| /* ==================================================================== |
| * Copyright (c) 2010 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| */ |
| |
| #define OPENSSL_FIPSAPI |
| |
| #include <openssl/crypto.h> |
| #include "modes_lcl.h" |
| #include <string.h> |
| |
| #ifndef MODES_DEBUG |
| # ifndef NDEBUG |
| # define NDEBUG |
| # endif |
| #endif |
| #include <assert.h> |
| |
| #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) |
| /* redefine, because alignment is ensured */ |
| #undef GETU32 |
| #define GETU32(p) BSWAP4(*(const u32 *)(p)) |
| #undef PUTU32 |
| #define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) |
| #endif |
| |
| #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) |
| #define REDUCE1BIT(V) do { \ |
| if (sizeof(size_t)==8) { \ |
| u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ |
| V.lo = (V.hi<<63)|(V.lo>>1); \ |
| V.hi = (V.hi>>1 )^T; \ |
| } \ |
| else { \ |
| u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ |
| V.lo = (V.hi<<63)|(V.lo>>1); \ |
| V.hi = (V.hi>>1 )^((u64)T<<32); \ |
| } \ |
| } while(0) |
| |
| /* |
| * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should |
| * never be set to 8. 8 is effectively reserved for testing purposes. |
| * TABLE_BITS>1 are lookup-table-driven implementations referred to as |
| * "Shoup's" in GCM specification. In other words OpenSSL does not cover |
| * whole spectrum of possible table driven implementations. Why? In |
| * non-"Shoup's" case memory access pattern is segmented in such manner, |
| * that it's trivial to see that cache timing information can reveal |
| * fair portion of intermediate hash value. Given that ciphertext is |
| * always available to attacker, it's possible for him to attempt to |
| * deduce secret parameter H and if successful, tamper with messages |
| * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's |
| * not as trivial, but there is no reason to believe that it's resistant |
| * to cache-timing attack. And the thing about "8-bit" implementation is |
| * that it consumes 16 (sixteen) times more memory, 4KB per individual |
| * key + 1KB shared. Well, on pros side it should be twice as fast as |
| * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version |
| * was observed to run ~75% faster, closer to 100% for commercial |
| * compilers... Yet "4-bit" procedure is preferred, because it's |
| * believed to provide better security-performance balance and adequate |
| * all-round performance. "All-round" refers to things like: |
| * |
| * - shorter setup time effectively improves overall timing for |
| * handling short messages; |
| * - larger table allocation can become unbearable because of VM |
| * subsystem penalties (for example on Windows large enough free |
| * results in VM working set trimming, meaning that consequent |
| * malloc would immediately incur working set expansion); |
| * - larger table has larger cache footprint, which can affect |
| * performance of other code paths (not necessarily even from same |
| * thread in Hyper-Threading world); |
| * |
| * Value of 1 is not appropriate for performance reasons. |
| */ |
| #if TABLE_BITS==8 |
| |
| static void gcm_init_8bit(u128 Htable[256], u64 H[2]) |
| { |
| int i, j; |
| u128 V; |
| |
| Htable[0].hi = 0; |
| Htable[0].lo = 0; |
| V.hi = H[0]; |
| V.lo = H[1]; |
| |
| for (Htable[128]=V, i=64; i>0; i>>=1) { |
| REDUCE1BIT(V); |
| Htable[i] = V; |
| } |
| |
| for (i=2; i<256; i<<=1) { |
| u128 *Hi = Htable+i, H0 = *Hi; |
| for (j=1; j<i; ++j) { |
| Hi[j].hi = H0.hi^Htable[j].hi; |
| Hi[j].lo = H0.lo^Htable[j].lo; |
| } |
| } |
| } |
| |
| static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) |
| { |
| u128 Z = { 0, 0}; |
| const u8 *xi = (const u8 *)Xi+15; |
| size_t rem, n = *xi; |
| const union { long one; char little; } is_endian = {1}; |
| static const size_t rem_8bit[256] = { |
| PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), |
| PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), |
| PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), |
| PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), |
| PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), |
| PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), |
| PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), |
| PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), |
| PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), |
| PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), |
| PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), |
| PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), |
| PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), |
| PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), |
| PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), |
| PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), |
| PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), |
| PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), |
| PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), |
| PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), |
| PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), |
| PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), |
| PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), |
| PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), |
| PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), |
| PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), |
| PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), |
| PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), |
| PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), |
| PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), |
| PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), |
| PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), |
| PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), |
| PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), |
| PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), |
| PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), |
| PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), |
| PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), |
| PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), |
| PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), |
| PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), |
| PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), |
| PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), |
| PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), |
| PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), |
| PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), |
| PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), |
| PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), |
| PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), |
| PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), |
| PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), |
| PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), |
| PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), |
| PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), |
| PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), |
| PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), |
| PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), |
| PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), |
| PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), |
| PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), |
| PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), |
| PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), |
| PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), |
| PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) }; |
| |
| while (1) { |
| Z.hi ^= Htable[n].hi; |
| Z.lo ^= Htable[n].lo; |
| |
| if ((u8 *)Xi==xi) break; |
| |
| n = *(--xi); |
| |
| rem = (size_t)Z.lo&0xff; |
| Z.lo = (Z.hi<<56)|(Z.lo>>8); |
| Z.hi = (Z.hi>>8); |
| if (sizeof(size_t)==8) |
| Z.hi ^= rem_8bit[rem]; |
| else |
| Z.hi ^= (u64)rem_8bit[rem]<<32; |
| } |
| |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| Xi[0] = BSWAP8(Z.hi); |
| Xi[1] = BSWAP8(Z.lo); |
| #else |
| u8 *p = (u8 *)Xi; |
| u32 v; |
| v = (u32)(Z.hi>>32); PUTU32(p,v); |
| v = (u32)(Z.hi); PUTU32(p+4,v); |
| v = (u32)(Z.lo>>32); PUTU32(p+8,v); |
| v = (u32)(Z.lo); PUTU32(p+12,v); |
| #endif |
| } |
| else { |
| Xi[0] = Z.hi; |
| Xi[1] = Z.lo; |
| } |
| } |
| #define GCM_MUL(ctx,Xi) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) |
| |
| #elif TABLE_BITS==4 |
| |
| static void gcm_init_4bit(u128 Htable[16], u64 H[2]) |
| { |
| u128 V; |
| #if defined(OPENSSL_SMALL_FOOTPRINT) |
| int i; |
| #endif |
| |
| Htable[0].hi = 0; |
| Htable[0].lo = 0; |
| V.hi = H[0]; |
| V.lo = H[1]; |
| |
| #if defined(OPENSSL_SMALL_FOOTPRINT) |
| for (Htable[8]=V, i=4; i>0; i>>=1) { |
| REDUCE1BIT(V); |
| Htable[i] = V; |
| } |
| |
| for (i=2; i<16; i<<=1) { |
| u128 *Hi = Htable+i; |
| int j; |
| for (V=*Hi, j=1; j<i; ++j) { |
| Hi[j].hi = V.hi^Htable[j].hi; |
| Hi[j].lo = V.lo^Htable[j].lo; |
| } |
| } |
| #else |
| Htable[8] = V; |
| REDUCE1BIT(V); |
| Htable[4] = V; |
| REDUCE1BIT(V); |
| Htable[2] = V; |
| REDUCE1BIT(V); |
| Htable[1] = V; |
| Htable[3].hi = V.hi^Htable[2].hi, Htable[3].lo = V.lo^Htable[2].lo; |
| V=Htable[4]; |
| Htable[5].hi = V.hi^Htable[1].hi, Htable[5].lo = V.lo^Htable[1].lo; |
| Htable[6].hi = V.hi^Htable[2].hi, Htable[6].lo = V.lo^Htable[2].lo; |
| Htable[7].hi = V.hi^Htable[3].hi, Htable[7].lo = V.lo^Htable[3].lo; |
| V=Htable[8]; |
| Htable[9].hi = V.hi^Htable[1].hi, Htable[9].lo = V.lo^Htable[1].lo; |
| Htable[10].hi = V.hi^Htable[2].hi, Htable[10].lo = V.lo^Htable[2].lo; |
| Htable[11].hi = V.hi^Htable[3].hi, Htable[11].lo = V.lo^Htable[3].lo; |
| Htable[12].hi = V.hi^Htable[4].hi, Htable[12].lo = V.lo^Htable[4].lo; |
| Htable[13].hi = V.hi^Htable[5].hi, Htable[13].lo = V.lo^Htable[5].lo; |
| Htable[14].hi = V.hi^Htable[6].hi, Htable[14].lo = V.lo^Htable[6].lo; |
| Htable[15].hi = V.hi^Htable[7].hi, Htable[15].lo = V.lo^Htable[7].lo; |
| #endif |
| #if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) |
| /* |
| * ARM assembler expects specific dword order in Htable. |
| */ |
| { |
| int j; |
| const union { long one; char little; } is_endian = {1}; |
| |
| if (is_endian.little) |
| for (j=0;j<16;++j) { |
| V = Htable[j]; |
| Htable[j].hi = V.lo; |
| Htable[j].lo = V.hi; |
| } |
| else |
| for (j=0;j<16;++j) { |
| V = Htable[j]; |
| Htable[j].hi = V.lo<<32|V.lo>>32; |
| Htable[j].lo = V.hi<<32|V.hi>>32; |
| } |
| } |
| #endif |
| } |
| |
| #ifndef GHASH_ASM |
| static const size_t rem_4bit[16] = { |
| PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), |
| PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), |
| PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), |
| PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) }; |
| |
| static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) |
| { |
| u128 Z; |
| int cnt = 15; |
| size_t rem, nlo, nhi; |
| const union { long one; char little; } is_endian = {1}; |
| |
| nlo = ((const u8 *)Xi)[15]; |
| nhi = nlo>>4; |
| nlo &= 0xf; |
| |
| Z.hi = Htable[nlo].hi; |
| Z.lo = Htable[nlo].lo; |
| |
| while (1) { |
| rem = (size_t)Z.lo&0xf; |
| Z.lo = (Z.hi<<60)|(Z.lo>>4); |
| Z.hi = (Z.hi>>4); |
| if (sizeof(size_t)==8) |
| Z.hi ^= rem_4bit[rem]; |
| else |
| Z.hi ^= (u64)rem_4bit[rem]<<32; |
| |
| Z.hi ^= Htable[nhi].hi; |
| Z.lo ^= Htable[nhi].lo; |
| |
| if (--cnt<0) break; |
| |
| nlo = ((const u8 *)Xi)[cnt]; |
| nhi = nlo>>4; |
| nlo &= 0xf; |
| |
| rem = (size_t)Z.lo&0xf; |
| Z.lo = (Z.hi<<60)|(Z.lo>>4); |
| Z.hi = (Z.hi>>4); |
| if (sizeof(size_t)==8) |
| Z.hi ^= rem_4bit[rem]; |
| else |
| Z.hi ^= (u64)rem_4bit[rem]<<32; |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| } |
| |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| Xi[0] = BSWAP8(Z.hi); |
| Xi[1] = BSWAP8(Z.lo); |
| #else |
| u8 *p = (u8 *)Xi; |
| u32 v; |
| v = (u32)(Z.hi>>32); PUTU32(p,v); |
| v = (u32)(Z.hi); PUTU32(p+4,v); |
| v = (u32)(Z.lo>>32); PUTU32(p+8,v); |
| v = (u32)(Z.lo); PUTU32(p+12,v); |
| #endif |
| } |
| else { |
| Xi[0] = Z.hi; |
| Xi[1] = Z.lo; |
| } |
| } |
| |
| #if !defined(OPENSSL_SMALL_FOOTPRINT) |
| /* |
| * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for |
| * details... Compiler-generated code doesn't seem to give any |
| * performance improvement, at least not on x86[_64]. It's here |
| * mostly as reference and a placeholder for possible future |
