| /* |
| * This file is derived from various .h and .c files from the zlib-0.95 |
| * distribution by Jean-loup Gailly and Mark Adler, with some additions |
| * by Paul Mackerras to aid in implementing Deflate compression and |
| * decompression for PPP packets. See zlib.h for conditions of |
| * distribution and use. |
| * |
| * Changes that have been made include: |
| * - changed functions not used outside this file to "local" |
| * - added minCompression parameter to deflateInit2 |
| * - added Z_PACKET_FLUSH (see zlib.h for details) |
| * - added inflateIncomp |
| * |
| * $Id: zlib.c,v 1.2 1999/04/01 07:26:30 paulus Exp $ |
| */ |
| |
| |
| /*+++++*/ |
| /* zutil.h -- internal interface and configuration of the compression library |
| * Copyright (C) 1995 Jean-loup Gailly. |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* WARNING: this file should *not* be used by applications. It is |
| part of the implementation of the compression library and is |
| subject to change. Applications should only use zlib.h. |
| */ |
| |
| /* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */ |
| |
| #define _Z_UTIL_H |
| |
| #include "zlib.h" |
| |
| #ifdef STDC |
| # include <string.h> |
| #endif |
| |
| #ifndef local |
| # define local static |
| #endif |
| /* compile with -Dlocal if your debugger can't find static symbols */ |
| |
| #define FAR |
| |
| typedef unsigned char uch; |
| typedef uch FAR uchf; |
| typedef unsigned short ush; |
| typedef ush FAR ushf; |
| typedef unsigned long ulg; |
| |
| extern char *z_errmsg[]; /* indexed by 1-zlib_error */ |
| |
| #define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err) |
| /* To be used only when the state is known to be valid */ |
| |
| #ifndef NULL |
| #define NULL ((void *) 0) |
| #endif |
| |
| /* common constants */ |
| |
| #define DEFLATED 8 |
| |
| #ifndef DEF_WBITS |
| # define DEF_WBITS MAX_WBITS |
| #endif |
| /* default windowBits for decompression. MAX_WBITS is for compression only */ |
| |
| #if MAX_MEM_LEVEL >= 8 |
| # define DEF_MEM_LEVEL 8 |
| #else |
| # define DEF_MEM_LEVEL MAX_MEM_LEVEL |
| #endif |
| /* default memLevel */ |
| |
| #define STORED_BLOCK 0 |
| #define STATIC_TREES 1 |
| #define DYN_TREES 2 |
| /* The three kinds of block type */ |
| |
| #define MIN_MATCH 3 |
| #define MAX_MATCH 258 |
| /* The minimum and maximum match lengths */ |
| |
| /* functions */ |
| |
| #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY) |
| # define HAVE_MEMCPY |
| #endif |
| #ifdef HAVE_MEMCPY |
| # define zmemcpy memcpy |
| # define zmemzero(dest, len) memset(dest, 0, len) |
| #else |
| # define zmemcpy(d, s, n) bcopy((s), (d), (n)) |
| # define zmemzero bzero |
| #endif |
| |
| /* Diagnostic functions */ |
| #ifdef DEBUG_ZLIB |
| # include <stdio.h> |
| # ifndef verbose |
| # define verbose 0 |
| # endif |
| # define Assert(cond,msg) {if(!(cond)) z_error(msg);} |
| # define Trace(x) fprintf x |
| # define Tracev(x) {if (verbose) fprintf x ;} |
| # define Tracevv(x) {if (verbose>1) fprintf x ;} |
| # define Tracec(c,x) {if (verbose && (c)) fprintf x ;} |
| # define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;} |
| #else |
| # define Assert(cond,msg) |
| # define Trace(x) |
| # define Tracev(x) |
| # define Tracevv(x) |
| # define Tracec(c,x) |
| # define Tracecv(c,x) |
| #endif |
| |
| |
| typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len)); |
| |
| /* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */ |
| /* void zcfree OF((voidpf opaque, voidpf ptr)); */ |
| |
| #define ZALLOC(strm, items, size) \ |
| (*((strm)->zalloc))((strm)->opaque, (items), (size)) |
| #define ZFREE(strm, addr, size) \ |
| (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size)) |
| #define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);} |
| |
| /* deflate.h -- internal compression state |
| * Copyright (C) 1995 Jean-loup Gailly |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* WARNING: this file should *not* be used by applications. It is |
| part of the implementation of the compression library and is |
| subject to change. Applications should only use zlib.h. |
| */ |
| |
| |
| /*+++++*/ |
| /* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */ |
| |
| /* =========================================================================== |
| * Internal compression state. |
| */ |
| |
| /* Data type */ |
| #define BINARY 0 |
| #define ASCII 1 |
| #define UNKNOWN 2 |
| |
| #define LENGTH_CODES 29 |
| /* number of length codes, not counting the special END_BLOCK code */ |
| |
| #define LITERALS 256 |
| /* number of literal bytes 0..255 */ |
| |
| #define L_CODES (LITERALS+1+LENGTH_CODES) |
| /* number of Literal or Length codes, including the END_BLOCK code */ |
| |
| #define D_CODES 30 |
| /* number of distance codes */ |
| |
| #define BL_CODES 19 |
| /* number of codes used to transfer the bit lengths */ |
| |
| #define HEAP_SIZE (2*L_CODES+1) |
| /* maximum heap size */ |
| |
| #define MAX_BITS 15 |
| /* All codes must not exceed MAX_BITS bits */ |
| |
| #define INIT_STATE 42 |
| #define BUSY_STATE 113 |
| #define FLUSH_STATE 124 |
| #define FINISH_STATE 666 |
| /* Stream status */ |
| |
| |
| /* Data structure describing a single value and its code string. */ |
| typedef struct ct_data_s { |
| union { |
| ush freq; /* frequency count */ |
| ush code; /* bit string */ |
| } fc; |
| union { |
| ush dad; /* father node in Huffman tree */ |
| ush len; /* length of bit string */ |
| } dl; |
| } FAR ct_data; |
| |
| #define Freq fc.freq |
| #define Code fc.code |
| #define Dad dl.dad |
| #define Len dl.len |
| |
| typedef struct static_tree_desc_s static_tree_desc; |
| |
| typedef struct tree_desc_s { |
| ct_data *dyn_tree; /* the dynamic tree */ |
| int max_code; /* largest code with non zero frequency */ |
| static_tree_desc *stat_desc; /* the corresponding static tree */ |
| } FAR tree_desc; |
| |
| typedef ush Pos; |
| typedef Pos FAR Posf; |
| typedef unsigned IPos; |
| |
| /* A Pos is an index in the character window. We use short instead of int to |
| * save space in the various tables. IPos is used only for parameter passing. |
| */ |
| |
| typedef struct deflate_state { |
| z_stream *strm; /* pointer back to this zlib stream */ |
| int status; /* as the name implies */ |
| Bytef *pending_buf; /* output still pending */ |
| Bytef *pending_out; /* next pending byte to output to the stream */ |
| int pending; /* nb of bytes in the pending buffer */ |
| uLong adler; /* adler32 of uncompressed data */ |
| int noheader; /* suppress zlib header and adler32 */ |
| Byte data_type; /* UNKNOWN, BINARY or ASCII */ |
| Byte method; /* STORED (for zip only) or DEFLATED */ |
| int minCompr; /* min size decrease for Z_FLUSH_NOSTORE */ |
| |
| /* used by deflate.c: */ |
| |
| uInt w_size; /* LZ77 window size (32K by default) */ |
| uInt w_bits; /* log2(w_size) (8..16) */ |
| uInt w_mask; /* w_size - 1 */ |
| |
| Bytef *window; |
| /* Sliding window. Input bytes are read into the second half of the window, |
| * and move to the first half later to keep a dictionary of at least wSize |
| * bytes. With this organization, matches are limited to a distance of |
| * wSize-MAX_MATCH bytes, but this ensures that IO is always |
| * performed with a length multiple of the block size. Also, it limits |
| * the window size to 64K, which is quite useful on MSDOS. |
| * To do: use the user input buffer as sliding window. |
| */ |
| |
| ulg window_size; |
| /* Actual size of window: 2*wSize, except when the user input buffer |
| * is directly used as sliding window. |
| */ |
| |
| Posf *prev; |
| /* Link to older string with same hash index. To limit the size of this |
| * array to 64K, this link is maintained only for the last 32K strings. |
| * An index in this array is thus a window index modulo 32K. |
| */ |
| |
| Posf *head; /* Heads of the hash chains or NIL. */ |
| |
| uInt ins_h; /* hash index of string to be inserted */ |
| uInt hash_size; /* number of elements in hash table */ |
| uInt hash_bits; /* log2(hash_size) */ |
| uInt hash_mask; /* hash_size-1 */ |
| |
| uInt hash_shift; |
| /* Number of bits by which ins_h must be shifted at each input |
| * step. It must be such that after MIN_MATCH steps, the oldest |
| * byte no longer takes part in the hash key, that is: |
| * hash_shift * MIN_MATCH >= hash_bits |
| */ |
| |
| long block_start; |
| /* Window position at the beginning of the current output block. Gets |
| * negative when the window is moved backwards. |
| */ |
| |
