| #!/usr/bin/env perl |
| # |
| # ==================================================================== |
| # Written by David Mosberger <David.Mosberger@acm.org> based on the |
| # Itanium optimized Crypto code which was released by HP Labs at |
| # http://www.hpl.hp.com/research/linux/crypto/. |
| # |
| # Copyright (c) 2005 Hewlett-Packard Development Company, L.P. |
| # |
| # Permission is hereby granted, free of charge, to any person obtaining |
| # a copy of this software and associated documentation files (the |
| # "Software"), to deal in the Software without restriction, including |
| # without limitation the rights to use, copy, modify, merge, publish, |
| # distribute, sublicense, and/or sell copies of the Software, and to |
| # permit persons to whom the Software is furnished to do so, subject to |
| # the following conditions: |
| # |
| # The above copyright notice and this permission notice shall be |
| # included in all copies or substantial portions of the Software. |
| |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| |
| |
| |
| # This is a little helper program which generates a software-pipelined |
| # for RC4 encryption. The basic algorithm looks like this: |
| # |
| # for (counter = 0; counter < len; ++counter) |
| # { |
| # in = inp[counter]; |
| # SI = S[I]; |
| # J = (SI + J) & 0xff; |
| # SJ = S[J]; |
| # T = (SI + SJ) & 0xff; |
| # S[I] = SJ, S[J] = SI; |
| # ST = S[T]; |
| # outp[counter] = in ^ ST; |
| # I = (I + 1) & 0xff; |
| # } |
| # |
| # Pipelining this loop isn't easy, because the stores to the S[] array |
| # need to be observed in the right order. The loop generated by the |
| # code below has the following pipeline diagram: |
| # |
| # cycle |
| # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 | |
| # iter |
| # 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx |
| # 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx |
| # 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx |
| # |
| # where: |
| # LDI = load of S[I] |
| # LDJ = load of S[J] |
| # SWP = swap of S[I] and S[J] |
| # LDT = load of S[T] |
| # |
| # Note that in the above diagram, the major trouble-spot is that LDI |
| # of the 2nd iteration is performed BEFORE the SWP of the first |
| # iteration. Fortunately, this is easy to detect (I of the 1st |
| # iteration will be equal to J of the 2nd iteration) and when this |
| # happens, we simply forward the proper value from the 1st iteration |
| # to the 2nd one. The proper value in this case is simply the value |
| # of S[I] from the first iteration (thanks to the fact that SWP |
| # simply swaps the contents of S[I] and S[J]). |
| # |
| # Another potential trouble-spot is in cycle 7, where SWP of the 1st |
| # iteration issues at the same time as the LDI of the 3rd iteration. |
| # However, thanks to IA-64 execution semantics, this can be taken |
| # care of simply by placing LDI later in the instruction-group than |
| # SWP. IA-64 CPUs will automatically forward the value if they |
| # detect that the SWP and LDI are accessing the same memory-location. |
| |
| # The core-loop that can be pipelined then looks like this (annotated |
| # with McKinley/Madison issue port & latency numbers, assuming L1 |
| # cache hits for the most part): |
| |
| # operation: instruction: issue-ports: latency |
| # ------------------ ----------------------------- ------------- ------- |
| |
| # Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0 |
| # shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc |
| # I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc |
| # ;; |
| # SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1 * after SWAP! |