| * non-trivial optimization[s]... |
| */ |
| static void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16], |
| const u8 *inp,size_t len) |
| { |
| u128 Z; |
| int cnt; |
| size_t rem, nlo, nhi; |
| const union { long one; char little; } is_endian = {1}; |
| |
| #if 1 |
| do { |
| cnt = 15; |
| nlo = ((const u8 *)Xi)[15]; |
| nlo ^= inp[15]; |
| nhi = nlo>>4; |
| nlo &= 0xf; |
| |
| Z.hi = Htable[nlo].hi; |
| Z.lo = Htable[nlo].lo; |
| |
| while (1) { |
| rem = (size_t)Z.lo&0xf; |
| Z.lo = (Z.hi<<60)|(Z.lo>>4); |
| Z.hi = (Z.hi>>4); |
| if (sizeof(size_t)==8) |
| Z.hi ^= rem_4bit[rem]; |
| else |
| Z.hi ^= (u64)rem_4bit[rem]<<32; |
| |
| Z.hi ^= Htable[nhi].hi; |
| Z.lo ^= Htable[nhi].lo; |
| |
| if (--cnt<0) break; |
| |
| nlo = ((const u8 *)Xi)[cnt]; |
| nlo ^= inp[cnt]; |
| nhi = nlo>>4; |
| nlo &= 0xf; |
| |
| rem = (size_t)Z.lo&0xf; |
| Z.lo = (Z.hi<<60)|(Z.lo>>4); |
| Z.hi = (Z.hi>>4); |
| if (sizeof(size_t)==8) |
| Z.hi ^= rem_4bit[rem]; |
| else |
| Z.hi ^= (u64)rem_4bit[rem]<<32; |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| } |
| #else |
| /* |
| * Extra 256+16 bytes per-key plus 512 bytes shared tables |
| * [should] give ~50% improvement... One could have PACK()-ed |
| * the rem_8bit even here, but the priority is to minimize |
| * cache footprint... |
| */ |
| u128 Hshr4[16]; /* Htable shifted right by 4 bits */ |
| u8 Hshl4[16]; /* Htable shifted left by 4 bits */ |
| static const unsigned short rem_8bit[256] = { |
| 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, |
| 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, |
| 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, |
| 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, |
| 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, |
| 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, |
| 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, |
| 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, |
| 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, |
| 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, |
| 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, |
| 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, |
| 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, |
| 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, |
| 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, |
| 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, |
| 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, |
| 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, |
| 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, |
| 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, |
| 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, |
| 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, |
| 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, |
| 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, |
| 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, |
| 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, |
| 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, |
| 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, |
| 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, |
| 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, |
| 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, |
| 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE }; |
| /* |
| * This pre-processing phase slows down procedure by approximately |
| * same time as it makes each loop spin faster. In other words |
| * single block performance is approximately same as straightforward |
| * "4-bit" implementation, and then it goes only faster... |
| */ |
| for (cnt=0; cnt<16; ++cnt) { |
| Z.hi = Htable[cnt].hi; |
| Z.lo = Htable[cnt].lo; |
| Hshr4[cnt].lo = (Z.hi<<60)|(Z.lo>>4); |
| Hshr4[cnt].hi = (Z.hi>>4); |
| Hshl4[cnt] = (u8)(Z.lo<<4); |
| } |
| |
| do { |
| for (Z.lo=0, Z.hi=0, cnt=15; cnt; --cnt) { |
| nlo = ((const u8 *)Xi)[cnt]; |
| nlo ^= inp[cnt]; |
| nhi = nlo>>4; |
| nlo &= 0xf; |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| |
| rem = (size_t)Z.lo&0xff; |
| |
| Z.lo = (Z.hi<<56)|(Z.lo>>8); |
| Z.hi = (Z.hi>>8); |
| |
| Z.hi ^= Hshr4[nhi].hi; |
| Z.lo ^= Hshr4[nhi].lo; |
| Z.hi ^= (u64)rem_8bit[rem^Hshl4[nhi]]<<48; |
| } |
| |
| nlo = ((const u8 *)Xi)[0]; |
| nlo ^= inp[0]; |
| nhi = nlo>>4; |
| nlo &= 0xf; |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| |
| rem = (size_t)Z.lo&0xf; |
| |
| Z.lo = (Z.hi<<60)|(Z.lo>>4); |
| Z.hi = (Z.hi>>4); |
| |
| Z.hi ^= Htable[nhi].hi; |
| Z.lo ^= Htable[nhi].lo; |
| Z.hi ^= ((u64)rem_8bit[rem<<4])<<48; |
| #endif |
| |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| Xi[0] = BSWAP8(Z.hi); |
| Xi[1] = BSWAP8(Z.lo); |
| #else |
| u8 *p = (u8 *)Xi; |
| u32 v; |
| v = (u32)(Z.hi>>32); PUTU32(p,v); |
| v = (u32)(Z.hi); PUTU32(p+4,v); |
| v = (u32)(Z.lo>>32); PUTU32(p+8,v); |
| v = (u32)(Z.lo); PUTU32(p+12,v); |
| #endif |
| } |
| else { |
| Xi[0] = Z.hi; |
| Xi[1] = Z.lo; |
| } |
| } while (inp+=16, len-=16); |
| } |
| #endif |
| #else |
| void gcm_gmult_4bit(u64 Xi[2],const u128 Htable[16]); |
| void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); |
| #endif |
| |
| #define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) |
| #if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) |
| #define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) |
| /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache |
| * trashing effect. In other words idea is to hash data while it's |
| * still in L1 cache after encryption pass... */ |
| #define GHASH_CHUNK (3*1024) |
| #endif |
| |
| #else /* TABLE_BITS */ |
| |
| static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2]) |
| { |
| u128 V,Z = { 0,0 }; |
| long X; |
| int i,j; |
| const long *xi = (const long *)Xi; |
| const union { long one; char little; } is_endian = {1}; |
| |
| V.hi = H[0]; /* H is in host byte order, no byte swapping */ |
| V.lo = H[1]; |
| |
| for (j=0; j<16/sizeof(long); ++j) { |
| if (is_endian.little) { |
| if (sizeof(long)==8) { |
| #ifdef BSWAP8 |
| X = (long)(BSWAP8(xi[j])); |
| #else |
| const u8 *p = (const u8 *)(xi+j); |
| X = (long)((u64)GETU32(p)<<32|GETU32(p+4)); |
| #endif |
| } |
| else { |
| const u8 *p = (const u8 *)(xi+j); |
| X = (long)GETU32(p); |
| } |
| } |