| uInt match_length; /* length of best match */ |
| IPos prev_match; /* previous match */ |
| int match_available; /* set if previous match exists */ |
| uInt strstart; /* start of string to insert */ |
| uInt match_start; /* start of matching string */ |
| uInt lookahead; /* number of valid bytes ahead in window */ |
| |
| uInt prev_length; |
| /* Length of the best match at previous step. Matches not greater than this |
| * are discarded. This is used in the lazy match evaluation. |
| */ |
| |
| uInt max_chain_length; |
| /* To speed up deflation, hash chains are never searched beyond this |
| * length. A higher limit improves compression ratio but degrades the |
| * speed. |
| */ |
| |
| uInt max_lazy_match; |
| /* Attempt to find a better match only when the current match is strictly |
| * smaller than this value. This mechanism is used only for compression |
| * levels >= 4. |
| */ |
| # define max_insert_length max_lazy_match |
| /* Insert new strings in the hash table only if the match length is not |
| * greater than this length. This saves time but degrades compression. |
| * max_insert_length is used only for compression levels <= 3. |
| */ |
| |
| int level; /* compression level (1..9) */ |
| int strategy; /* favor or force Huffman coding*/ |
| |
| uInt good_match; |
| /* Use a faster search when the previous match is longer than this */ |
| |
| int nice_match; /* Stop searching when current match exceeds this */ |
| |
| /* used by trees.c: */ |
| /* Didn't use ct_data typedef below to supress compiler warning */ |
| struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ |
| struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ |
| struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ |
| |
| struct tree_desc_s l_desc; /* desc. for literal tree */ |
| struct tree_desc_s d_desc; /* desc. for distance tree */ |
| struct tree_desc_s bl_desc; /* desc. for bit length tree */ |
| |
| ush bl_count[MAX_BITS+1]; |
| /* number of codes at each bit length for an optimal tree */ |
| |
| int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ |
| int heap_len; /* number of elements in the heap */ |
| int heap_max; /* element of largest frequency */ |
| /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. |
| * The same heap array is used to build all trees. |
| */ |
| |
| uch depth[2*L_CODES+1]; |
| /* Depth of each subtree used as tie breaker for trees of equal frequency |
| */ |
| |
| uchf *l_buf; /* buffer for literals or lengths */ |
| |
| uInt lit_bufsize; |
| /* Size of match buffer for literals/lengths. There are 4 reasons for |
| * limiting lit_bufsize to 64K: |
| * - frequencies can be kept in 16 bit counters |
| * - if compression is not successful for the first block, all input |
| * data is still in the window so we can still emit a stored block even |
| * when input comes from standard input. (This can also be done for |
| * all blocks if lit_bufsize is not greater than 32K.) |
| * - if compression is not successful for a file smaller than 64K, we can |
| * even emit a stored file instead of a stored block (saving 5 bytes). |
| * This is applicable only for zip (not gzip or zlib). |
| * - creating new Huffman trees less frequently may not provide fast |
| * adaptation to changes in the input data statistics. (Take for |
| * example a binary file with poorly compressible code followed by |
| * a highly compressible string table.) Smaller buffer sizes give |
| * fast adaptation but have of course the overhead of transmitting |
| * trees more frequently. |
| * - I can't count above 4 |
| */ |
| |
| uInt last_lit; /* running index in l_buf */ |
| |
| ushf *d_buf; |
| /* Buffer for distances. To simplify the code, d_buf and l_buf have |
| * the same number of elements. To use different lengths, an extra flag |
| * array would be necessary. |
| */ |
| |
| ulg opt_len; /* bit length of current block with optimal trees */ |
| ulg static_len; /* bit length of current block with static trees */ |
| ulg compressed_len; /* total bit length of compressed file */ |
| uInt matches; /* number of string matches in current block */ |
| int last_eob_len; /* bit length of EOB code for last block */ |
| |
| #ifdef DEBUG_ZLIB |
| ulg bits_sent; /* bit length of the compressed data */ |
| #endif |
| |
| ush bi_buf; |
| /* Output buffer. bits are inserted starting at the bottom (least |
| * significant bits). |
| */ |
| int bi_valid; |
| /* Number of valid bits in bi_buf. All bits above the last valid bit |
| * are always zero. |
| */ |
| |
| uInt blocks_in_packet; |
| /* Number of blocks produced since the last time Z_PACKET_FLUSH |
| * was used. |
| */ |
| |
| } FAR deflate_state; |
| |
| /* Output a byte on the stream. |
| * IN assertion: there is enough room in pending_buf. |
| */ |
| #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} |
| |
| |
| #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) |
| /* Minimum amount of lookahead, except at the end of the input file. |
| * See deflate.c for comments about the MIN_MATCH+1. |
| */ |
| |
| #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) |
| /* In order to simplify the code, particularly on 16 bit machines, match |
| * distances are limited to MAX_DIST instead of WSIZE. |
| */ |
| |
| /* in trees.c */ |
| local void ct_init OF((deflate_state *s)); |
| local int ct_tally OF((deflate_state *s, int dist, int lc)); |
| local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len, |
| int flush)); |
| local void ct_align OF((deflate_state *s)); |
| local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len, |
| int eof)); |
| local void ct_stored_type_only OF((deflate_state *s)); |
| |
| |
| /*+++++*/ |
| /* deflate.c -- compress data using the deflation algorithm |
| * Copyright (C) 1995 Jean-loup Gailly. |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* |
| * ALGORITHM |
| * |
| * The "deflation" process depends on being able to identify portions |
| * of the input text which are identical to earlier input (within a |
| * sliding window trailing behind the input currently being processed). |
| * |
| * The most straightforward technique turns out to be the fastest for |
| * most input files: try all possible matches and select the longest. |
| * The key feature of this algorithm is that insertions into the string |
| * dictionary are very simple and thus fast, and deletions are avoided |
| * completely. Insertions are performed at each input character, whereas |
| * string matches are performed only when the previous match ends. So it |
| * is preferable to spend more time in matches to allow very fast string |
| * insertions and avoid deletions. The matching algorithm for small |
| * strings is inspired from that of Rabin & Karp. A brute force approach |
| * is used to find longer strings when a small match has been found. |
| * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
| * (by Leonid Broukhis). |
| * A previous version of this file used a more sophisticated algorithm |
| * (by Fiala and Greene) which is guaranteed to run in linear amortized |
| * time, but has a larger average cost, uses more memory and is patented. |
| * However the F&G algorithm may be faster for some highly redundant |
| * files if the parameter max_chain_length (described below) is too large. |
| * |
| * ACKNOWLEDGEMENTS |
| * |
| * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
| * I found it in 'freeze' written by Leonid Broukhis. |
| * Thanks to many people for bug reports and testing. |
| * |
| * REFERENCES |
| * |
| * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
| * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
| * |
| * A description of the Rabin and Karp algorithm is given in the book |
| * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
| * |
| * Fiala,E.R., and Greene,D.H. |
| * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
| * |
| */ |
| |
| /* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */ |
| |
| local char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly "; |
| /* |
| If you use the zlib library in a product, an acknowledgment is welcome |
| in the documentation of your product. If for some reason you cannot |
| include such an acknowledgment, I would appreciate that you keep this |
| copyright string in the executable of your product. |
| */ |
| |
| #define NIL 0 |
| /* Tail of hash chains */ |
| |
| #ifndef TOO_FAR |
| # define TOO_FAR 4096 |
| #endif |
| /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ |
| |
| #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) |