| # ;; |
| # cmp.eq.unc pBypass = I, J * after J is valid! |
| # J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2 |
| # (pBypass) br.cond.spnt Bypass |
| # ;; |
| # --------------------------------------------------------------------------------------- |
| # J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3 |
| # ;; |
| # shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4 |
| # ;; |
| # SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5 |
| # ;; |
| # --------------------------------------------------------------------------------------- |
| # T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6 |
| # ;; |
| # T = T & 0xff zxt1 T = T I0, I1 1 cyc |
| # S[I] = SJ st8 [Iptr] = SJ M2-M3 c7 |
| # S[J] = SI st8 [Jptr] = SI M2-M3 |
| # ;; |
| # shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8 |
| # ;; |
| # --------------------------------------------------------------------------------------- |
| # T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9 |
| # ;; |
| # data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c10 |
| # ;; |
| # *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c11 |
| # ;; |
| # --------------------------------------------------------------------------------------- |
| |
| # There are several points worth making here: |
| |
| # - Note that due to the bypass/forwarding-path, the first two |
| # phases of the loop are strangly mingled together. In |
| # particular, note that the first stage of the pipeline is |
| # using the value of "J", as calculated by the second stage. |
| # - Each bundle-pair will have exactly 6 instructions. |
| # - Pipelined, the loop can execute in 3 cycles/iteration and |
| # 4 stages. However, McKinley/Madison can issue "st1" to |
| # the same bank at a rate of at most one per 4 cycles. Thus, |
| # instead of storing each byte, we accumulate them in a word |
| # and then write them back at once with a single "st8" (this |
| # implies that the setup code needs to ensure that the output |
| # buffer is properly aligned, if need be, by encoding the |
| # first few bytes separately). |
| # - There is no space for a "br.ctop" instruction. For this |
| # reason we can't use module-loop support in IA-64 and have |
| # to do a traditional, purely software-pipelined loop. |
| # - We can't replace any of the remaining "add/zxt1" pairs with |
| # "padd1" because the latency for that instruction is too high |
| # and would push the loop to the point where more bypasses |
| # would be needed, which we don't have space for. |
| # - The above loop runs at around 3.26 cycles/byte, or roughly |
| # 440 MByte/sec on a 1.5GHz Madison. This is well below the |
| # system bus bandwidth and hence with judicious use of |
| # "lfetch" this loop can run at (almost) peak speed even when |
| # the input and output data reside in memory. The |
| # max. latency that can be tolerated is (PREFETCH_DISTANCE * |
| # L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at |
| # least) 1-ahead prefetching of 128 byte cache-lines. Note |
| # that we do NOT prefetch into L1, since that would only |
| # interfere with the S[] table values stored there. This is |
| # acceptable because there is a 10 cycle latency between |
| # load and first use of the input data. |
| # - We use a branch to out-of-line bypass-code of cycle-pressure: |
| # we calculate the next J, check for the need to activate the |
| # bypass path, and activate the bypass path ALL IN THE SAME |
| # CYCLE. If we didn't have these constraints, we could do |
| # the bypass with a simple conditional move instruction. |
| # Fortunately, the bypass paths get activated relatively |