| else |
| X = xi[j]; |
| |
| for (i=0; i<8*sizeof(long); ++i, X<<=1) { |
| u64 M = (u64)(X>>(8*sizeof(long)-1)); |
| Z.hi ^= V.hi&M; |
| Z.lo ^= V.lo&M; |
| |
| REDUCE1BIT(V); |
| } |
| } |
| |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| Xi[0] = BSWAP8(Z.hi); |
| Xi[1] = BSWAP8(Z.lo); |
| #else |
| u8 *p = (u8 *)Xi; |
| u32 v; |
| v = (u32)(Z.hi>>32); PUTU32(p,v); |
| v = (u32)(Z.hi); PUTU32(p+4,v); |
| v = (u32)(Z.lo>>32); PUTU32(p+8,v); |
| v = (u32)(Z.lo); PUTU32(p+12,v); |
| #endif |
| } |
| else { |
| Xi[0] = Z.hi; |
| Xi[1] = Z.lo; |
| } |
| } |
| #define GCM_MUL(ctx,Xi) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) |
| |
| #endif |
| |
| #if TABLE_BITS==4 && defined(GHASH_ASM) |
| # if !defined(I386_ONLY) && \ |
| (defined(__i386) || defined(__i386__) || \ |
| defined(__x86_64) || defined(__x86_64__) || \ |
| defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) |
| # define GHASH_ASM_X86_OR_64 |
| # define GCM_FUNCREF_4BIT |
| extern unsigned int OPENSSL_ia32cap_P[2]; |
| |
| void gcm_init_clmul(u128 Htable[16],const u64 Xi[2]); |
| void gcm_gmult_clmul(u64 Xi[2],const u128 Htable[16]); |
| void gcm_ghash_clmul(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); |
| |
| # if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
| # define GHASH_ASM_X86 |
| void gcm_gmult_4bit_mmx(u64 Xi[2],const u128 Htable[16]); |
| void gcm_ghash_4bit_mmx(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); |
| |
| void gcm_gmult_4bit_x86(u64 Xi[2],const u128 Htable[16]); |
| void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); |
| # endif |
| # elif defined(__arm__) || defined(__arm) |
| # include "arm_arch.h" |
| # if __ARM_ARCH__>=7 |
| # define GHASH_ASM_ARM |
| # define GCM_FUNCREF_4BIT |
| void gcm_gmult_neon(u64 Xi[2],const u128 Htable[16]); |
| void gcm_ghash_neon(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); |
| # endif |
| # endif |
| #endif |
| |
| #ifdef GCM_FUNCREF_4BIT |
| # undef GCM_MUL |
| # define GCM_MUL(ctx,Xi) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) |
| # ifdef GHASH |
| # undef GHASH |
| # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) |
| # endif |
| #endif |
| |
| void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block) |
| { |
| const union { long one; char little; } is_endian = {1}; |
| |
| memset(ctx,0,sizeof(*ctx)); |
| ctx->block = block; |
| ctx->key = key; |
| |
| (*block)(ctx->H.c,ctx->H.c,key); |
| |
| if (is_endian.little) { |
| /* H is stored in host byte order */ |
| #ifdef BSWAP8 |
| ctx->H.u[0] = BSWAP8(ctx->H.u[0]); |
| ctx->H.u[1] = BSWAP8(ctx->H.u[1]); |
| #else |
| u8 *p = ctx->H.c; |
| u64 hi,lo; |
| hi = (u64)GETU32(p) <<32|GETU32(p+4); |
| lo = (u64)GETU32(p+8)<<32|GETU32(p+12); |
| ctx->H.u[0] = hi; |
| ctx->H.u[1] = lo; |
| #endif |
| } |
| |
| #if TABLE_BITS==8 |
| gcm_init_8bit(ctx->Htable,ctx->H.u); |
| #elif TABLE_BITS==4 |
| # if defined(GHASH_ASM_X86_OR_64) |
| # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) |
| if (OPENSSL_ia32cap_P[0]&(1<<24) && /* check FXSR bit */ |
| OPENSSL_ia32cap_P[1]&(1<<1) ) { /* check PCLMULQDQ bit */ |
| gcm_init_clmul(ctx->Htable,ctx->H.u); |
| ctx->gmult = gcm_gmult_clmul; |
| ctx->ghash = gcm_ghash_clmul; |
| return; |
| } |
| # endif |
| gcm_init_4bit(ctx->Htable,ctx->H.u); |
| # if defined(GHASH_ASM_X86) /* x86 only */ |
| # if defined(OPENSSL_IA32_SSE2) |
| if (OPENSSL_ia32cap_P[0]&(1<<25)) { /* check SSE bit */ |
| # else |
| if (OPENSSL_ia32cap_P[0]&(1<<23)) { /* check MMX bit */ |
| # endif |
| ctx->gmult = gcm_gmult_4bit_mmx; |
| ctx->ghash = gcm_ghash_4bit_mmx; |
| } else { |
| ctx->gmult = gcm_gmult_4bit_x86; |
| ctx->ghash = gcm_ghash_4bit_x86; |
| } |
| # else |
| ctx->gmult = gcm_gmult_4bit; |
| ctx->ghash = gcm_ghash_4bit; |
| # endif |
| # elif defined(GHASH_ASM_ARM) |
| if (OPENSSL_armcap_P & ARMV7_NEON) { |
| ctx->gmult = gcm_gmult_neon; |
| ctx->ghash = gcm_ghash_neon; |
| } else { |
| gcm_init_4bit(ctx->Htable,ctx->H.u); |
| ctx->gmult = gcm_gmult_4bit; |
| ctx->ghash = gcm_ghash_4bit; |
| } |
| # else |
| gcm_init_4bit(ctx->Htable,ctx->H.u); |
| # endif |
| #endif |
| } |
| |
| void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len) |
| { |
| const union { long one; char little; } is_endian = {1}; |
| unsigned int ctr; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; |
| #endif |
| |
| ctx->Yi.u[0] = 0; |
| ctx->Yi.u[1] = 0; |
| ctx->Xi.u[0] = 0; |
| ctx->Xi.u[1] = 0; |
| ctx->len.u[0] = 0; /* AAD length */ |
| ctx->len.u[1] = 0; /* message length */ |
| ctx->ares = 0; |
| ctx->mres = 0; |
| |
| if (len==12) { |
| memcpy(ctx->Yi.c,iv,12); |
| ctx->Yi.c[15]=1; |
| ctr=1; |
| } |
| else { |
| size_t i; |
| u64 len0 = len; |
| |
| while (len>=16) { |
| for (i=0; i<16; ++i) ctx->Yi.c[i] ^= iv[i]; |
| GCM_MUL(ctx,Yi); |
| iv += 16; |
| len -= 16; |
| } |
| if (len) { |
| for (i=0; i<len; ++i) ctx->Yi.c[i] ^= iv[i]; |
| GCM_MUL(ctx,Yi); |
| } |
| len0 <<= 3; |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| ctx->Yi.u[1] ^= BSWAP8(len0); |
| #else |
| ctx->Yi.c[8] ^= (u8)(len0>>56); |
| ctx->Yi.c[9] ^= (u8)(len0>>48); |
| ctx->Yi.c[10] ^= (u8)(len0>>40); |
| ctx->Yi.c[11] ^= (u8)(len0>>32); |
| ctx->Yi.c[12] ^= (u8)(len0>>24); |
| ctx->Yi.c[13] ^= (u8)(len0>>16); |
| ctx->Yi.c[14] ^= (u8)(len0>>8); |
| ctx->Yi.c[15] ^= (u8)(len0); |
| #endif |
| } |
| else |
| ctx->Yi.u[1] ^= len0; |
| |
| GCM_MUL(ctx,Yi); |
| |
| if (is_endian.little) |
| ctr = GETU32(ctx->Yi.c+12); |
| else |
| ctr = ctx->Yi.d[3]; |
| } |
| |
| (*ctx->block)(ctx->Yi.c,ctx->EK0.c,ctx->key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| } |
| |
| int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len) |
| { |
| size_t i; |
| unsigned int n; |
| u64 alen = ctx->len.u[0]; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; |
| # ifdef GHASH |
| void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], |
| const u8 *inp,size_t len) = ctx->ghash; |
| # endif |
| #endif |
| |
| if (ctx->len.u[1]) return -2; |
| |
| alen += len; |
| if (alen>(U64(1)<<61) || (sizeof(len)==8 && alen<len)) |
| return -1; |
| ctx->len.u[0] = alen; |
| |
| n = ctx->ares; |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(aad++); |
| --len; |
| n = (n+1)%16; |
| } |
| if (n==0) GCM_MUL(ctx,Xi); |
| else { |
