2 = BN_CTX_get(ctx); |
| s = BN_CTX_get(ctx); |
| t = BN_CTX_get(ctx); |
| if (t == NULL) goto err; |
| |
| if (a->Z_is_one) |
| { |
| if (!BN_copy(x0, &a->X)) goto err; |
| if (!BN_copy(y0, &a->Y)) goto err; |
| } |
| else |
| { |
| if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) goto err; |
| } |
| if (b->Z_is_one) |
| { |
| if (!BN_copy(x1, &b->X)) goto err; |
| if (!BN_copy(y1, &b->Y)) goto err; |
| } |
| else |
| { |
| if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) goto err; |
| } |
| |
| |
| if (BN_GF2m_cmp(x0, x1)) |
| { |
| if (!BN_GF2m_add(t, x0, x1)) goto err; |
| if (!BN_GF2m_add(s, y0, y1)) goto err; |
| if (!group->meth->field_div(group, s, s, t, ctx)) goto err; |
| if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; |
| if (!BN_GF2m_add(x2, x2, &group->a)) goto err; |
| if (!BN_GF2m_add(x2, x2, s)) goto err; |
| if (!BN_GF2m_add(x2, x2, t)) goto err; |
| } |
| else |
| { |
| if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) |
| { |
| if (!EC_POINT_set_to_infinity(group, r)) goto err; |
| ret = 1; |
| goto err; |
| } |
| if (!group->meth->field_div(group, s, y1, x1, ctx)) goto err; |
| if (!BN_GF2m_add(s, s, x1)) goto err; |
| |
| if (!group->meth->field_sqr(group, x2, s, ctx)) goto err; |
| if (!BN_GF2m_add(x2, x2, s)) goto err; |
| if (!BN_GF2m_add(x2, x2, &group->a)) goto err; |
| } |
| |
| if (!BN_GF2m_add(y2, x1, x2)) goto err; |
| if (!group->meth->field_mul(group, y2, y2, s, ctx)) goto err; |
| if (!BN_GF2m_add(y2, y2, x2)) goto err; |
| if (!BN_GF2m_add(y2, y2, y1)) goto err; |
| |
| if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) goto err; |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| if (new_ctx != NULL) |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| |
| /* Computes 2 * a and stores the result in r. r could be a. |
| * Uses algorithm A.10.2 of IEEE P1363. |
| */ |
| int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) |
| { |
| return ec_GF2m_simple_add(group, r, a, a, ctx); |
| } |
| |
| |
| int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) |
| { |
| if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) |
| /* point is its own inverse */ |
| return 1; |
| |
| if (!EC_POINT_make_affine(group, point, ctx)) return 0; |
| return BN_GF2m_add(&point->Y, &point->X, &point->Y); |
| } |
| |
| |
| /* Indicates whether the given point is the point at infinity. */ |
| int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) |
| { |
| return BN_is_zero(&point->Z); |
| } |
| |
| |
| /* Determines whether the given EC_POINT is an actual point on the curve defined |
| * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: |
| * y^2 + x*y = x^3 + a*x^2 + b. |
| */ |
| int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) |
| { |
| int ret = -1; |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *lh, *y2; |
| int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); |
| int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| |
| if (EC_POINT_is_at_infinity(group, point)) |
| return 1; |
| |
| field_mul = group->meth->field_mul; |
| field_sqr = group->meth->field_sqr; |
| |
| /* only support affine coordinates */ |
| if (!point->Z_is_one) return -1; |
| |
| if (ctx == NULL) |
| { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| return -1; |
| } |
| |
| BN_CTX_start(ctx); |
| y2 = BN_CTX_get(ctx); |
| lh = BN_CTX_get(ctx); |
| if (lh == NULL) goto err; |
| |
| /* We have a curve defined by a Weierstrass equation |
| * y^2 + x*y = x^3 + a*x^2 + b. |
| * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 |
| * <=> ((x + a) * x + y ) * x + b + y^2 = 0 |
| */ |
| if (!BN_GF2m_add(lh, &point->X, &group->a)) goto err; |
| if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; |
| if (!BN_GF2m_add(lh, lh, &point->Y)) goto err; |
| if (!field_mul(group, lh, lh, &point->X, ctx)) goto err; |
| if (!BN_GF2m_add(lh, lh, &group->b)) goto err; |
| if (!field_sqr(group, y2, &point->Y, ctx)) goto err; |
| if (!BN_GF2m_add(lh, lh, y2)) goto err; |
| ret = BN_is_zero(lh); |
| err: |
| if (ctx) BN_CTX_end(ctx); |
| if (new_ctx) BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| |
| /* Indicates whether two points are equal. |
| * Return values: |
| * -1 error |
| * 0 equal (in affine coordinates) |
| * 1 not equal |
| */ |
| int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) |
| { |
| BIGNUM *aX, *aY, *bX, *bY; |
| BN_CTX *new_ctx = NULL; |
| int ret = -1; |
| |
| if (EC_POINT_is_at_infinity(group, a)) |
| { |
| return EC_POINT_is_at_infinity(group, b) ? 0 : 1; |
| } |
| |
| if (EC_POINT_is_at_infinity(group, b)) |
| return 1; |
| |
| if (a->Z_is_one && b->Z_is_one) |
| { |
| return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; |
| } |
| |
| if (ctx == NULL) |
| { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| return -1; |
| } |
| |
| BN_CTX_start(ctx); |
| aX = BN_CTX_get(ctx); |
| aY = BN_CTX_get(ctx); |
| bX = BN_CTX_get(ctx); |
| bY = BN_CTX_get(ctx); |
| if (bY == NULL) goto err; |
| |
| if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) goto err; |
| if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) goto err; |
| ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; |
| |
| err: |
| if (ctx) BN_CTX_end(ctx); |
| if (new_ctx) BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| |
| /* Forces the given EC_POINT to internally use affine coordinates. */ |
| int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) |
| { |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *x, *y; |
| int ret = 0; |
| |
| if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) |
| return 1; |
| |
| if (ctx == NULL) |
| { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| return 0; |
| } |
| |
| BN_CTX_start(ctx); |
| x = BN_CTX_get(ctx); |
| y = BN_CTX_get(ctx); |
| if (y == NULL) goto err; |
| |
| if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) goto err; |
| if (!BN_copy(&point->X, x)) goto err; |
| if (!BN_copy(&point->Y, y)) goto err; |
| if (!BN_one(&point->Z)) goto err; |
| |
| ret = 1; |
| |
| err: |
| if (ctx) BN_CTX_end(ctx); |
| if (new_ctx) BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| |
| /* Forces each of the EC_POINTs in the given array to use affine coordinates. */ |
| int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) |
| { |
| size_t i; |
| |
| for (i = 0; i < num; i++) |
| { |
| if (!group->meth->make_affine(group, points[i], ctx)) return 0; |
| } |
| |
| return 1; |
| } |
| |
| |
| /* Wrapper to simple binary polynomial field multiplication implementation. */ |
| int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| { |
| return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); |
| } |
| |
| |
| /* Wrapper to simple binary polynomial field squaring implementation. */ |
| int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) |
| { |
| return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); |
| } |
| |
| |
| /* Wrapper to simple binary polynomial field division implementation. */ |
| int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| { |
| return BN_GF2m_mod_div(r, a, b, &group->field, ctx); |
| } |
| |
| #endif |