| #!/usr/bin/env perl |
| |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| |
| # January 2009 |
| # |
| # Provided that UltraSPARC VIS instructions are pipe-lined(*) and |
| # pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC |
| # Graphic Unit would make it possible to achieve higher instruction- |
| # level parallelism, ILP, and thus higher performance. It should be |
| # explicitly noted that ILP is the keyword, and it means that this |
| # code would be unsuitable for cores like UltraSPARC-Tx. The idea is |
| # not really novel, Sun had VIS-powered implementation for a while. |
| # Unlike Sun's implementation this one can process multiple unaligned |
| # input blocks, and as such works as drop-in replacement for OpenSSL |
| # sha1_block_data_order. Performance improvement was measured to be |
| # 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on |
| # UltraSPARC-III. See below for discussion... |
| # |
| # The module does not present direct interest for OpenSSL, because |
| # it doesn't provide better performance on contemporary SPARCv9 CPUs, |
| # UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they |
| # absolutely must score on UltraSPARC-I-IV can simply replace |
| # crypto/sha/asm/sha1-sparcv9.pl with this module. |
| # |
| # (*) "Pipe-lined" means that even if it takes several cycles to |
| # complete, next instruction using same functional unit [but not |
| # depending on the result of the current instruction] can start |
| # execution without having to wait for the unit. "Pairable" |
| # means that two [or more] independent instructions can be |
| # issued at the very same time. |
| |
| $bits=32; |
| for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } |
| if ($bits==64) { $bias=2047; $frame=192; } |
| else { $bias=0; $frame=112; } |
| |
| $output=shift; |
| open STDOUT,">$output"; |
| |
| $ctx="%i0"; |
| $inp="%i1"; |
| $len="%i2"; |
| $tmp0="%i3"; |
| $tmp1="%i4"; |
| $tmp2="%i5"; |
| $tmp3="%g5"; |
| |
| $base="%g1"; |
| $align="%g4"; |
| $Xfer="%o5"; |
| $nXfer=$tmp3; |
| $Xi="%o7"; |
| |
| $A="%l0"; |
| $B="%l1"; |
| $C="%l2"; |
| $D="%l3"; |
| $E="%l4"; |
| @V=($A,$B,$C,$D,$E); |
| |
| $Actx="%o0"; |
| $Bctx="%o1"; |
| $Cctx="%o2"; |
| $Dctx="%o3"; |
| $Ectx="%o4"; |
| |
| $fmul="%f32"; |
| $VK_00_19="%f34"; |
| $VK_20_39="%f36"; |
| $VK_40_59="%f38"; |
| $VK_60_79="%f40"; |
| @VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79); |
| @X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", |
| "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16"); |
| |
| # This is reference 2x-parallelized VIS-powered Xupdate procedure. It |
| # covers even K_NN_MM addition... |
| sub Xupdate { |
| my ($i)=@_; |
| my $K=@VK[($i+16)/20]; |
| my $j=($i+16)%16; |
| |
| # [ provided that GSR.alignaddr_offset is 5, $mul contains |
| # 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to |
| # chosen registers... ] |
| $code.=<<___; |
| fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13] |
| fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] |
| fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] |
| fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] |
| faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 |
| fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 |
| fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 |
| ![fxors %f15,%f2,%f2] |