| # infrequently, so the extra branches don't cost all that much |
| # (about 0.04 cycles/byte, measured on a 16396 byte file with |
| # random input data). |
| # |
| |
| $phases = 4; # number of stages/phases in the pipelined-loop |
| $unroll_count = 6; # number of times we unrolled it |
| $pComI = (1 << 0); |
| $pComJ = (1 << 1); |
| $pComT = (1 << 2); |
| $pOut = (1 << 3); |
| |
| $NData = 4; |
| $NIP = 3; |
| $NJP = 2; |
| $NI = 2; |
| $NSI = 3; |
| $NSJ = 2; |
| $NT = 2; |
| $NOutWord = 2; |
| |
| # |
| # $threshold is the minimum length before we attempt to use the |
| # big software-pipelined loop. It MUST be greater-or-equal |
| # to: |
| # PHASES * (UNROLL_COUNT + 1) + 7 |
| # |
| # The "+ 7" comes from the fact we may have to encode up to |
| # 7 bytes separately before the output pointer is aligned. |
| # |
| $threshold = (3 * ($phases * ($unroll_count + 1)) + 7); |
| |
| sub I { |
| local *code = shift; |
| local $format = shift; |
| $code .= sprintf ("\t\t".$format."\n", @_); |
| } |
| |
| sub P { |
| local *code = shift; |
| local $format = shift; |
| $code .= sprintf ($format."\n", @_); |
| } |
| |
| sub STOP { |
| local *code = shift; |
| $code .=<<___; |
| ;; |
| ___ |
| } |
| |
| sub emit_body { |
| local *c = shift; |
| local *bypass = shift; |
| local ($iteration, $p) = @_; |
| |
| local $i0 = $iteration; |
| local $i1 = $iteration - 1; |
| local $i2 = $iteration - 2; |
| local $i3 = $iteration - 3; |
| local $iw0 = ($iteration - 3) / 8; |
| local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1; |
| local $byte_num = ($iteration - 3) % 8; |
| local $label = $iteration + 1; |
| local $pAny = ($p & 0xf) == 0xf; |
| local $pByp = (($p & $pComI) && ($iteration > 0)); |
| |
| $c.=<<___; |
| ////////////////////////////////////////////////// |
| ___ |
| |
| if (($p & 0xf) == 0) { |
| $c.="#ifdef HOST_IS_BIG_ENDIAN\n"; |
| &I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;", |
| $iw1 % $NOutWord, $iw1 % $NOutWord); |
| $c.="#endif\n"; |
| &I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord); |
| return; |
| } |
| |
| # Cycle 0 |
| &I(\$c, "{ .mmi") if ($pAny); |
| &I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI); |
| &I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI); |
| &I(\$c, "zxt1 J = J") if ($p & $pComJ); |
| &I(\$c, "}") if ($pAny); |
| &I(\$c, "{ .mmi") if ($pAny); |
| &I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut); |
| &I(\$c, "add T[%u] = SI[%u], SJ[%u]", |
| $i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT); |
| &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI); |
| &I(\$c, "}") if ($pAny); |
| &STOP(\$c); |
| |
| # Cycle 1 |
| &I(\$c, "{ .mmi") if ($pAny); |
| &I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT); |
| &I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT); |
| &I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT); |
| &I(\$c, "}") if ($pAny); |
| &I(\$c, "{ .mmi") if ($pAny); |
| &I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI); |
| &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ); |
| &I(\$c, "xor Data[%u] = Data[%u], T[%u]", |
| $i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut); |
| &I(\$c, "}") if ($pAny); |
| &STOP(\$c); |
| |
| # Cycle 2 |
| &I(\$c, "{ .mmi") if ($pAny); |
| &I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ); |
| &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp); |
| &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8", |
| $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut); |
| &I(\$c, "}") if ($pAny); |
| &I(\$c, "{ .mmb") if ($pAny); |
| &I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI); |