| ctx->ares = n; |
| return 0; |
| } |
| } |
| |
| #ifdef GHASH |
| if ((i = (len&(size_t)-16))) { |
| GHASH(ctx,aad,i); |
| aad += i; |
| len -= i; |
| } |
| #else |
| while (len>=16) { |
| for (i=0; i<16; ++i) ctx->Xi.c[i] ^= aad[i]; |
| GCM_MUL(ctx,Xi); |
| aad += 16; |
| len -= 16; |
| } |
| #endif |
| if (len) { |
| n = (unsigned int)len; |
| for (i=0; i<len; ++i) ctx->Xi.c[i] ^= aad[i]; |
| } |
| |
| ctx->ares = n; |
| return 0; |
| } |
| |
| int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, |
| const unsigned char *in, unsigned char *out, |
| size_t len) |
| { |
| const union { long one; char little; } is_endian = {1}; |
| unsigned int n, ctr; |
| size_t i; |
| u64 mlen = ctx->len.u[1]; |
| block128_f block = ctx->block; |
| void *key = ctx->key; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; |
| # ifdef GHASH |
| void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], |
| const u8 *inp,size_t len) = ctx->ghash; |
| # endif |
| #endif |
| |
| #if 0 |
| n = (unsigned int)mlen%16; /* alternative to ctx->mres */ |
| #endif |
| mlen += len; |
| if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) |
| return -1; |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to encrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx,Xi); |
| ctx->ares = 0; |
| } |
| |
| if (is_endian.little) |
| ctr = GETU32(ctx->Yi.c+12); |
| else |
| ctr = ctx->Yi.d[3]; |
| |
| n = ctx->mres; |
| #if !defined(OPENSSL_SMALL_FOOTPRINT) |
| if (16%sizeof(size_t) == 0) do { /* always true actually */ |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n]; |
| --len; |
| n = (n+1)%16; |
| } |
| if (n==0) GCM_MUL(ctx,Xi); |
| else { |
| ctx->mres = n; |
| return 0; |
| } |
| } |
| #if defined(STRICT_ALIGNMENT) |
| if (((size_t)in|(size_t)out)%sizeof(size_t) != 0) |
| break; |
| #endif |
| #if defined(GHASH) && defined(GHASH_CHUNK) |
| while (len>=GHASH_CHUNK) { |
| size_t j=GHASH_CHUNK; |
| |
| while (j) { |
| (*block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i=0; i<16; i+=sizeof(size_t)) |
| *(size_t *)(out+i) = |
| *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); |
| out += 16; |
| in += 16; |
| j -= 16; |
| } |
| GHASH(ctx,out-GHASH_CHUNK,GHASH_CHUNK); |
| len -= GHASH_CHUNK; |
| } |
| if ((i = (len&(size_t)-16))) { |
| size_t j=i; |
| |
| while (len>=16) { |
| (*block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i=0; i<16; i+=sizeof(size_t)) |
| *(size_t *)(out+i) = |
| *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| GHASH(ctx,out-j,j); |
| } |
| #else |
| while (len>=16) { |
| (*block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i=0; i<16; i+=sizeof(size_t)) |
| *(size_t *)(ctx->Xi.c+i) ^= |
| *(size_t *)(out+i) = |
| *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); |
| GCM_MUL(ctx,Xi); |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| #endif |
| if (len) { |
| (*block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| while (len--) { |
| ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 0; |
| } while(0); |
| #endif |
| for (i=0;i<len;++i) { |
| if (n==0) { |
| (*block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| } |
| ctx->Xi.c[n] ^= out[i] = in[i]^ctx->EKi.c[n]; |
| n = (n+1)%16; |
| if (n==0) |
| GCM_MUL(ctx,Xi); |
| } |
| |
| ctx->mres = n; |
| return 0; |
| } |
| |
| int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, |
| const unsigned char *in, unsigned char *out, |
| size_t len) |
| { |
| const union { long one; char little; } is_endian = {1}; |
| unsigned int n, ctr; |
| size_t i; |
| u64 mlen = ctx->len.u[1]; |
| block128_f block = ctx->block; |
| void *key = ctx->key; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; |
| # ifdef GHASH |
| void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], |
| const u8 *inp,size_t len) = ctx->ghash; |
| # endif |
| #endif |
| |
| mlen += len; |
| if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) |
| return -1; |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to decrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx,Xi); |
| ctx->ares = 0; |
| } |
| |
| if (is_endian.little) |
| ctr = GETU32(ctx->Yi.c+12); |
| else |
| ctr = ctx->Yi.d[3]; |
| |
| n = ctx->mres; |
| #if !defined(OPENSSL_SMALL_FOOTPRINT) |
| if (16%sizeof(size_t) == 0) do { /* always true actually */ |
| if (n) { |
| while (n && len) { |
| u8 c = *(in++); |
| *(out++) = c^ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| --len; |
| n = (n+1)%16; |
| } |
| if (n==0) GCM_MUL (ctx,Xi); |
| else { |
| ctx->mres = n; |
| return 0; |
| } |
| } |
| #if defined(STRICT_ALIGNMENT) |
| if (((size_t)in|(size_t)out)%sizeof(size_t) != 0) |
| break; |
| #endif |
| #if defined(GHASH) && defined(GHASH_CHUNK) |
| while (len>=GHASH_CHUNK) { |
| size_t j=GHASH_CHUNK; |
| |
| GHASH(ctx,in,GHASH_CHUNK); |
| while (j) { |
| (*block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i=0; i<16; i+=sizeof(size_t)) |
| *(size_t *)(out+i) = |
| *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); |
| out += 16; |
| in += 16; |
| j -= 16; |
| } |
| len -= GHASH_CHUNK; |
| } |
| if ((i = (len&(size_t)-16))) { |
| GHASH(ctx,in,i); |
| while (len>=16) { |
| (*block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i=0; i<16; i+=sizeof(size_t)) |
| *(size_t *)(out+i) = |
| *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| } |
| #else |
| while (len>=16) { |
| (*block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| for (i=0; i<16; i+=sizeof(size_t)) { |
| size_t c = *(size_t *)(in+i); |
| *(size_t *)(out+i) = c^*(size_t *)(ctx->EKi.c+i); |
| *(size_t *)(ctx->Xi.c+i) ^= c; |
| } |
| GCM_MUL(ctx,Xi); |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| #endif |
| if (len) { |
| (*block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| while (len--) { |
| u8 c = in[n]; |
| ctx->Xi.c[n] ^= c; |
| out[n] = c^ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 0; |
| } while(0); |
| #endif |
| for (i=0;i<len;++i) { |
| u8 c; |
| if (n==0) { |
| (*block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| } |
| c = in[i]; |
| out[i] = c^ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| n = (n+1)%16; |
| if (n==0) |
| GCM_MUL(ctx,Xi); |
| } |
| |
| ctx->mres = n; |
| return 0; |
| } |
| |
| int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, |