| for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp |
| ![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency |
| fpadd32 $K,@X[$j],%f20 |
| std %f20,[$Xfer+`4*$j`] |
| ___ |
| # The numbers delimited with slash are the earliest possible dispatch |
| # cycles for given instruction assuming 1 cycle latency for simple VIS |
| # instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as |
| # on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being |
| # 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1 |
| # round. As [long as] FPU/VIS instructions are perfectly pairable with |
| # IALU ones, the round timing is defined by the maximum between VIS |
| # and IALU timings. The latter varies from round to round and averages |
| # out at 6.25 ticks. This means that USI&II should operate at IALU |
| # rate, while USIII&IV - at VIS rate. This explains why performance |
| # improvement varies among processors. Well, given that pure IALU |
| # sha1-sparcv9.pl module exhibits virtually uniform performance of |
| # ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical |
| # lower limits. Real-life performance was measured to be 6.6 cycles |
| # per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than |
| # half-round VIS timing, because there are 16 Xupdate-free rounds, |
| # which "push down" average theoretical timing to 8 cycles... |
| |
| # (*) SPARC64-V[II] was originally believed to have 2 cycles VIS |
| # latency. Well, it might have, but it doesn't have dedicated |
| # VIS-unit. Instead, VIS instructions are executed by other |
| # functional units, ones used here - by IALU. This doesn't |
| # improve effective ILP... |
| } |
| |
| # The reference Xupdate procedure is then "strained" over *pairs* of |
| # BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13] |
| # and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves |
| # plenty of room to amortize for read-after-write hazard, as well as |
| # to fetch and align input for the next spin. The VIS instructions are |
| # scheduled for latency of 2 cycles, because there are not enough IALU |
| # instructions to schedule for latency of 3, while scheduling for 1 |
| # would give no gain on USI&II anyway. |
| |
| sub BODY_00_19 { |
| my ($i,$a,$b,$c,$d,$e)=@_; |
| my $j=$i&~1; |
| my $k=($j+16+2)%16; # ahead reference |
| my $l=($j+16-2)%16; # behind reference |
| my $K=@VK[($j+16-2)/20]; |
| |
| $j=($j+16)%16; |
| |
| $code.=<<___ if (!($i&1)); |
| sll $a,5,$tmp0 !! $i |
| and $c,$b,$tmp3 |
| ld [$Xfer+`4*($i%16)`],$Xi |
| fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] |
| sll $b,30,$tmp2 |
| add $tmp1,$e,$e |
| andn $d,$b,$tmp1 |
| add $Xi,$e,$e |
| fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] |
| srl $b,2,$b |
| or $tmp1,$tmp3,$tmp1 |
| or $tmp2,$b,$b |
| add $tmp1,$e,$e |
| faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 |
| ___ |
| $code.=<<___ if ($i&1); |
| sll $a,5,$tmp0 !! $i |
| and $c,$b,$tmp3 |
| ld [$Xfer+`4*($i%16)`],$Xi |
| fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 |
| sll $b,30,$tmp2 |
| add $tmp1,$e,$e |
| fpadd32 $K,@X[$l],%f20 ! |
| andn $d,$b,$tmp1 |
| add $Xi,$e,$e |
| fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] |
| srl $b,2,$b |
| or $tmp1,$tmp3,$tmp1 |
| fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp |
| or $tmp2,$b,$b |
| add $tmp1,$e,$e |
| ___ |