| &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT); |
| &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp); |
| &I(\$c, "}") if ($pAny); |
| &STOP(\$c); |
| |
| &P(\$c, ".rc4Resume%u:", $label) if ($pByp); |
| if ($byte_num == 0 && $iteration >= $phases) { |
| &I(\$c, "st8 [OutPtr] = OutWord[%u], 8", |
| $iw1 % $NOutWord) if ($p & $pOut); |
| if ($iteration == (1 + $unroll_count) * $phases - 1) { |
| if ($unroll_count == 6) { |
| &I(\$c, "mov OutWord[%u] = OutWord[%u]", |
| $iw1 % $NOutWord, $iw0 % $NOutWord); |
| } |
| &I(\$c, "lfetch.nt1 [InPrefetch], %u", |
| $unroll_count * $phases); |
| &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u", |
| $unroll_count * $phases); |
| &I(\$c, "br.cloop.sptk.few .rc4Loop"); |
| } |
| } |
| |
| if ($pByp) { |
| &P(\$bypass, ".rc4Bypass%u:", $label); |
| &I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI); |
| &I(\$bypass, "nop 0"); |
| &I(\$bypass, "nop 0"); |
| &I(\$bypass, ";;"); |
| &I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI); |
| &I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI); |
| &I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label); |
| &I(\$bypass, ";;"); |
| } |
| } |
| |
| $code=<<___; |
| .ident \"rc4-ia64.s, version 3.0\" |
| .ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\" |
| |
| #define LCSave r8 |
| #define PRSave r9 |
| |
| /* Inputs become invalid once rotation begins! */ |
| |
| #define StateTable in0 |
| #define DataLen in1 |
| #define InputBuffer in2 |
| #define OutputBuffer in3 |
| |
| #define KTable r14 |
| #define J r15 |
| #define InPtr r16 |
| #define OutPtr r17 |
| #define InPrefetch r18 |
| #define OutPrefetch r19 |
| #define One r20 |
| #define LoopCount r21 |
| #define Remainder r22 |
| #define IFinal r23 |
| #define EndPtr r24 |
| |
| #define tmp0 r25 |
| #define tmp1 r26 |
| |
| #define pBypass p6 |
| #define pDone p7 |
| #define pSmall p8 |
| #define pAligned p9 |
| #define pUnaligned p10 |
| |
| #define pComputeI pPhase[0] |
| #define pComputeJ pPhase[1] |
| #define pComputeT pPhase[2] |
| #define pOutput pPhase[3] |
| |
| #define RetVal r8 |
| #define L_OK p7 |
| #define L_NOK p8 |
| |
| #define _NINPUTS 4 |
| #define _NOUTPUT 0 |
| |
| #define _NROTATE 24 |
| #define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT) |
| |
| #ifndef SZ |
| # define SZ 4 // this must be set to sizeof(RC4_INT) |
| #endif |
| |
| #if SZ == 1 |
| # define LKEY ld1 |
| # define SKEY st1 |
| # define KEYADDR(dst, i) add dst = i, KTable |
| #elif SZ == 2 |
| # define LKEY ld2 |
| # define SKEY st2 |
| # define KEYADDR(dst, i) shladd dst = i, 1, KTable |
| #elif SZ == 4 |
| # define LKEY ld4 |
| # define SKEY st4 |
| # define KEYADDR(dst, i) shladd dst = i, 2, KTable |
| #else |
| # define LKEY ld8 |
| # define SKEY st8 |
| # define KEYADDR(dst, i) shladd dst = i, 3, KTable |
| #endif |
| |
| #if defined(_HPUX_SOURCE) && !defined(_LP64) |
| # define ADDP addp4 |
| #else |
| # define ADDP add |
| #endif |
| |
| /* Define a macro for the bit number of the n-th byte: */ |
| |
| #if defined(_HPUX_SOURCE) || defined(B_ENDIAN) |
| # define HOST_IS_BIG_ENDIAN |
| # define BYTE_POS(n) (56 - (8 * (n))) |
| #else |
| # define BYTE_POS(n) (8 * (n)) |
| #endif |
| |
| /* |
| We must perform the first phase of the pipeline explicitly since |
| we will always load from the stable the first time. The br.cexit |
| will never be taken since regardless of the number of bytes because |
| the epilogue count is 4. |
| */ |
| /* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX |
| assembler failed on original macro with syntax error. <appro> */ |
| #define MODSCHED_RC4_PROLOGUE \\ |
| { \\ |
| ld1 Data[0] = [InPtr], 1; \\ |