| /* Minimum amount of lookahead, except at the end of the input file. |
| * See deflate.c for comments about the MIN_MATCH+1. |
| */ |
| |
| /* Values for max_lazy_match, good_match and max_chain_length, depending on |
| * the desired pack level (0..9). The values given below have been tuned to |
| * exclude worst case performance for pathological files. Better values may be |
| * found for specific files. |
| */ |
| |
| typedef struct config_s { |
| ush good_length; /* reduce lazy search above this match length */ |
| ush max_lazy; /* do not perform lazy search above this match length */ |
| ush nice_length; /* quit search above this match length */ |
| ush max_chain; |
| } config; |
| |
| local config configuration_table[10] = { |
| /* good lazy nice chain */ |
| /* 0 */ {0, 0, 0, 0}, /* store only */ |
| /* 1 */ {4, 4, 8, 4}, /* maximum speed, no lazy matches */ |
| /* 2 */ {4, 5, 16, 8}, |
| /* 3 */ {4, 6, 32, 32}, |
| |
| /* 4 */ {4, 4, 16, 16}, /* lazy matches */ |
| /* 5 */ {8, 16, 32, 32}, |
| /* 6 */ {8, 16, 128, 128}, |
| /* 7 */ {8, 32, 128, 256}, |
| /* 8 */ {32, 128, 258, 1024}, |
| /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */ |
| |
| /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
| * For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
| * meaning. |
| */ |
| |
| #define EQUAL 0 |
| /* result of memcmp for equal strings */ |
| |
| /* =========================================================================== |
| * Prototypes for local functions. |
| */ |
| |
| local void fill_window OF((deflate_state *s)); |
| local int deflate_fast OF((deflate_state *s, int flush)); |
| local int deflate_slow OF((deflate_state *s, int flush)); |
| local void lm_init OF((deflate_state *s)); |
| local int longest_match OF((deflate_state *s, IPos cur_match)); |
| local void putShortMSB OF((deflate_state *s, uInt b)); |
| local void flush_pending OF((z_stream *strm)); |
| local int read_buf OF((z_stream *strm, charf *buf, unsigned size)); |
| #ifdef ASMV |
| void match_init OF((void)); /* asm code initialization */ |
| #endif |
| |
| #ifdef DEBUG_ZLIB |
| local void check_match OF((deflate_state *s, IPos start, IPos match, |
| int length)); |
| #endif |
| |
| |
| /* =========================================================================== |
| * Update a hash value with the given input byte |
| * IN assertion: all calls to to UPDATE_HASH are made with consecutive |
| * input characters, so that a running hash key can be computed from the |
| * previous key instead of complete recalculation each time. |
| */ |
| #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) |
| |
| |
| /* =========================================================================== |
| * Insert string str in the dictionary and set match_head to the previous head |
| * of the hash chain (the most recent string with same hash key). Return |
| * the previous length of the hash chain. |
| * IN assertion: all calls to to INSERT_STRING are made with consecutive |
| * input characters and the first MIN_MATCH bytes of str are valid |
| * (except for the last MIN_MATCH-1 bytes of the input file). |
| */ |
| #define INSERT_STRING(s, str, match_head) \ |
| (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ |
| s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ |
| s->head[s->ins_h] = (str)) |
| |
| /* =========================================================================== |
| * Initialize the hash table (avoiding 64K overflow for 16 bit systems). |
| * prev[] will be initialized on the fly. |
| */ |
| #define CLEAR_HASH(s) \ |
| s->head[s->hash_size-1] = NIL; \ |
| zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); |
| |
| /* ========================================================================= */ |
| int deflateInit (strm, level) |
| z_stream *strm; |
| int level; |
| { |
| return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, |
| 0, 0); |
| /* To do: ignore strm->next_in if we use it as window */ |
| } |
| |
| /* ========================================================================= */ |
| int deflateInit2 (strm, level, method, windowBits, memLevel, |
| strategy, minCompression) |
| z_stream *strm; |
| int level; |
| int method; |
| int windowBits; |
| int memLevel; |
| int strategy; |
| int minCompression; |
| { |
| deflate_state *s; |
| int noheader = 0; |
| |
| if (strm == Z_NULL) return Z_STREAM_ERROR; |
| |
| strm->msg = Z_NULL; |
| /* if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */ |
| /* if (strm->zfree == Z_NULL) strm->zfree = zcfree; */ |
| |
| if (level == Z_DEFAULT_COMPRESSION) level = 6; |
| |
| if (windowBits < 0) { /* undocumented feature: suppress zlib header */ |
| noheader = 1; |
| windowBits = -windowBits; |
| } |
| if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED || |
| windowBits < 8 || windowBits > 15 || level < 1 || level > 9) { |
| return Z_STREAM_ERROR; |
| } |
| s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); |
| if (s == Z_NULL) return Z_MEM_ERROR; |
| strm->state = (struct internal_state FAR *)s; |
| s->strm = strm; |
| |
| s->noheader = noheader; |
| s->w_bits = windowBits; |
| s->w_size = 1 << s->w_bits; |
| s->w_mask = s->w_size - 1; |
| |
| s->hash_bits = memLevel + 7; |
| s->hash_size = 1 << s->hash_bits; |
| s->hash_mask = s->hash_size - 1; |
| s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); |
| |
| s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); |
| s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
| s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); |
| |
| s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
| |
| s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush)); |
| |
| if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || |
| s->pending_buf == Z_NULL) { |
| strm->msg = z_errmsg[1-Z_MEM_ERROR]; |
| deflateEnd (strm); |
| return Z_MEM_ERROR; |
| } |
| s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]); |
| s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]); |
| /* We overlay pending_buf and d_buf+l_buf. This works since the average |
| * output size for (length,distance) codes is <= 32 bits (worst case |
| * is 15+15+13=33). |
| */ |
| |
| s->level = level; |
| s->strategy = strategy; |
| s->method = (Byte)method; |
| s->minCompr = minCompression; |
| s->blocks_in_packet = 0; |
| |
| return deflateReset(strm); |
| } |
| |
| /* ========================================================================= */ |
| int deflateReset (strm) |
| z_stream *strm; |
| { |
| deflate_state *s; |
| |
| if (strm == Z_NULL || strm->state == Z_NULL || |
| strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR; |
| |
| strm->total_in = strm->total_out = 0; |
| strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ |
| strm->data_type = Z_UNKNOWN; |
| |
| s = (deflate_state *)strm->state; |
| s->pending = 0; |
| s->pending_out = s->pending_buf; |
| |
| if (s->noheader < 0) { |
| s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ |
| } |
| s->status = s->noheader ? BUSY_STATE : INIT_STATE; |
| s->adler = 1; |
| |
| ct_init(s); |
| lm_init(s); |
| |
| return Z_OK; |
| } |
| |
| /* ========================================================================= |
| * Put a short in the pending buffer. The 16-bit value is put in MSB order. |
| * IN assertion: the stream state is correct and there is enough room in |
| * pending_buf. |
| */ |
| local void putShortMSB (s, b) |
| deflate_state *s; |
| uInt b; |
| { |
| put_byte(s, (Byte)(b >> 8)); |
| put_byte(s, (Byte)(b & 0xff)); |
| } |
| |
| /* ========================================================================= |
| * Flush as much pending output as possible. |
| */ |
| local void flush_pending(strm) |
| z_stream *strm; |
| { |
| deflate_state *state = (deflate_state *) strm->state; |
| unsigned len = state->pending; |
| |
| if (len > strm->avail_out) len = strm->avail_out; |
| if (len == 0) return; |
| |
| if (strm->next_out != NULL) { |
| zmemcpy(strm->next_out, state->pending_out, len); |
| strm->next_out += len; |
| } |
| state->pending_out += len; |
| strm->total_out += len; |
| strm->avail_out -= len; |
| state->pending -= len; |
| if (state->pending == 0) { |
| state->pending_out = state->pending_buf; |
| } |
| } |
| |
| /* ========================================================================= */ |
| int deflate (strm, flush) |
| z_stream *strm; |
| int flush; |
| { |
| deflate_state *state = (deflate_state *) strm->state; |
| |