| $code.=<<___ if ($i&1 && $i>=2); |
| std %f20,[$Xfer+`4*$l`] ! |
| ___ |
| } |
| |
| sub BODY_20_39 { |
| my ($i,$a,$b,$c,$d,$e)=@_; |
| my $j=$i&~1; |
| my $k=($j+16+2)%16; # ahead reference |
| my $l=($j+16-2)%16; # behind reference |
| my $K=@VK[($j+16-2)/20]; |
| |
| $j=($j+16)%16; |
| |
| $code.=<<___ if (!($i&1) && $i<64); |
| sll $a,5,$tmp0 !! $i |
| ld [$Xfer+`4*($i%16)`],$Xi |
| fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] |
| xor $c,$b,$tmp0 |
| add $tmp1,$e,$e |
| sll $b,30,$tmp2 |
| xor $d,$tmp0,$tmp1 |
| fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] |
| srl $b,2,$b |
| add $tmp1,$e,$e |
| or $tmp2,$b,$b |
| add $Xi,$e,$e |
| faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 |
| ___ |
| $code.=<<___ if ($i&1 && $i<64); |
| sll $a,5,$tmp0 !! $i |
| ld [$Xfer+`4*($i%16)`],$Xi |
| fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 |
| xor $c,$b,$tmp0 |
| add $tmp1,$e,$e |
| fpadd32 $K,@X[$l],%f20 ! |
| sll $b,30,$tmp2 |
| xor $d,$tmp0,$tmp1 |
| fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] |
| srl $b,2,$b |
| add $tmp1,$e,$e |
| fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp |
| or $tmp2,$b,$b |
| add $Xi,$e,$e |
| std %f20,[$Xfer+`4*$l`] ! |
| ___ |
| $code.=<<___ if ($i==64); |
| sll $a,5,$tmp0 !! $i |
| ld [$Xfer+`4*($i%16)`],$Xi |
| fpadd32 $K,@X[$l],%f20 |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| xor $c,$b,$tmp0 |
| add $tmp1,$e,$e |
| sll $b,30,$tmp2 |
| xor $d,$tmp0,$tmp1 |
| std %f20,[$Xfer+`4*$l`] |
| srl $b,2,$b |
| add $tmp1,$e,$e |
| or $tmp2,$b,$b |
| add $Xi,$e,$e |
| ___ |
| $code.=<<___ if ($i>64); |
| sll $a,5,$tmp0 !! $i |
| ld [$Xfer+`4*($i%16)`],$Xi |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| xor $c,$b,$tmp0 |
| add $tmp1,$e,$e |
| sll $b,30,$tmp2 |
| xor $d,$tmp0,$tmp1 |
| srl $b,2,$b |
| add $tmp1,$e,$e |
| or $tmp2,$b,$b |
| add $Xi,$e,$e |
| ___ |
| } |
| |
| sub BODY_40_59 { |
| my ($i,$a,$b,$c,$d,$e)=@_; |
| my $j=$i&~1; |
| my $k=($j+16+2)%16; # ahead reference |
| my $l=($j+16-2)%16; # behind reference |
| my $K=@VK[($j+16-2)/20]; |
| |
| $j=($j+16)%16; |
| |
| $code.=<<___ if (!($i&1)); |
| sll $a,5,$tmp0 !! $i |
| ld [$Xfer+`4*($i%16)`],$Xi |
| fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] |
| and $c,$b,$tmp0 |
| add $tmp1,$e,$e |
| sll $b,30,$tmp2 |
| or $c,$b,$tmp1 |
| fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] |
| srl $b,2,$b |
| and $d,$tmp1,$tmp1 |
| add $Xi,$e,$e |
| or $tmp1,$tmp0,$tmp1 |
| faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 |
| or $tmp2,$b,$b |
| add $tmp1,$e,$e |
| fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 |
| ___ |
| $code.=<<___ if ($i&1); |
| sll $a,5,$tmp0 !! $i |
| ld [$Xfer+`4*($i%16)`],$Xi |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 |
| and $c,$b,$tmp0 |
| add $tmp1,$e,$e |
| fpadd32 $K,@X[$l],%f20 ! |
| sll $b,30,$tmp2 |
| or $c,$b,$tmp1 |
| fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] |
| srl $b,2,$b |
| and $d,$tmp1,$tmp1 |
| fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp |
| add $Xi,$e,$e |
| or $tmp1,$tmp0,$tmp1 |
| or $tmp2,$b,$b |
| add $tmp1,$e,$e |
| std %f20,[$Xfer+`4*$l`] ! |
| ___ |
| } |
| |
| # If there is more data to process, then we pre-fetch the data for |
| # next iteration in last ten rounds... |
| sub BODY_70_79 { |
| my ($i,$a,$b,$c,$d,$e)=@_; |
| my $j=$i&~1; |
| my $m=($i%8)*2; |
| |