| add IFinal = 1, I[1]; \\ |
| KEYADDR(IPr[0], I[1]); \\ |
| } ;; \\ |
| { \\ |
| LKEY SI[0] = [IPr[0]]; \\ |
| mov pr.rot = 0x10000; \\ |
| mov ar.ec = 4; \\ |
| } ;; \\ |
| { \\ |
| add J = J, SI[0]; \\ |
| zxt1 I[0] = IFinal; \\ |
| br.cexit.spnt.few .+16; /* never taken */ \\ |
| } ;; |
| #define MODSCHED_RC4_LOOP(label) \\ |
| label: \\ |
| { .mmi; \\ |
| (pComputeI) ld1 Data[0] = [InPtr], 1; \\ |
| (pComputeI) add IFinal = 1, I[1]; \\ |
| (pComputeJ) zxt1 J = J; \\ |
| }{ .mmi; \\ |
| (pOutput) LKEY T[1] = [T[1]]; \\ |
| (pComputeT) add T[0] = SI[2], SJ[1]; \\ |
| (pComputeI) KEYADDR(IPr[0], I[1]); \\ |
| } ;; \\ |
| { .mmi; \\ |
| (pComputeT) SKEY [IPr[2]] = SJ[1]; \\ |
| (pComputeT) SKEY [JP[1]] = SI[2]; \\ |
| (pComputeT) zxt1 T[0] = T[0]; \\ |
| }{ .mmi; \\ |
| (pComputeI) LKEY SI[0] = [IPr[0]]; \\ |
| (pComputeJ) KEYADDR(JP[0], J); \\ |
| (pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\ |
| } ;; \\ |
| { .mmi; \\ |
| (pComputeJ) LKEY SJ[0] = [JP[0]]; \\ |
| (pOutput) xor Data[3] = Data[3], T[1]; \\ |
| nop 0x0; \\ |
| }{ .mmi; \\ |
| (pComputeT) KEYADDR(T[0], T[0]); \\ |
| (pBypass) mov SI[0] = SI[1]; \\ |
| (pComputeI) zxt1 I[0] = IFinal; \\ |
| } ;; \\ |
| { .mmb; \\ |
| (pOutput) st1 [OutPtr] = Data[3], 1; \\ |
| (pComputeI) add J = J, SI[0]; \\ |
| br.ctop.sptk.few label; \\ |
| } ;; |
| |
| .text |
| |
| .align 32 |
| |
| .type RC4, \@function |
| .global RC4 |
| |
| .proc RC4 |
| .prologue |
| |
| RC4: |
| { |
| .mmi |
| alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE |
| |
| .rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\ |
| OutWord[2] |
| .rotp pPhase[4] |
| |
| ADDP InPrefetch = 0, InputBuffer |
| ADDP KTable = 0, StateTable |
| } |
| { |
| .mmi |
| ADDP InPtr = 0, InputBuffer |
| ADDP OutPtr = 0, OutputBuffer |
| mov RetVal = r0 |
| } |
| ;; |
| { |
| .mmi |
| lfetch.nt1 [InPrefetch], 0x80 |
| ADDP OutPrefetch = 0, OutputBuffer |
| } |
| { // Return 0 if the input length is nonsensical |
| .mib |
| ADDP StateTable = 0, StateTable |
| cmp.ge.unc L_NOK, L_OK = r0, DataLen |
| (L_NOK) br.ret.sptk.few rp |
| } |
| ;; |
| { |
| .mib |
| cmp.eq.or L_NOK, L_OK = r0, InPtr |
| cmp.eq.or L_NOK, L_OK = r0, OutPtr |
| nop 0x0 |
| } |
| { |
| .mib |
| cmp.eq.or L_NOK, L_OK = r0, StateTable |
| nop 0x0 |
| (L_NOK) br.ret.sptk.few rp |
| } |
| ;; |
| LKEY I[1] = [KTable], SZ |
| /* Prefetch the state-table. It contains 256 elements of size SZ */ |
| |
| #if SZ == 1 |
| ADDP tmp0 = 1*128, StateTable |
| #elif SZ == 2 |
| ADDP tmp0 = 3*128, StateTable |
| ADDP tmp1 = 2*128, StateTable |
| #elif SZ == 4 |
| ADDP tmp0 = 7*128, StateTable |
| ADDP tmp1 = 6*128, StateTable |
| #elif SZ == 8 |
| ADDP tmp0 = 15*128, StateTable |
| ADDP tmp1 = 14*128, StateTable |
| #endif |
| ;; |
| #if SZ >= 8 |
| lfetch.fault.nt1 [tmp0], -256 // 15 |
| lfetch.fault.nt1 [tmp1], -256;; |
| lfetch.fault.nt1 [tmp0], -256 // 13 |
| lfetch.fault.nt1 [tmp1], -256;; |
| lfetch.fault.nt1 [tmp0], -256 // 11 |
| lfetch.fault.nt1 [tmp1], -256;; |
| lfetch.fault.nt1 [tmp0], -256 // 9 |
| lfetch.fault.nt1 [tmp1], -256;; |
| #endif |
| #if SZ >= 4 |
| lfetch.fault.nt1 [tmp0], -256 // 7 |
| lfetch.fault.nt1 [tmp1], -256;; |
| lfetch.fault.nt1 [tmp0], -256 // 5 |
| lfetch.fault.nt1 [tmp1], -256;; |
| #endif |
| #if SZ >= 2 |
| lfetch.fault.nt1 [tmp0], -256 // 3 |
| lfetch.fault.nt1 [tmp1], -256;; |
| #endif |
| { |
| .mii |
| lfetch.fault.nt1 [tmp0] // 1 |
| add I[1]=1,I[1];; |
| zxt1 I[1]=I[1] |
| } |
| { |
| .mmi |
| lfetch.nt1 [InPrefetch], 0x80 |
| lfetch.excl.nt1 [OutPrefetch], 0x80 |
| .save pr, PRSave |
| mov PRSave = pr |
| } ;; |
| { |
| .mmi |
| lfetch.excl.nt1 [OutPrefetch], 0x80 |