| if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR; |
| |
| if (strm->next_in == Z_NULL && strm->avail_in != 0) { |
| ERR_RETURN(strm, Z_STREAM_ERROR); |
| } |
| if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); |
| |
| state->strm = strm; /* just in case */ |
| |
| /* Write the zlib header */ |
| if (state->status == INIT_STATE) { |
| |
| uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8; |
| uInt level_flags = (state->level-1) >> 1; |
| |
| if (level_flags > 3) level_flags = 3; |
| header |= (level_flags << 6); |
| header += 31 - (header % 31); |
| |
| state->status = BUSY_STATE; |
| putShortMSB(state, header); |
| } |
| |
| /* Flush as much pending output as possible */ |
| if (state->pending != 0) { |
| flush_pending(strm); |
| if (strm->avail_out == 0) return Z_OK; |
| } |
| |
| /* If we came back in here to get the last output from |
| * a previous flush, we're done for now. |
| */ |
| if (state->status == FLUSH_STATE) { |
| state->status = BUSY_STATE; |
| if (flush != Z_NO_FLUSH && flush != Z_FINISH) |
| return Z_OK; |
| } |
| |
| /* User must not provide more input after the first FINISH: */ |
| if (state->status == FINISH_STATE && strm->avail_in != 0) { |
| ERR_RETURN(strm, Z_BUF_ERROR); |
| } |
| |
| /* Start a new block or continue the current one. |
| */ |
| if (strm->avail_in != 0 || state->lookahead != 0 || |
| (flush == Z_FINISH && state->status != FINISH_STATE)) { |
| int quit; |
| |
| if (flush == Z_FINISH) { |
| state->status = FINISH_STATE; |
| } |
| if (state->level <= 3) { |
| quit = deflate_fast(state, flush); |
| } else { |
| quit = deflate_slow(state, flush); |
| } |
| if (quit || strm->avail_out == 0) |
| return Z_OK; |
| /* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
| * of deflate should use the same flush parameter to make sure |
| * that the flush is complete. So we don't have to output an |
| * empty block here, this will be done at next call. This also |
| * ensures that for a very small output buffer, we emit at most |
| * one empty block. |
| */ |
| } |
| |
| /* If a flush was requested, we have a little more to output now. */ |
| if (flush != Z_NO_FLUSH && flush != Z_FINISH |
| && state->status != FINISH_STATE) { |
| switch (flush) { |
| case Z_PARTIAL_FLUSH: |
| ct_align(state); |
| break; |
| case Z_PACKET_FLUSH: |
| /* Output just the 3-bit `stored' block type value, |
| but not a zero length. */ |
| ct_stored_type_only(state); |
| break; |
| default: |
| ct_stored_block(state, (char*)0, 0L, 0); |
| /* For a full flush, this empty block will be recognized |
| * as a special marker by inflate_sync(). |
| */ |
| if (flush == Z_FULL_FLUSH) { |
| CLEAR_HASH(state); /* forget history */ |
| } |
| } |
| flush_pending(strm); |
| if (strm->avail_out == 0) { |
| /* We'll have to come back to get the rest of the output; |
| * this ensures we don't output a second zero-length stored |
| * block (or whatever). |
| */ |
| state->status = FLUSH_STATE; |
| return Z_OK; |
| } |
| } |
| |
| Assert(strm->avail_out > 0, "bug2"); |
| |
| if (flush != Z_FINISH) return Z_OK; |
| if (state->noheader) return Z_STREAM_END; |
| |
| /* Write the zlib trailer (adler32) */ |
| putShortMSB(state, (uInt)(state->adler >> 16)); |
| putShortMSB(state, (uInt)(state->adler & 0xffff)); |
| flush_pending(strm); |
| /* If avail_out is zero, the application will call deflate again |
| * to flush the rest. |
| */ |
| state->noheader = -1; /* write the trailer only once! */ |
| return state->pending != 0 ? Z_OK : Z_STREAM_END; |
| } |
| |
| /* ========================================================================= */ |
| int deflateEnd (strm) |
| z_stream *strm; |
| { |
| deflate_state *state = (deflate_state *) strm->state; |
| |
| if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR; |
| |
| TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte)); |
| TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos)); |
| TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos)); |
| TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush)); |
| |
| ZFREE(strm, state, sizeof(deflate_state)); |
| strm->state = Z_NULL; |
| |
| return Z_OK; |
| } |
| |
| /* =========================================================================== |
| * Read a new buffer from the current input stream, update the adler32 |
| * and total number of bytes read. |
| */ |
| local int read_buf(strm, buf, size) |
| z_stream *strm; |
| charf *buf; |
| unsigned size; |
| { |
| unsigned len = strm->avail_in; |
| deflate_state *state = (deflate_state *) strm->state; |
| |
| if (len > size) len = size; |
| if (len == 0) return 0; |
| |
| strm->avail_in -= len; |
| |
| if (!state->noheader) { |
| state->adler = adler32(state->adler, strm->next_in, len); |
| } |
| zmemcpy(buf, strm->next_in, len); |
| strm->next_in += len; |
| strm->total_in += len; |
| |
| return (int)len; |
| } |
| |
| /* =========================================================================== |
| * Initialize the "longest match" routines for a new zlib stream |
| */ |
| local void lm_init (s) |
| deflate_state *s; |
| { |
| s->window_size = (ulg)2L*s->w_size; |
| |
| CLEAR_HASH(s); |
| |
| /* Set the default configuration parameters: |
| */ |
| s->max_lazy_match = configuration_table[s->level].max_lazy; |
| s->good_match = configuration_table[s->level].good_length; |
| s->nice_match = configuration_table[s->level].nice_length; |
| s->max_chain_length = configuration_table[s->level].max_chain; |
| |
| s->strstart = 0; |
| s->block_start = 0L; |
| s->lookahead = 0; |
| s->match_length = MIN_MATCH-1; |
| s->match_available = 0; |
| s->ins_h = 0; |
| #ifdef ASMV |
| match_init(); /* initialize the asm code */ |
| #endif |
| } |
| |
| /* =========================================================================== |
| * Set match_start to the longest match starting at the given string and |
| * return its length. Matches shorter or equal to prev_length are discarded, |
| * in which case the result is equal to prev_length and match_start is |
| * garbage. |
| * IN assertions: cur_match is the head of the hash chain for the current |
| * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 |
| */ |
| #ifndef ASMV |
| /* For 80x86 and 680x0, an optimized version will be provided in match.asm or |
| * match.S. The code will be functionally equivalent. |
| */ |
| local int longest_match(s, cur_match) |
| deflate_state *s; |
| IPos cur_match; /* current match */ |
| { |
| unsigned chain_length = s->max_chain_length;/* max hash chain length */ |
| register Bytef *scan = s->window + s->strstart; /* current string */ |
| register Bytef *match; /* matched string */ |
| register int len; /* length of current match */ |
| int best_len = s->prev_length; /* best match length so far */ |
| IPos limit = s->strstart > (IPos)MAX_DIST(s) ? |
| s->strstart - (IPos)MAX_DIST(s) : NIL; |
| /* Stop when cur_match becomes <= limit. To simplify the code, |
| * we prevent matches with the string of window index 0. |
| */ |
| Posf *prev = s->prev; |
| uInt wmask = s->w_mask; |
| |
| #ifdef UNALIGNED_OK |
| /* Compare two bytes at a time. Note: this is not always beneficial. |
| * Try with and without -DUNALIGNED_OK to check. |
| */ |
| register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; |
| register ush scan_start = *(ushf*)scan; |
| register ush scan_end = *(ushf*)(scan+best_len-1); |
| #else |
| register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
| register Byte scan_end1 = scan[best_len-1]; |
| register Byte scan_end = scan[best_len]; |
| #endif |
| |
| /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
| * It is easy to get rid of this optimization if necessary. |
| */ |
| Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); |
| |
| /* Do not waste too much time if we already have a good match: */ |
| if (s->prev_length >= s->good_match) { |
| chain_length >>= 2; |
| } |
| Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); |
| |
| do { |
| Assert(cur_match < s->strstart, "no future"); |
| match = s->window + cur_match; |
| |
| /* Skip to next match if the match length cannot increase |
| * or if the match length is less than 2: |
| */ |
| #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) |
| /* This code assumes sizeof(unsigned short) == 2. Do not use |
| * UNALIGNED_OK if your compiler uses a different size. |
| */ |
| if (*(ushf*)(match+best_len-1) != scan_end || |
| *(ushf*)match != scan_start) continue; |
| |
| /* It is not necessary to compare scan[2] and match[2] since they are |