| $j=($j+16)%16; |
| |
| $code.=<<___ if ($i==70); |
| sll $a,5,$tmp0 !! $i |
| ld [$Xfer+`4*($i%16)`],$Xi |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| ldd [$inp+64],@X[0] |
| xor $c,$b,$tmp0 |
| add $tmp1,$e,$e |
| sll $b,30,$tmp2 |
| xor $d,$tmp0,$tmp1 |
| srl $b,2,$b |
| add $tmp1,$e,$e |
| or $tmp2,$b,$b |
| add $Xi,$e,$e |
| |
| and $inp,-64,$nXfer |
| inc 64,$inp |
| and $nXfer,255,$nXfer |
| alignaddr %g0,$align,%g0 |
| add $base,$nXfer,$nXfer |
| ___ |
| $code.=<<___ if ($i==71); |
| sll $a,5,$tmp0 !! $i |
| ld [$Xfer+`4*($i%16)`],$Xi |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| xor $c,$b,$tmp0 |
| add $tmp1,$e,$e |
| sll $b,30,$tmp2 |
| xor $d,$tmp0,$tmp1 |
| srl $b,2,$b |
| add $tmp1,$e,$e |
| or $tmp2,$b,$b |
| add $Xi,$e,$e |
| ___ |
| $code.=<<___ if ($i>=72); |
| faligndata @X[$m],@X[$m+2],@X[$m] |
| sll $a,5,$tmp0 !! $i |
| ld [$Xfer+`4*($i%16)`],$Xi |
| srl $a,27,$tmp1 |
| add $tmp0,$e,$e |
| xor $c,$b,$tmp0 |
| add $tmp1,$e,$e |
| fpadd32 $VK_00_19,@X[$m],%f20 |
| sll $b,30,$tmp2 |
| xor $d,$tmp0,$tmp1 |
| srl $b,2,$b |
| add $tmp1,$e,$e |
| or $tmp2,$b,$b |
| add $Xi,$e,$e |
| ___ |
| $code.=<<___ if ($i<77); |
| ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)] |
| ___ |
| $code.=<<___ if ($i==77); # redundant if $inp was aligned |
| add $align,63,$tmp0 |
| and $tmp0,-8,$tmp0 |
| ldd [$inp+$tmp0],@X[16] |
| ___ |
| $code.=<<___ if ($i>=72); |
| std %f20,[$nXfer+`4*$m`] |
| ___ |
| } |
| |
| $code.=<<___; |
| .section ".text",#alloc,#execinstr |
| |
| .align 64 |
| vis_const: |
| .long 0x5a827999,0x5a827999 ! K_00_19 |
| .long 0x6ed9eba1,0x6ed9eba1 ! K_20_39 |
| .long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59 |
| .long 0xca62c1d6,0xca62c1d6 ! K_60_79 |
| .long 0x00000100,0x00000100 |
| .align 64 |
| .type vis_const,#object |
| .size vis_const,(.-vis_const) |
| |
| .globl sha1_block_data_order |
| sha1_block_data_order: |
| save %sp,-$frame,%sp |
| add %fp,$bias-256,$base |
| |
| 1: call .+8 |
| add %o7,vis_const-1b,$tmp0 |
| |
| ldd [$tmp0+0],$VK_00_19 |
| ldd [$tmp0+8],$VK_20_39 |
| ldd [$tmp0+16],$VK_40_59 |
| ldd [$tmp0+24],$VK_60_79 |
| ldd [$tmp0+32],$fmul |
| |
| ld [$ctx+0],$Actx |
| and $base,-256,$base |
| ld [$ctx+4],$Bctx |
| sub $base,$bias+$frame,%sp |
| ld [$ctx+8],$Cctx |
| and $inp,7,$align |
| ld [$ctx+12],$Dctx |
| and $inp,-8,$inp |
| ld [$ctx+16],$Ectx |
| |
| ! X[16] is maintained in FP register bank |
| alignaddr %g0,$align,%g0 |
| ldd [$inp+0],@X[0] |
| sub $inp,-64,$Xfer |
| ldd [$inp+8],@X[2] |
| and $Xfer,-64,$Xfer |
| ldd [$inp+16],@X[4] |
| and $Xfer,255,$Xfer |
| ldd [$inp+24],@X[6] |
| add $base,$Xfer,$Xfer |
| ldd [$inp+32],@X[8] |
| ldd [$inp+40],@X[10] |
| ldd [$inp+48],@X[12] |
| brz,pt $align,.Laligned |
| ldd [$inp+56],@X[14] |
| |
| ldd [$inp+64],@X[16] |
| faligndata @X[0],@X[2],@X[0] |
| faligndata @X[2],@X[4],@X[2] |
| faligndata @X[4],@X[6],@X[4] |
| faligndata @X[6],@X[8],@X[6] |
| faligndata @X[8],@X[10],@X[8] |
| faligndata @X[10],@X[12],@X[10] |
| faligndata @X[12],@X[14],@X[12] |
| faligndata @X[14],@X[16],@X[14] |
| |
| .Laligned: |
| mov 5,$tmp0 |
| dec 1,$len |
| alignaddr %g0,$tmp0,%g0 |
| fpadd32 $VK_00_19,@X[0],%f16 |
| fpadd32 $VK_00_19,@X[2],%f18 |
| fpadd32 $VK_00_19,@X[4],%f20 |
| fpadd32 $VK_00_19,@X[6],%f22 |
| fpadd32 $VK_00_19,@X[8],%f24 |
| fpadd32 $VK_00_19,@X[10],%f26 |
| fpadd32 $VK_00_19,@X[12],%f28 |