| const unsigned char *in, unsigned char *out, |
| size_t len, ctr128_f stream) |
| { |
| const union { long one; char little; } is_endian = {1}; |
| unsigned int n, ctr; |
| size_t i; |
| u64 mlen = ctx->len.u[1]; |
| void *key = ctx->key; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; |
| # ifdef GHASH |
| void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], |
| const u8 *inp,size_t len) = ctx->ghash; |
| # endif |
| #endif |
| |
| mlen += len; |
| if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) |
| return -1; |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to encrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx,Xi); |
| ctx->ares = 0; |
| } |
| |
| if (is_endian.little) |
| ctr = GETU32(ctx->Yi.c+12); |
| else |
| ctr = ctx->Yi.d[3]; |
| |
| n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n]; |
| --len; |
| n = (n+1)%16; |
| } |
| if (n==0) GCM_MUL(ctx,Xi); |
| else { |
| ctx->mres = n; |
| return 0; |
| } |
| } |
| #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| while (len>=GHASH_CHUNK) { |
| (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c); |
| ctr += GHASH_CHUNK/16; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| GHASH(ctx,out,GHASH_CHUNK); |
| out += GHASH_CHUNK; |
| in += GHASH_CHUNK; |
| len -= GHASH_CHUNK; |
| } |
| #endif |
| if ((i = (len&(size_t)-16))) { |
| size_t j=i/16; |
| |
| (*stream)(in,out,j,key,ctx->Yi.c); |
| ctr += (unsigned int)j; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| in += i; |
| len -= i; |
| #if defined(GHASH) |
| GHASH(ctx,out,i); |
| out += i; |
| #else |
| while (j--) { |
| for (i=0;i<16;++i) ctx->Xi.c[i] ^= out[i]; |
| GCM_MUL(ctx,Xi); |
| out += 16; |
| } |
| #endif |
| } |
| if (len) { |
| (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| while (len--) { |
| ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 0; |
| } |
| |
| int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, |
| const unsigned char *in, unsigned char *out, |
| size_t len,ctr128_f stream) |
| { |
| const union { long one; char little; } is_endian = {1}; |
| unsigned int n, ctr; |
| size_t i; |
| u64 mlen = ctx->len.u[1]; |
| void *key = ctx->key; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; |
| # ifdef GHASH |
| void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], |
| const u8 *inp,size_t len) = ctx->ghash; |
| # endif |
| #endif |
| |
| mlen += len; |
| if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) |
| return -1; |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| /* First call to decrypt finalizes GHASH(AAD) */ |
| GCM_MUL(ctx,Xi); |
| ctx->ares = 0; |
| } |
| |
| if (is_endian.little) |
| ctr = GETU32(ctx->Yi.c+12); |
| else |
| ctr = ctx->Yi.d[3]; |
| |
| n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| u8 c = *(in++); |
| *(out++) = c^ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| --len; |
| n = (n+1)%16; |
| } |
| if (n==0) GCM_MUL (ctx,Xi); |
| else { |
| ctx->mres = n; |
| return 0; |
| } |
| } |
| #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) |
| while (len>=GHASH_CHUNK) { |
| GHASH(ctx,in,GHASH_CHUNK); |
| (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c); |
| ctr += GHASH_CHUNK/16; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| out += GHASH_CHUNK; |
| in += GHASH_CHUNK; |
| len -= GHASH_CHUNK; |
| } |
| #endif |
| if ((i = (len&(size_t)-16))) { |
| size_t j=i/16; |
| |
| #if defined(GHASH) |
| GHASH(ctx,in,i); |
| #else |
| while (j--) { |
| size_t k; |
| for (k=0;k<16;++k) ctx->Xi.c[k] ^= in[k]; |
| GCM_MUL(ctx,Xi); |
| in += 16; |
| } |
| j = i/16; |
| in -= i; |
| #endif |
| (*stream)(in,out,j,key,ctx->Yi.c); |
| ctr += (unsigned int)j; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| out += i; |
| in += i; |
| len -= i; |
| } |
| if (len) { |
| (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key); |
| ++ctr; |
| if (is_endian.little) |
| PUTU32(ctx->Yi.c+12,ctr); |
| else |
| ctx->Yi.d[3] = ctr; |
| while (len--) { |
| u8 c = in[n]; |
| ctx->Xi.c[n] ^= c; |
| out[n] = c^ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 0; |
| } |
| |
| int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag, |
| size_t len) |
| { |
| const union { long one; char little; } is_endian = {1}; |
| u64 alen = ctx->len.u[0]<<3; |
| u64 clen = ctx->len.u[1]<<3; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; |
| #endif |
| |
| if (ctx->mres || ctx->ares) |
| GCM_MUL(ctx,Xi); |
| |
| if (is_endian.little) { |
| #ifdef BSWAP8 |
| alen = BSWAP8(alen); |
| clen = BSWAP8(clen); |
| #else |
| u8 *p = ctx->len.c; |
| |
| ctx->len.u[0] = alen; |
| ctx->len.u[1] = clen; |
| |
| alen = (u64)GETU32(p) <<32|GETU32(p+4); |
| clen = (u64)GETU32(p+8)<<32|GETU32(p+12); |
| #endif |
| } |
| |
| ctx->Xi.u[0] ^= alen; |
| ctx->Xi.u[1] ^= clen; |
| GCM_MUL(ctx,Xi); |
| |
| ctx->Xi.u[0] ^= ctx->EK0.u[0]; |
| ctx->Xi.u[1] ^= ctx->EK0.u[1]; |
| |
| if (tag && len<=sizeof(ctx->Xi)) |
| return memcmp(ctx->Xi.c,tag,len); |
| else |
| return -1; |
| } |
| |
| void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) |
| { |
| CRYPTO_gcm128_finish(ctx, NULL, 0); |
| memcpy(tag, ctx->Xi.c, len<=sizeof(ctx->Xi.c)?len:sizeof(ctx->Xi.c)); |
| } |
| |
| GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) |
| { |
| GCM128_CONTEXT *ret; |
| |
| if ((ret = (GCM128_CONTEXT *)OPENSSL_malloc(sizeof(GCM128_CONTEXT)))) |
| CRYPTO_gcm128_init(ret,key,block); |
| |
| return ret; |
| } |
| |
| void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) |
| { |
| if (ctx) { |
| OPENSSL_cleanse(ctx,sizeof(*ctx)); |
| OPENSSL_free(ctx); |
| } |
| } |
| |
| #if defined(SELFTEST) |
| #include <stdio.h> |
| #include <openssl/aes.h> |
| |
| /* Test Case 1 */ |
| static const u8 K1[16], |
| *P1=NULL, |
| *A1=NULL, |
| IV1[12], |
| *C1=NULL, |
| T1[]= {0x58,0xe2,0xfc,0xce,0xfa,0x7e,0x30,0x61,0x36,0x7f,0x1d,0x57,0xa4,0xe7,0x45,0x5a}; |
| |
| /* Test Case 2 */ |
| #define K2 K1 |
| #define A2 A1 |
| #define IV2 IV1 |
| static const u8 P2[16], |
| C2[]= {0x03,0x88,0xda,0xce,0x60,0xb6,0xa3,0x92,0xf3,0x28,0xc2,0xb9,0x71,0xb2,0xfe,0x78}, |
| T2[]= {0xab,0x6e,0x47,0xd4,0x2c,0xec,0x13,0xbd,0xf5,0x3a,0x67,0xb2,0x12,0x57,0xbd,0xdf}; |
| |
| /* Test Case 3 */ |
| #define A3 A2 |
| static const u8 K3[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08}, |