| * always equal when the other bytes match, given that the hash keys |
| * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at |
| * strstart+3, +5, ... up to strstart+257. We check for insufficient |
| * lookahead only every 4th comparison; the 128th check will be made |
| * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is |
| * necessary to put more guard bytes at the end of the window, or |
| * to check more often for insufficient lookahead. |
| */ |
| Assert(scan[2] == match[2], "scan[2]?"); |
| scan++, match++; |
| do { |
| } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
| scan < strend); |
| /* The funny "do {}" generates better code on most compilers */ |
| |
| /* Here, scan <= window+strstart+257 */ |
| Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
| if (*scan == *match) scan++; |
| |
| len = (MAX_MATCH - 1) - (int)(strend-scan); |
| scan = strend - (MAX_MATCH-1); |
| |
| #else /* UNALIGNED_OK */ |
| |
| if (match[best_len] != scan_end || |
| match[best_len-1] != scan_end1 || |
| *match != *scan || |
| *++match != scan[1]) continue; |
| |
| /* The check at best_len-1 can be removed because it will be made |
| * again later. (This heuristic is not always a win.) |
| * It is not necessary to compare scan[2] and match[2] since they |
| * are always equal when the other bytes match, given that |
| * the hash keys are equal and that HASH_BITS >= 8. |
| */ |
| scan += 2, match++; |
| Assert(*scan == *match, "match[2]?"); |
| |
| /* We check for insufficient lookahead only every 8th comparison; |
| * the 256th check will be made at strstart+258. |
| */ |
| do { |
| } while (*++scan == *++match && *++scan == *++match && |
| *++scan == *++match && *++scan == *++match && |
| *++scan == *++match && *++scan == *++match && |
| *++scan == *++match && *++scan == *++match && |
| scan < strend); |
| |
| Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); |
| |
| len = MAX_MATCH - (int)(strend - scan); |
| scan = strend - MAX_MATCH; |
| |
| #endif /* UNALIGNED_OK */ |
| |
| if (len > best_len) { |
| s->match_start = cur_match; |
| best_len = len; |
| if (len >= s->nice_match) break; |
| #ifdef UNALIGNED_OK |
| scan_end = *(ushf*)(scan+best_len-1); |
| #else |
| scan_end1 = scan[best_len-1]; |
| scan_end = scan[best_len]; |
| #endif |
| } |
| } while ((cur_match = prev[cur_match & wmask]) > limit |
| && --chain_length != 0); |
| |
| return best_len; |
| } |
| #endif /* ASMV */ |
| |
| #ifdef DEBUG_ZLIB |
| /* =========================================================================== |
| * Check that the match at match_start is indeed a match. |
| */ |
| local void check_match(s, start, match, length) |
| deflate_state *s; |
| IPos start, match; |
| int length; |
| { |
| /* check that the match is indeed a match */ |
| if (memcmp((charf *)s->window + match, |
| (charf *)s->window + start, length) != EQUAL) { |
| fprintf(stderr, |
| " start %u, match %u, length %d\n", |
| start, match, length); |
| do { fprintf(stderr, "%c%c", s->window[match++], |
| s->window[start++]); } while (--length != 0); |
| z_error("invalid match"); |
| } |
| if (verbose > 1) { |
| fprintf(stderr,"\\[%d,%d]", start-match, length); |
| do { putc(s->window[start++], stderr); } while (--length != 0); |
| } |
| } |
| #else |
| # define check_match(s, start, match, length) |
| #endif |
| |
| /* =========================================================================== |
| * Fill the window when the lookahead becomes insufficient. |
| * Updates strstart and lookahead. |
| * |
| * IN assertion: lookahead < MIN_LOOKAHEAD |
| * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
| * At least one byte has been read, or avail_in == 0; reads are |
| * performed for at least two bytes (required for the zip translate_eol |
| * option -- not supported here). |
| */ |
| local void fill_window(s) |
| deflate_state *s; |
| { |
| register unsigned n, m; |
| register Posf *p; |
| unsigned more; /* Amount of free space at the end of the window. */ |
| uInt wsize = s->w_size; |
| |
| do { |
| more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); |
| |
| /* Deal with !@#$% 64K limit: */ |
| if (more == 0 && s->strstart == 0 && s->lookahead == 0) { |
| more = wsize; |
| } else if (more == (unsigned)(-1)) { |
| /* Very unlikely, but possible on 16 bit machine if strstart == 0 |
| * and lookahead == 1 (input done one byte at time) |
| */ |
| more--; |
| |
| /* If the window is almost full and there is insufficient lookahead, |
| * move the upper half to the lower one to make room in the upper half. |
| */ |
| } else if (s->strstart >= wsize+MAX_DIST(s)) { |
| |
| /* By the IN assertion, the window is not empty so we can't confuse |
| * more == 0 with more == 64K on a 16 bit machine. |
| */ |
| zmemcpy((charf *)s->window, (charf *)s->window+wsize, |
| (unsigned)wsize); |
| s->match_start -= wsize; |
| s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
| |
| s->block_start -= (long) wsize; |
| |
| /* Slide the hash table (could be avoided with 32 bit values |
| at the expense of memory usage): |
| */ |
| n = s->hash_size; |
| p = &s->head[n]; |
| do { |
| m = *--p; |
| *p = (Pos)(m >= wsize ? m-wsize : NIL); |
| } while (--n); |
| |
| n = wsize; |
| p = &s->prev[n]; |
| do { |
| m = *--p; |
| *p = (Pos)(m >= wsize ? m-wsize : NIL); |
| /* If n is not on any hash chain, prev[n] is garbage but |
| * its value will never be used. |
| */ |
| } while (--n); |
| |
| more += wsize; |
| } |
| if (s->strm->avail_in == 0) return; |
| |
| /* If there was no sliding: |
| * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
| * more == window_size - lookahead - strstart |
| * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
| * => more >= window_size - 2*WSIZE + 2 |
| * In the BIG_MEM or MMAP case (not yet supported), |
| * window_size == input_size + MIN_LOOKAHEAD && |
| * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
| * Otherwise, window_size == 2*WSIZE so more >= 2. |
| * If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
| */ |
| Assert(more >= 2, "more < 2"); |
| |
| n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead, |
| more); |
| s->lookahead += n; |
| |
| /* Initialize the hash value now that we have some input: */ |
| if (s->lookahead >= MIN_MATCH) { |
| s->ins_h = s->window[s->strstart]; |
| UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
| #if MIN_MATCH != 3 |
| Call UPDATE_HASH() MIN_MATCH-3 more times |
| #endif |
| } |
| /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
| * but this is not important since only literal bytes will be emitted. |
| */ |
| |
| } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
| } |
| |
| /* =========================================================================== |
| * Flush the current block, with given end-of-file flag. |
| * IN assertion: strstart is set to the end of the current match. |
| */ |
| #define FLUSH_BLOCK_ONLY(s, flush) { \ |
| ct_flush_block(s, (s->block_start >= 0L ? \ |
| (charf *)&s->window[(unsigned)s->block_start] : \ |
| (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \ |
| s->block_start = s->strstart; \ |
| flush_pending(s->strm); \ |
| Tracev((stderr,"[FLUSH]")); \ |
| } |
| |
| /* Same but force premature exit if necessary. */ |
| #define FLUSH_BLOCK(s, flush) { \ |
| FLUSH_BLOCK_ONLY(s, flush); \ |
| if (s->strm->avail_out == 0) return 1; \ |
| } |
| |
| /* =========================================================================== |
| * Compress as much as possible from the input stream, return true if |
| * processing was terminated prematurely (no more input or output space). |
| * This function does not perform lazy evaluationof matches and inserts |
| * new strings in the dictionary only for unmatched strings or for short |
| * matches. It is used only for the fast compression options. |
| */ |
| local int deflate_fast(s, flush) |
| deflate_state *s; |
| int flush; |
| { |
| IPos hash_head = NIL; /* head of the hash chain */ |
| int bflush; /* set if current block must be flushed */ |
| |
| s->prev_length = MIN_MATCH-1; |
| |
| for (;;) { |
| /* Make sure that we always have enough lookahead, except |
| * at the end of the input file. We need MAX_MATCH bytes |
| * for the next match, plus MIN_MATCH bytes to insert the |
| * string following the next match. |
| */ |
| if (s->lookahead < MIN_LOOKAHEAD) { |
| fill_window(s); |
| if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1; |
| |
| if (s->lookahead == 0) break; /* flush the current block */ |
| } |
| |