| LKEY J = [KTable], SZ |
| ADDP EndPtr = DataLen, InPtr |
| } ;; |
| { |
| .mmi |
| ADDP EndPtr = -1, EndPtr // Make it point to |
| // last data byte. |
| mov One = 1 |
| .save ar.lc, LCSave |
| mov LCSave = ar.lc |
| .body |
| } ;; |
| { |
| .mmb |
| sub Remainder = 0, OutPtr |
| cmp.gtu pSmall, p0 = $threshold, DataLen |
| (pSmall) br.cond.dpnt .rc4Remainder // Data too small for |
| // big loop. |
| } ;; |
| { |
| .mmi |
| and Remainder = 0x7, Remainder |
| ;; |
| cmp.eq pAligned, pUnaligned = Remainder, r0 |
| nop 0x0 |
| } ;; |
| { |
| .mmb |
| .pred.rel "mutex",pUnaligned,pAligned |
| (pUnaligned) add Remainder = -1, Remainder |
| (pAligned) sub Remainder = EndPtr, InPtr |
| (pAligned) br.cond.dptk.many .rc4Aligned |
| } ;; |
| { |
| .mmi |
| nop 0x0 |
| nop 0x0 |
| mov.i ar.lc = Remainder |
| } |
| |
| /* Do the initial few bytes via the compact, modulo-scheduled loop |
| until the output pointer is 8-byte-aligned. */ |
| |
| MODSCHED_RC4_PROLOGUE |
| MODSCHED_RC4_LOOP(.RC4AlignLoop) |
| |
| { |
| .mib |
| sub Remainder = EndPtr, InPtr |
| zxt1 IFinal = IFinal |
| clrrrb // Clear CFM.rrb.pr so |
| ;; // next "mov pr.rot = N" |
| // does the right thing. |
| } |
| { |
| .mmi |
| mov I[1] = IFinal |
| nop 0x0 |
| nop 0x0 |
| } ;; |
| |
| |
| .rc4Aligned: |
| |
| /* |
| Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases) |
| */ |
| |
| { |
| .mlx |
| add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder |
| movl Remainder = 0xaaaaaaaaaaaaaaab |
| } ;; |
| { |
| .mmi |
| setf.sig f6 = LoopCount // M2, M3 6 cyc |
| setf.sig f7 = Remainder // M2, M3 6 cyc |
| nop 0x0 |
| } ;; |
| { |
| .mfb |
| nop 0x0 |
| xmpy.hu f6 = f6, f7 |
| nop 0x0 |
| } ;; |
| { |
| .mmi |
| getf.sig LoopCount = f6;; // M2 5 cyc |
| nop 0x0 |
| shr.u LoopCount = LoopCount, 4 |
| } ;; |
| { |
| .mmi |
| nop 0x0 |
| nop 0x0 |
| mov.i ar.lc = LoopCount |
| } ;; |
| |
| /* Now comes the unrolled loop: */ |
| |
| .rc4Prologue: |
| ___ |
| |
| $iteration = 0; |
| |
| # Generate the prologue: |
| $predicates = 1; |
| for ($i = 0; $i < $phases; ++$i) { |
| &emit_body (\$code, \$bypass, $iteration++, $predicates); |
| $predicates = ($predicates << 1) | 1; |
| } |
| |
| $code.=<<___; |
| .rc4Loop: |
| ___ |
| |
| # Generate the body: |
| for ($i = 0; $i < $unroll_count*$phases; ++$i) { |
| &emit_body (\$code, \$bypass, $iteration++, $predicates); |
| } |
| |
| $code.=<<___; |
| .rc4Epilogue: |
| ___ |
| |
| # Generate the epilogue: |
| for ($i = 0; $i < $phases; ++$i) { |
| $predicates <<= 1; |
| &emit_body (\$code, \$bypass, $iteration++, $predicates); |
| } |
| |
| $code.=<<___; |
| { |
| .mmi |
| lfetch.nt1 [EndPtr] // fetch line with last byte |
| mov IFinal = I[1] |
| nop 0x0 |
| } |
| |
| .rc4Remainder: |
| { |
| .mmi |
| sub Remainder = EndPtr, InPtr // Calculate |
| // # of bytes |
| // left - 1 |
| nop 0x0 |
| nop 0x0 |
| } ;; |
| { |
| .mib |
| cmp.eq pDone, p0 = -1, Remainder // done already? |
| mov.i ar.lc = Remainder |
| (pDone) br.cond.dptk.few .rc4Complete |
| } |
| |
| /* Do the remaining bytes via the compact, modulo-scheduled loop */ |
| |
| MODSCHED_RC4_PROLOGUE |
| MODSCHED_RC4_LOOP(.RC4RestLoop) |
| |
| .rc4Complete: |
| { |
| .mmi |
| add KTable = -SZ, KTable |
| add IFinal = -1, IFinal |
| mov ar.lc = LCSave |
| } ;; |
| { |
| .mii |
| SKEY [KTable] = J,-SZ |
| zxt1 IFinal = IFinal |
| mov pr = PRSave, 0x1FFFF |
| } ;; |
| { |
| .mib |
| SKEY [KTable] = IFinal |
| add RetVal = 1, r0 |
| br.ret.sptk.few rp |
| } ;; |
| ___ |
| |
| # Last but not least, emit the code for the bypass-code of the unrolled loop: |
| |
| $code.=$bypass; |
| |
| $code.=<<___; |
| .endp RC4 |
| ___ |
| |
| print $code; |