| P3[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, |
| 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, |
| 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, |
| 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, |
| IV3[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, |
| C3[]= {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0xb7,0x84,0xd0,0xd4,0x9c, |
| 0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e, |
| 0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05, |
| 0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91,0x47,0x3f,0x59,0x85}, |
| T3[]= {0x4d,0x5c,0x2a,0xf3,0x27,0xcd,0x64,0xa6,0x2c,0xf3,0x5a,0xbd,0x2b,0xa6,0xfa,0xb4}; |
| |
| /* Test Case 4 */ |
| #define K4 K3 |
| #define IV4 IV3 |
| static const u8 P4[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, |
| 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, |
| 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, |
| 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, |
| A4[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, |
| 0xab,0xad,0xda,0xd2}, |
| C4[]= {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0xb7,0x84,0xd0,0xd4,0x9c, |
| 0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e, |
| 0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05, |
| 0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91}, |
| T4[]= {0x5b,0xc9,0x4f,0xbc,0x32,0x21,0xa5,0xdb,0x94,0xfa,0xe9,0x5a,0xe7,0x12,0x1a,0x47}; |
| |
| /* Test Case 5 */ |
| #define K5 K4 |
| #define P5 P4 |
| #define A5 A4 |
| static const u8 IV5[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, |
| C5[]= {0x61,0x35,0x3b,0x4c,0x28,0x06,0x93,0x4a,0x77,0x7f,0xf5,0x1f,0xa2,0x2a,0x47,0x55, |
| 0x69,0x9b,0x2a,0x71,0x4f,0xcd,0xc6,0xf8,0x37,0x66,0xe5,0xf9,0x7b,0x6c,0x74,0x23, |
| 0x73,0x80,0x69,0x00,0xe4,0x9f,0x24,0xb2,0x2b,0x09,0x75,0x44,0xd4,0x89,0x6b,0x42, |
| 0x49,0x89,0xb5,0xe1,0xeb,0xac,0x0f,0x07,0xc2,0x3f,0x45,0x98}, |
| T5[]= {0x36,0x12,0xd2,0xe7,0x9e,0x3b,0x07,0x85,0x56,0x1b,0xe1,0x4a,0xac,0xa2,0xfc,0xcb}; |
| |
| /* Test Case 6 */ |
| #define K6 K5 |
| #define P6 P5 |
| #define A6 A5 |
| static const u8 IV6[]= {0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, |
| 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, |
| 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, |
| 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, |
| C6[]= {0x8c,0xe2,0x49,0x98,0x62,0x56,0x15,0xb6,0x03,0xa0,0x33,0xac,0xa1,0x3f,0xb8,0x94, |
| 0xbe,0x91,0x12,0xa5,0xc3,0xa2,0x11,0xa8,0xba,0x26,0x2a,0x3c,0xca,0x7e,0x2c,0xa7, |
| 0x01,0xe4,0xa9,0xa4,0xfb,0xa4,0x3c,0x90,0xcc,0xdc,0xb2,0x81,0xd4,0x8c,0x7c,0x6f, |
| 0xd6,0x28,0x75,0xd2,0xac,0xa4,0x17,0x03,0x4c,0x34,0xae,0xe5}, |
| T6[]= {0x61,0x9c,0xc5,0xae,0xff,0xfe,0x0b,0xfa,0x46,0x2a,0xf4,0x3c,0x16,0x99,0xd0,0x50}; |
| |
| /* Test Case 7 */ |
| static const u8 K7[24], |
| *P7=NULL, |
| *A7=NULL, |
| IV7[12], |
| *C7=NULL, |
| T7[]= {0xcd,0x33,0xb2,0x8a,0xc7,0x73,0xf7,0x4b,0xa0,0x0e,0xd1,0xf3,0x12,0x57,0x24,0x35}; |
| |
| /* Test Case 8 */ |
| #define K8 K7 |
| #define IV8 IV7 |
| #define A8 A7 |
| static const u8 P8[16], |
| C8[]= {0x98,0xe7,0x24,0x7c,0x07,0xf0,0xfe,0x41,0x1c,0x26,0x7e,0x43,0x84,0xb0,0xf6,0x00}, |
| T8[]= {0x2f,0xf5,0x8d,0x80,0x03,0x39,0x27,0xab,0x8e,0xf4,0xd4,0x58,0x75,0x14,0xf0,0xfb}; |
| |
| /* Test Case 9 */ |
| #define A9 A8 |
| static const u8 K9[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08, |
| 0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c}, |
| P9[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, |
| 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, |
| 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, |
| 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, |
| IV9[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, |
| C9[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0xc4,0x87,0x2a,0x27,0x57, |
| 0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0xb4,0x0c,0xa1,0xe1,0x9c, |
| 0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0x18,0xc8,0x4a,0x3f,0x47, |
| 0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0x10,0xac,0xad,0xe2,0x56}, |
| T9[]= {0x99,0x24,0xa7,0xc8,0x58,0x73,0x36,0xbf,0xb1,0x18,0x02,0x4d,0xb8,0x67,0x4a,0x14}; |
| |
| /* Test Case 10 */ |
| #define K10 K9 |
| #define IV10 IV9 |
| static const u8 P10[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, |
| 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, |
| 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, |
| 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, |
| A10[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, |
| 0xab,0xad,0xda,0xd2}, |
| C10[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0xc4,0x87,0x2a,0x27,0x57, |
| 0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0xb4,0x0c,0xa1,0xe1,0x9c, |
| 0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0x18,0xc8,0x4a,0x3f,0x47, |
| 0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0x10}, |
| T10[]= {0x25,0x19,0x49,0x8e,0x80,0xf1,0x47,0x8f,0x37,0xba,0x55,0xbd,0x6d,0x27,0x61,0x8c}; |
| |
| /* Test Case 11 */ |
| #define K11 K10 |
| #define P11 P10 |
| #define A11 A10 |
| static const u8 IV11[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, |
| C11[]= {0x0f,0x10,0xf5,0x99,0xae,0x14,0xa1,0x54,0xed,0x24,0xb3,0x6e,0x25,0x32,0x4d,0xb8, |
| 0xc5,0x66,0x63,0x2e,0xf2,0xbb,0xb3,0x4f,0x83,0x47,0x28,0x0f,0xc4,0x50,0x70,0x57, |
| 0xfd,0xdc,0x29,0xdf,0x9a,0x47,0x1f,0x75,0xc6,0x65,0x41,0xd4,0xd4,0xda,0xd1,0xc9, |
| 0xe9,0x3a,0x19,0xa5,0x8e,0x8b,0x47,0x3f,0xa0,0xf0,0x62,0xf7}, |
| T11[]= {0x65,0xdc,0xc5,0x7f,0xcf,0x62,0x3a,0x24,0x09,0x4f,0xcc,0xa4,0x0d,0x35,0x33,0xf8}; |
| |
| /* Test Case 12 */ |
| #define K12 K11 |
| #define P12 P11 |
| #define A12 A11 |
| static const u8 IV12[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, |
| 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, |
| 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, |
| 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, |
| C12[]= {0xd2,0x7e,0x88,0x68,0x1c,0xe3,0x24,0x3c,0x48,0x30,0x16,0x5a,0x8f,0xdc,0xf9,0xff, |
| 0x1d,0xe9,0xa1,0xd8,0xe6,0xb4,0x47,0xef,0x6e,0xf7,0xb7,0x98,0x28,0x66,0x6e,0x45, |
| 0x81,0xe7,0x90,0x12,0xaf,0x34,0xdd,0xd9,0xe2,0xf0,0x37,0x58,0x9b,0x29,0x2d,0xb3, |