| /* Insert the string window[strstart .. strstart+2] in the |
| * dictionary, and set hash_head to the head of the hash chain: |
| */ |
| if (s->lookahead >= MIN_MATCH) { |
| INSERT_STRING(s, s->strstart, hash_head); |
| } |
| |
| /* Find the longest match, discarding those <= prev_length. |
| * At this point we have always match_length < MIN_MATCH |
| */ |
| if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { |
| /* To simplify the code, we prevent matches with the string |
| * of window index 0 (in particular we have to avoid a match |
| * of the string with itself at the start of the input file). |
| */ |
| if (s->strategy != Z_HUFFMAN_ONLY) { |
| s->match_length = longest_match (s, hash_head); |
| } |
| /* longest_match() sets match_start */ |
| |
| if (s->match_length > s->lookahead) s->match_length = s->lookahead; |
| } |
| if (s->match_length >= MIN_MATCH) { |
| check_match(s, s->strstart, s->match_start, s->match_length); |
| |
| bflush = ct_tally(s, s->strstart - s->match_start, |
| s->match_length - MIN_MATCH); |
| |
| s->lookahead -= s->match_length; |
| |
| /* Insert new strings in the hash table only if the match length |
| * is not too large. This saves time but degrades compression. |
| */ |
| if (s->match_length <= s->max_insert_length && |
| s->lookahead >= MIN_MATCH) { |
| s->match_length--; /* string at strstart already in hash table */ |
| do { |
| s->strstart++; |
| INSERT_STRING(s, s->strstart, hash_head); |
| /* strstart never exceeds WSIZE-MAX_MATCH, so there are |
| * always MIN_MATCH bytes ahead. |
| */ |
| } while (--s->match_length != 0); |
| s->strstart++; |
| } else { |
| s->strstart += s->match_length; |
| s->match_length = 0; |
| s->ins_h = s->window[s->strstart]; |
| UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
| #if MIN_MATCH != 3 |
| Call UPDATE_HASH() MIN_MATCH-3 more times |
| #endif |
| /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not |
| * matter since it will be recomputed at next deflate call. |
| */ |
| } |
| } else { |
| /* No match, output a literal byte */ |
| Tracevv((stderr,"%c", s->window[s->strstart])); |
| bflush = ct_tally (s, 0, s->window[s->strstart]); |
| s->lookahead--; |
| s->strstart++; |
| } |
| if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH); |
| } |
| FLUSH_BLOCK(s, flush); |
| return 0; /* normal exit */ |
| } |
| |
| /* =========================================================================== |
| * Same as above, but achieves better compression. We use a lazy |
| * evaluation for matches: a match is finally adopted only if there is |
| * no better match at the next window position. |
| */ |
| local int deflate_slow(s, flush) |
| deflate_state *s; |
| int flush; |
| { |
| IPos hash_head = NIL; /* head of hash chain */ |
| int bflush; /* set if current block must be flushed */ |
| |
| /* Process the input block. */ |
| for (;;) { |
| /* Make sure that we always have enough lookahead, except |
| * at the end of the input file. We need MAX_MATCH bytes |
| * for the next match, plus MIN_MATCH bytes to insert the |
| * string following the next match. |
| */ |
| if (s->lookahead < MIN_LOOKAHEAD) { |
| fill_window(s); |
| if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1; |
| |
| if (s->lookahead == 0) break; /* flush the current block */ |
| } |
| |
| /* Insert the string window[strstart .. strstart+2] in the |
| * dictionary, and set hash_head to the head of the hash chain: |
| */ |
| if (s->lookahead >= MIN_MATCH) { |
| INSERT_STRING(s, s->strstart, hash_head); |
| } |
| |
| /* Find the longest match, discarding those <= prev_length. |
| */ |
| s->prev_length = s->match_length, s->prev_match = s->match_start; |
| s->match_length = MIN_MATCH-1; |
| |
| if (hash_head != NIL && s->prev_length < s->max_lazy_match && |
| s->strstart - hash_head <= MAX_DIST(s)) { |
| /* To simplify the code, we prevent matches with the string |
| * of window index 0 (in particular we have to avoid a match |
| * of the string with itself at the start of the input file). |
| */ |
| if (s->strategy != Z_HUFFMAN_ONLY) { |
| s->match_length = longest_match (s, hash_head); |
| } |
| /* longest_match() sets match_start */ |
| if (s->match_length > s->lookahead) s->match_length = s->lookahead; |
| |
| if (s->match_length <= 5 && (s->strategy == Z_FILTERED || |
| (s->match_length == MIN_MATCH && |
| s->strstart - s->match_start > TOO_FAR))) { |
| |
| /* If prev_match is also MIN_MATCH, match_start is garbage |
| * but we will ignore the current match anyway. |
| */ |
| s->match_length = MIN_MATCH-1; |
| } |
| } |
| /* If there was a match at the previous step and the current |
| * match is not better, output the previous match: |
| */ |
| if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { |
| uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; |
| /* Do not insert strings in hash table beyond this. */ |
| |
| check_match(s, s->strstart-1, s->prev_match, s->prev_length); |
| |
| bflush = ct_tally(s, s->strstart -1 - s->prev_match, |
| s->prev_length - MIN_MATCH); |
| |
| /* Insert in hash table all strings up to the end of the match. |
| * strstart-1 and strstart are already inserted. If there is not |
| * enough lookahead, the last two strings are not inserted in |
| * the hash table. |
| */ |
| s->lookahead -= s->prev_length-1; |
| s->prev_length -= 2; |
| do { |
| if (++s->strstart <= max_insert) { |
| INSERT_STRING(s, s->strstart, hash_head); |
| } |
| } while (--s->prev_length != 0); |
| s->match_available = 0; |
| s->match_length = MIN_MATCH-1; |
| s->strstart++; |
| |
| if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH); |
| |
| } else if (s->match_available) { |
| /* If there was no match at the previous position, output a |
| * single literal. If there was a match but the current match |
| * is longer, truncate the previous match to a single literal. |
| */ |
| Tracevv((stderr,"%c", s->window[s->strstart-1])); |
| if (ct_tally (s, 0, s->window[s->strstart-1])) { |
| FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH); |
| } |
| s->strstart++; |
| s->lookahead--; |
| if (s->strm->avail_out == 0) return 1; |
| } else { |
| /* There is no previous match to compare with, wait for |
| * the next step to decide. |
| */ |
| s->match_available = 1; |
| s->strstart++; |
| s->lookahead--; |
| } |
| } |
| Assert (flush != Z_NO_FLUSH, "no flush?"); |
| if (s->match_available) { |
| Tracevv((stderr,"%c", s->window[s->strstart-1])); |
| ct_tally (s, 0, s->window[s->strstart-1]); |
| s->match_available = 0; |
| } |
| FLUSH_BLOCK(s, flush); |
| return 0; |
| } |
| |
| |
| /*+++++*/ |
| /* trees.c -- output deflated data using Huffman coding |
| * Copyright (C) 1995 Jean-loup Gailly |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* |
| * ALGORITHM |
| * |
| * The "deflation" process uses several Huffman trees. The more |
| * common source values are represented by shorter bit sequences. |
| * |
| * Each code tree is stored in a compressed form which is itself |
| * a Huffman encoding of the lengths of all the code strings (in |
| * ascending order by source values). The actual code strings are |
| * reconstructed from the lengths in the inflate process, as described |
| * in the deflate specification. |
| * |
| * REFERENCES |
| * |
| * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
| * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
| * |
| * Storer, James A. |
| * Data Compression: Methods and Theory, pp. 49-50. |
| * Computer Science Press, 1988. ISBN 0-7167-8156-5. |
| * |
| * Sedgewick, R. |
| * Algorithms, p290. |
| * Addison-Wesley, 1983. ISBN 0-201-06672-6. |
| */ |
| |
| /* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */ |
| |
| #ifdef DEBUG_ZLIB |
| # include <ctype.h> |
| #endif |
| |
| /* =========================================================================== |
| * Constants |
| */ |
| |
| #define MAX_BL_BITS 7 |
| /* Bit length codes must not exceed MAX_BL_BITS bits */ |
| |
| #define END_BLOCK 256 |
| /* end of block literal code */ |
| |
| #define REP_3_6 16 |
| /* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
| |
| #define REPZ_3_10 17 |
| /* repeat a zero length 3-10 times (3 bits of repeat count) */ |
| |
| #define REPZ_11_138 18 |
| /* repeat a zero length 11-138 times (7 bits of repeat count) */ |
| |
| local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ |
| = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
| |
| local int extra_dbits[D_CODES] /* extra bits for each distance code */ |
| = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