| fpadd32 $VK_00_19,@X[14],%f30 |
| std %f16,[$Xfer+0] |
| mov $Actx,$A |
| std %f18,[$Xfer+8] |
| mov $Bctx,$B |
| std %f20,[$Xfer+16] |
| mov $Cctx,$C |
| std %f22,[$Xfer+24] |
| mov $Dctx,$D |
| std %f24,[$Xfer+32] |
| mov $Ectx,$E |
| std %f26,[$Xfer+40] |
| fxors @X[13],@X[0],@X[0] |
| std %f28,[$Xfer+48] |
| ba .Loop |
| std %f30,[$Xfer+56] |
| .align 32 |
| .Loop: |
| ___ |
| for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } |
| for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } |
| for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } |
| for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } |
| $code.=<<___; |
| tst $len |
| bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail |
| nop |
| ___ |
| for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); } |
| $code.=<<___; |
| add $A,$Actx,$Actx |
| add $B,$Bctx,$Bctx |
| add $C,$Cctx,$Cctx |
| add $D,$Dctx,$Dctx |
| add $E,$Ectx,$Ectx |
| mov 5,$tmp0 |
| fxors @X[13],@X[0],@X[0] |
| mov $Actx,$A |
| mov $Bctx,$B |
| mov $Cctx,$C |
| mov $Dctx,$D |
| mov $Ectx,$E |
| alignaddr %g0,$tmp0,%g0 |
| dec 1,$len |
| ba .Loop |
| mov $nXfer,$Xfer |
| |
| .align 32 |
| .Ltail: |
| ___ |
| for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } |
| $code.=<<___; |
| add $A,$Actx,$Actx |
| add $B,$Bctx,$Bctx |
| add $C,$Cctx,$Cctx |
| add $D,$Dctx,$Dctx |
| add $E,$Ectx,$Ectx |
| |
| st $Actx,[$ctx+0] |
| st $Bctx,[$ctx+4] |
| st $Cctx,[$ctx+8] |
| st $Dctx,[$ctx+12] |
| st $Ectx,[$ctx+16] |
| |
| ret |
| restore |
| .type sha1_block_data_order,#function |
| .size sha1_block_data_order,(.-sha1_block_data_order) |
| .asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>" |
| .align 4 |
| ___ |
| |
| # Purpose of these subroutines is to explicitly encode VIS instructions, |
| # so that one can compile the module without having to specify VIS |
| # extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. |
| # Idea is to reserve for option to produce "universal" binary and let |
| # programmer detect if current CPU is VIS capable at run-time. |
| sub unvis { |
| my ($mnemonic,$rs1,$rs2,$rd)=@_; |
| my ($ref,$opf); |
| my %visopf = ( "fmul8ulx16" => 0x037, |
| "faligndata" => 0x048, |
| "fpadd32" => 0x052, |
| "fxor" => 0x06c, |
| "fxors" => 0x06d ); |
| |
| $ref = "$mnemonic\t$rs1,$rs2,$rd"; |
| |
| if ($opf=$visopf{$mnemonic}) { |
| foreach ($rs1,$rs2,$rd) { |
| return $ref if (!/%f([0-9]{1,2})/); |
| $_=$1; |
| if ($1>=32) { |
| return $ref if ($1&1); |
| # re-encode for upper double register addressing |
| $_=($1|$1>>5)&31; |
| } |
| } |
| |
| return sprintf ".word\t0x%08x !%s", |
| 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, |
| $ref; |
| } else { |
| return $ref; |
| } |
| } |
| sub unalignaddr { |
| my ($mnemonic,$rs1,$rs2,$rd)=@_; |
| my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); |
| my $ref="$mnemonic\t$rs1,$rs2,$rd"; |
| |
| foreach ($rs1,$rs2,$rd) { |
| if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } |
| else { return $ref; } |
| } |
| return sprintf ".word\t0x%08x !%s", |
| 0x81b00300|$rd<<25|$rs1<<14|$rs2, |
| $ref; |
| } |
| |
| $code =~ s/\`([^\`]*)\`/eval $1/gem; |
| $code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/ |
| &unvis($1,$2,$3,$4) |
| /gem; |
| $code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/ |
| &unalignaddr($1,$2,$3,$4) |
| /gem; |
| print $code; |
| close STDOUT; |