| 0xe6,0x7c,0x03,0x67,0x45,0xfa,0x22,0xe7,0xe9,0xb7,0x37,0x3b}, |
| T12[]= {0xdc,0xf5,0x66,0xff,0x29,0x1c,0x25,0xbb,0xb8,0x56,0x8f,0xc3,0xd3,0x76,0xa6,0xd9}; |
| |
| /* Test Case 13 */ |
| static const u8 K13[32], |
| *P13=NULL, |
| *A13=NULL, |
| IV13[12], |
| *C13=NULL, |
| T13[]={0x53,0x0f,0x8a,0xfb,0xc7,0x45,0x36,0xb9,0xa9,0x63,0xb4,0xf1,0xc4,0xcb,0x73,0x8b}; |
| |
| /* Test Case 14 */ |
| #define K14 K13 |
| #define A14 A13 |
| static const u8 P14[16], |
| IV14[12], |
| C14[]= {0xce,0xa7,0x40,0x3d,0x4d,0x60,0x6b,0x6e,0x07,0x4e,0xc5,0xd3,0xba,0xf3,0x9d,0x18}, |
| T14[]= {0xd0,0xd1,0xc8,0xa7,0x99,0x99,0x6b,0xf0,0x26,0x5b,0x98,0xb5,0xd4,0x8a,0xb9,0x19}; |
| |
| /* Test Case 15 */ |
| #define A15 A14 |
| static const u8 K15[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08, |
| 0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08}, |
| P15[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, |
| 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, |
| 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, |
| 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, |
| IV15[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, |
| C15[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d, |
| 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa, |
| 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38, |
| 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62,0x89,0x80,0x15,0xad}, |
| T15[]= {0xb0,0x94,0xda,0xc5,0xd9,0x34,0x71,0xbd,0xec,0x1a,0x50,0x22,0x70,0xe3,0xcc,0x6c}; |
| |
| /* Test Case 16 */ |
| #define K16 K15 |
| #define IV16 IV15 |
| static const u8 P16[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, |
| 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, |
| 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, |
| 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, |
| A16[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, |
| 0xab,0xad,0xda,0xd2}, |
| C16[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d, |
| 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa, |
| 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38, |
| 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62}, |
| T16[]= {0x76,0xfc,0x6e,0xce,0x0f,0x4e,0x17,0x68,0xcd,0xdf,0x88,0x53,0xbb,0x2d,0x55,0x1b}; |
| |
| /* Test Case 17 */ |
| #define K17 K16 |
| #define P17 P16 |
| #define A17 A16 |
| static const u8 IV17[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, |
| C17[]= {0xc3,0x76,0x2d,0xf1,0xca,0x78,0x7d,0x32,0xae,0x47,0xc1,0x3b,0xf1,0x98,0x44,0xcb, |
| 0xaf,0x1a,0xe1,0x4d,0x0b,0x97,0x6a,0xfa,0xc5,0x2f,0xf7,0xd7,0x9b,0xba,0x9d,0xe0, |
| 0xfe,0xb5,0x82,0xd3,0x39,0x34,0xa4,0xf0,0x95,0x4c,0xc2,0x36,0x3b,0xc7,0x3f,0x78, |
| 0x62,0xac,0x43,0x0e,0x64,0xab,0xe4,0x99,0xf4,0x7c,0x9b,0x1f}, |
| T17[]= {0x3a,0x33,0x7d,0xbf,0x46,0xa7,0x92,0xc4,0x5e,0x45,0x49,0x13,0xfe,0x2e,0xa8,0xf2}; |
| |
| /* Test Case 18 */ |
| #define K18 K17 |
| #define P18 P17 |
| #define A18 A17 |
| static const u8 IV18[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, |
| 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, |
| 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, |
| 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, |
| C18[]= {0x5a,0x8d,0xef,0x2f,0x0c,0x9e,0x53,0xf1,0xf7,0x5d,0x78,0x53,0x65,0x9e,0x2a,0x20, |
| 0xee,0xb2,0xb2,0x2a,0xaf,0xde,0x64,0x19,0xa0,0x58,0xab,0x4f,0x6f,0x74,0x6b,0xf4, |
| 0x0f,0xc0,0xc3,0xb7,0x80,0xf2,0x44,0x45,0x2d,0xa3,0xeb,0xf1,0xc5,0xd8,0x2c,0xde, |
| 0xa2,0x41,0x89,0x97,0x20,0x0e,0xf8,0x2e,0x44,0xae,0x7e,0x3f}, |
| T18[]= {0xa4,0x4a,0x82,0x66,0xee,0x1c,0x8e,0xb0,0xc8,0xb5,0xd4,0xcf,0x5a,0xe9,0xf1,0x9a}; |
| |
| #define TEST_CASE(n) do { \ |
| u8 out[sizeof(P##n)]; \ |
| AES_set_encrypt_key(K##n,sizeof(K##n)*8,&key); \ |
| CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt); \ |
| CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \ |
| memset(out,0,sizeof(out)); \ |
| if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \ |
| if (P##n) CRYPTO_gcm128_encrypt(&ctx,P##n,out,sizeof(out)); \ |
| if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \ |
| (C##n && memcmp(out,C##n,sizeof(out)))) \ |
| ret++, printf ("encrypt test#%d failed.\n",n); \ |
| CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \ |
| memset(out,0,sizeof(out)); \ |
| if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \ |
| if (C##n) CRYPTO_gcm128_decrypt(&ctx,C##n,out,sizeof(out)); \ |
| if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \ |
| (P##n && memcmp(out,P##n,sizeof(out)))) \ |
| ret++, printf ("decrypt test#%d failed.\n",n); \ |
| } while(0) |
| |
| int main() |
| { |
| GCM128_CONTEXT ctx; |
| AES_KEY key; |
| int ret=0; |
| |
| TEST_CASE(1); |
| TEST_CASE(2); |
| TEST_CASE(3); |
| TEST_CASE(4); |
| TEST_CASE(5); |
| TEST_CASE(6); |
| TEST_CASE(7); |
| TEST_CASE(8); |
| TEST_CASE(9); |
| TEST_CASE(10); |
| TEST_CASE(11); |
| TEST_CASE(12); |
| TEST_CASE(13); |
| TEST_CASE(14); |
| TEST_CASE(15); |
| TEST_CASE(16); |
| TEST_CASE(17); |
| TEST_CASE(18); |
| |
| #ifdef OPENSSL_CPUID_OBJ |
| { |
| size_t start,stop,gcm_t,ctr_t,OPENSSL_rdtsc(); |
| union { u64 u; u8 c[1024]; } buf; |
| int i; |
| |
| AES_set_encrypt_key(K1,sizeof(K1)*8,&key); |
| CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt); |
| CRYPTO_gcm128_setiv(&ctx,IV1,sizeof(IV1)); |
| |
| CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf)); |
| start = OPENSSL_rdtsc(); |
| CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf)); |
| gcm_t = OPENSSL_rdtsc() - start; |
| |
| CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf), |
| &key,ctx.Yi.c,ctx.EKi.c,&ctx.mres, |
| (block128_f)AES_encrypt); |
| start = OPENSSL_rdtsc(); |
| CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf), |
| &key,ctx.Yi.c,ctx.EKi.c,&ctx.mres, |
| (block128_f)AES_encrypt); |
| ctr_t = OPENSSL_rdtsc() - start; |
| |
| printf("%.2f-%.2f=%.2f\n", |
| gcm_t/(double)sizeof(buf), |
| ctr_t/(double)sizeof(buf), |
| (gcm_t-ctr_t)/(double)sizeof(buf)); |
| #ifdef GHASH |
| GHASH(&ctx,buf.c,sizeof(buf)); |
| start = OPENSSL_rdtsc(); |
| for (i=0;i<100;++i) GHASH(&ctx,buf.c,sizeof(buf)); |
| gcm_t = OPENSSL_rdtsc() - start; |
| printf("%.2f\n",gcm_t/(double)sizeof(buf)/(double)i); |
| #endif |
| } |
| #endif |
| |
| return ret; |
| } |
| #endif |