| |
| local int extra_blbits[BL_CODES]/* extra bits for each bit length code */ |
| = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
| |
| local uch bl_order[BL_CODES] |
| = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
| /* The lengths of the bit length codes are sent in order of decreasing |
| * probability, to avoid transmitting the lengths for unused bit length codes. |
| */ |
| |
| #define Buf_size (8 * 2*sizeof(char)) |
| /* Number of bits used within bi_buf. (bi_buf might be implemented on |
| * more than 16 bits on some systems.) |
| */ |
| |
| /* =========================================================================== |
| * Local data. These are initialized only once. |
| * To do: initialize at compile time to be completely reentrant. ??? |
| */ |
| |
| local ct_data static_ltree[L_CODES+2]; |
| /* The static literal tree. Since the bit lengths are imposed, there is no |
| * need for the L_CODES extra codes used during heap construction. However |
| * The codes 286 and 287 are needed to build a canonical tree (see ct_init |
| * below). |
| */ |
| |
| local ct_data static_dtree[D_CODES]; |
| /* The static distance tree. (Actually a trivial tree since all codes use |
| * 5 bits.) |
| */ |
| |
| local uch dist_code[512]; |
| /* distance codes. The first 256 values correspond to the distances |
| * 3 .. 258, the last 256 values correspond to the top 8 bits of |
| * the 15 bit distances. |
| */ |
| |
| local uch length_code[MAX_MATCH-MIN_MATCH+1]; |
| /* length code for each normalized match length (0 == MIN_MATCH) */ |
| |
| local int base_length[LENGTH_CODES]; |
| /* First normalized length for each code (0 = MIN_MATCH) */ |
| |
| local int base_dist[D_CODES]; |
| /* First normalized distance for each code (0 = distance of 1) */ |
| |
| struct static_tree_desc_s { |
| ct_data *static_tree; /* static tree or NULL */ |
| intf *extra_bits; /* extra bits for each code or NULL */ |
| int extra_base; /* base index for extra_bits */ |
| int elems; /* max number of elements in the tree */ |
| int max_length; /* max bit length for the codes */ |
| }; |
| |
| local static_tree_desc static_l_desc = |
| {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
| |
| local static_tree_desc static_d_desc = |
| {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
| |
| local static_tree_desc static_bl_desc = |
| {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
| |
| /* =========================================================================== |
| * Local (static) routines in this file. |
| */ |
| |
| local void ct_static_init OF((void)); |
| local void init_block OF((deflate_state *s)); |
| local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); |
| local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); |
| local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); |
| local void build_tree OF((deflate_state *s, tree_desc *desc)); |
| local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
| local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
| local int build_bl_tree OF((deflate_state *s)); |
| local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, |
| int blcodes)); |
| local void compress_block OF((deflate_state *s, ct_data *ltree, |
| ct_data *dtree)); |
| local void set_data_type OF((deflate_state *s)); |
| local unsigned bi_reverse OF((unsigned value, int length)); |
| local void bi_windup OF((deflate_state *s)); |
| local void bi_flush OF((deflate_state *s)); |
| local void copy_block OF((deflate_state *s, charf *buf, unsigned len, |
| int header)); |
| |
| #ifndef DEBUG_ZLIB |
| # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
| /* Send a code of the given tree. c and tree must not have side effects */ |
| |
| #else /* DEBUG_ZLIB */ |
| # define send_code(s, c, tree) \ |
| { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \ |
| send_bits(s, tree[c].Code, tree[c].Len); } |
| #endif |
| |
| #define d_code(dist) \ |
| ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) |
| /* Mapping from a distance to a distance code. dist is the distance - 1 and |
| * must not have side effects. dist_code[256] and dist_code[257] are never |
| * used. |
| */ |
| |
| /* =========================================================================== |
| * Output a short LSB first on the stream. |
| * IN assertion: there is enough room in pendingBuf. |
| */ |
| #define put_short(s, w) { \ |
| put_byte(s, (uch)((w) & 0xff)); \ |
| put_byte(s, (uch)((ush)(w) >> 8)); \ |
| } |
| |
| /* =========================================================================== |
| * Send a value on a given number of bits. |
| * IN assertion: length <= 16 and value fits in length bits. |
| */ |
| #ifdef DEBUG_ZLIB |
| local void send_bits OF((deflate_state *s, int value, int length)); |
| |
| local void send_bits(s, value, length) |
| deflate_state *s; |
| int value; /* value to send */ |
| int length; /* number of bits */ |
| { |
| Tracev((stderr," l %2d v %4x ", length, value)); |
| Assert(length > 0 && length <= 15, "invalid length"); |
| s->bits_sent += (ulg)length; |
| |
| /* If not enough room in bi_buf, use (valid) bits from bi_buf and |
| * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) |
| * unused bits in value. |
| */ |
| if (s->bi_valid > (int)Buf_size - length) { |
| s->bi_buf |= (value << s->bi_valid); |
| put_short(s, s->bi_buf); |
| s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
| s->bi_valid += length - Buf_size; |
| } else { |
| s->bi_buf |= value << s->bi_valid; |
| s->bi_valid += length; |
| } |
| } |
| #else /* !DEBUG_ZLIB */ |
| |
| #define send_bits(s, value, length) \ |
| { int len = length;\ |
| if (s->bi_valid > (int)Buf_size - len) {\ |
| int val = value;\ |
| s->bi_buf |= (val << s->bi_valid);\ |
| put_short(s, s->bi_buf);\ |
| s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
| s->bi_valid += len - Buf_size;\ |
| } else {\ |
| s->bi_buf |= (value) << s->bi_valid;\ |
| s->bi_valid += len;\ |
| }\ |
| } |
| #endif /* DEBUG_ZLIB */ |
| |
| |
| #define MAX(a,b) (a >= b ? a : b) |
| /* the arguments must not have side effects */ |
| |
| /* =========================================================================== |
| * Initialize the various 'constant' tables. |
| * To do: do this at compile time. |
| */ |
| local void ct_static_init() |
| { |
| int n; /* iterates over tree elements */ |
| int bits; /* bit counter */ |
| int length; /* length value */ |
| int code; /* code value */ |
| int dist; /* distance index */ |
| ush bl_count[MAX_BITS+1]; |
| /* number of codes at each bit length for an optimal tree */ |
| |
| /* Initialize the mapping length (0..255) -> length code (0..28) */ |
| length = 0; |
| for (code = 0; code < LENGTH_CODES-1; code++) { |
| base_length[code] = length; |
| for (n = 0; n < (1<<extra_lbits[code]); n++) { |
| length_code[length++] = (uch)code; |
| } |
| } |
| Assert (length == 256, "ct_static_init: length != 256"); |
| /* Note that the length 255 (match length 258) can be represented |
| * in two different ways: code 284 + 5 bits or code 285, so we |
| * overwrite length_code[255] to use the best encoding: |
| */ |
| length_code[length-1] = (uch)code; |
| |
| /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
| dist = 0; |
| for (code = 0 ; code < 16; code++) { |
| base_dist[code] = dist; |
| for (n = 0; n < (1<<extra_dbits[code]); n++) { |
| dist_code[dist++] = (uch)code; |
| } |
| } |
| Assert (dist == 256, "ct_static_init: dist != 256"); |
| dist >>= 7; /* from now on, all distances are divided by 128 */ |
| for ( ; code < D_CODES; code++) { |
| base_dist[code] = dist << 7; |
| for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { |
| dist_code[256 + dist++] = (uch)code; |
| } |
| } |
| Assert (dist == 256, "ct_static_init: 256+dist != 512"); |
| |
| /* Construct the codes of the static literal tree */ |
| for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
| n = 0; |
| while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
| while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
| while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
| while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
| /* Codes 286 and 287 do not exist, but we must include them in the |
| * tree construction to get a canonical Huffman tree (longest code |
| * all ones) |
| */ |
| gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
| |
| /* The static distance tree is trivial: */ |
| for (n = 0; n < D_CODES; n++) { |
| static_dtree[n].Len = 5; |
| static_dtree[n].Code = bi_reverse(n, 5); |
| } |
| } |
| |
| /* =========================================================================== |
| * Initialize the tree data structures for a new zlib stream. |
| */ |
| local void ct_init(s) |
| deflate_state *s; |
| { |
| if (static_dtree[0].Len == 0) { |
| ct_static_init(); /* To do: at compile time */ |
| } |
| |
| s->compressed_len = 0L; |
| |
| s->l_desc.dyn_tree = s->dyn_ltree; |
| s->l_desc.stat_desc = &static_l_desc; |
| |
| s->d_desc.dyn_tree = s->dyn_dtree; |
| s->d_desc.stat_desc = &static_d_desc; |
| |
| s->bl_desc.dyn_tree = s->bl_tree; |
| s->bl_desc.stat_desc = &static_bl_desc; |
| |
| s->bi_buf = 0; |
| s->bi_valid = 0; |
| s->last_eob_len = 8; /* enough lookahead for inflate */ |
| #ifdef DEBUG_ZLIB |
| s->bits_sent = 0L; |
| #endif |
| s->blocks_in_packet = 0; |
| |
| /* Initialize the first block of the first file: */ |
| init_block(s); |
| } |
| |
| /* =========================================================================== |
| * Initialize a new block. |
| */ |
| local void init_block(s) |
| deflate_state *s; |
| { |
| int n; /* iterates over tree elements */ |
| |
| /* Initialize the trees. */ |
| for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
| for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
| for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
| |
| s->dyn_ltree[END_BLOCK].Freq = 1; |
| s->opt_len = s->static_len = 0L; |
| s->last_lit = s->matches = 0; |
| } |
| |
| #define SMALLEST 1 |
| /* Index within the heap array of least frequent node in the Huffman tree */ |
| |
| |
| /* =========================================================================== |
| * Remove the smallest element from the heap and recreate the heap with |
| * one less element. Updates heap and heap_len. |
| */ |
| #define pqremove(s, tree, top) \ |
| {\ |
| top = s->heap[SMALLEST]; \ |
| s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
| pqdownheap(s, tree, SMALLEST); \ |
| } |
| |
| /* =========================================================================== |
| * Compares to subtrees, using the tree depth as tie breaker when |
| * the subtrees have equal frequency. This minimizes the worst case length. |
| */ |
| #define smaller(tree, n, m, depth) \ |
| (tree[n].Freq < tree[m].Freq || \ |
| (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
| |
| /* =========================================================================== |
| * Restore the heap property by moving down the tree starting at node k, |
| * exchanging a node with the smallest of its two sons if necessary, stopping |
| * when the heap property is re-established (each father smaller than its |
| * two sons). |
| */ |
| local void pqdownheap(s, tree, k) |
| deflate_state *s; |
| ct_data *tree; /* the tree to restore */ |
| int k; /* node to move down */ |
| { |
| int v = s->heap[k]; |
| int j = k << 1; /* left son of k */ |
| while (j <= s->heap_len) { |
| /* Set j to the smallest of the two sons: */ |
| if (j < s->heap_len && |
| smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
| j++; |
| } |
| /* Exit if v is smaller than both sons */ |
| if (smaller(tree, v, s->heap[j], s->depth)) break; |
| |
| /* Exchange v with the smallest son */ |
| s->heap[k] = s->heap[j]; k = j; |
| |
| /* And continue down the tree, setting j to the left son of k */ |
| j <<= 1; |
| } |
| s->heap[k] = v; |
| } |
| |
| /* =========================================================================== |
| * Compute the optimal bit lengths for a tree and update the total bit length |
| * for the current block. |
| * IN assertion: the fields freq and dad are set, heap[heap_max] and |
| * above are the tree nodes sorted by increasing frequency. |
| * OUT assertions: the field len is set to the optimal bit length, the |
| * array bl_count contains the frequencies for each bit length. |
| * The length opt_len is updated; static_len is also updated if stree is |
| * not null. |
| */ |
| local void gen_bitlen(s, desc) |
| deflate_state *s; |
| tree_desc *desc; /* the tree descriptor */ |
| { |
| ct_data *tree = desc->dyn_tree; |
| int max_code = desc->max_code; |
| ct_data *stree = desc->stat_desc->static_tree; |
| intf *extra = desc->stat_desc->extra_bits; |
| int base = desc->stat_desc->extra_base; |
| int max_length = desc->stat_desc->max_length; |
| int h; /* heap index */ |
| int n, m; /* iterate over the tree elements */ |
| int bits; /* bit length */ |
| int xbits; /* extra bits */ |
| ush f; /* frequency */ |
| int overflow = 0; /* number of elements with bit length too large */ |
| |
| for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
| |
| /* In a first pass, compute the optimal bit lengths (which may |
| * overflow in the case of the bit length tree). |
| */ |
| tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
| |
| for (h = s->heap_max+1; h < HEAP_SIZE; h++) { |
| n = s->heap[h]; |
| bits = tree[tree[n].Dad].Len + 1; |
| if (bits > max_length) bits = max_length, overflow++; |
| tree[n].Len = (ush)bits; |
| /* We overwrite tree[n].Dad which is no longer needed */ |
| |
| if (n > max_code) continue; /* not a leaf node */ |
| |
| s->bl_count[bits]++; |
| xbits = 0; |
| if (n >= base) xbits = extra[n-base]; |
| f = tree[n].Freq; |
| s->opt_len += (ulg)f * (bits + xbits); |
| if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); |
| } |
| if (overflow == 0) return; |
| |
| Trace((stderr,"\nbit length overflow\n")); |
| /* This happens for example on obj2 and pic of the Calgary corpus */ |
| |
| /* Find the first bit length which could increase: */ |
| do { |
| bits = max_length-1; |
| while (s->bl_count[bits] == 0) bits--; |
| s->bl_count[bits]--; /* move one leaf down the tree */ |
| s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ |
| s->bl_count[max_length]--; |
| /* The brother of the overflow item also moves one step up, |
| * but this does not affect bl_count[max_length] |
| */ |
| overflow -= 2; |
| } while (overflow > 0); |
| |
| /* Now recompute all bit lengths, scanning in increasing frequency. |
| * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
| * lengths instead of fixing only the wrong ones. This idea is taken |
| * from 'ar' written by Haruhiko Okumura.) |
| */ |
| for (bits = max_length; bits != 0; bits--) { |
| n = s->bl_count[bits]; |
| while (n != 0) { |
| m = s->heap[--h]; |
| if (m > max_code) continue; |
| if (tree[m].Len != (unsigned) bits) { |
| Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); |
| s->opt_len += ((long)bits - (long)tree[m].Len) |
| *(long)tree[m].Freq; |
| tree[m].Len = (ush)bits; |
| } |
| n--; |
| } |
| } |
| } |
| |
| /* =========================================================================== |
| * Generate the codes for a given tree and bit counts (which need not be |
| * optimal). |
| * IN assertion: the array bl_count contains the bit length statistics for |
| * the given tree and the field len is set for all tree elements. |
| * OUT assertion: the field code is set for all tree elements of non |
| * zero code length. |
| */ |
| local void gen_codes (tree, max_code, bl_count) |
| ct_data *tree; /* the tree to decorate */ |
| int max_code; /* largest code with non zero frequency */ |
| ushf *bl_count; /* number of codes at each bit length */ |
| { |
| ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
| ush code = 0; /* running code value */ |
| int bits; /* bit index */ |
| int n; /* code index */ |
| |
| /* The distribution counts are first used to generate the code values |
| * without bit reversal. |
| */ |
| for (bits = 1; bits <= MAX_BITS; bits++) { |
| next_code[bits] = code = (code + bl_count[bits-1]) << 1; |
| } |
| /* Check that the bit counts in bl_count are consistent. The last code |
| * must be all ones. |
| */ |
| Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
| "inconsistent bit counts"); |
| Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); |
| |
| for (n = 0; n <= max_code; n++) { |
| int len = tree[n].Len; |
| if (len == 0) continue; |
| /* Now reverse the bits */ |
| tree[n].Code = bi_reverse(next_code[len]++, len); |
| |
| Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", |
| n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
| } |
| } |
| |
| /* =========================================================================== |
| * Construct one Huffman tree and assigns the code bit strings and lengths. |
| * Update the total bit length for the current block. |
| * IN assertion: the field freq is set for all tree elements. |
| * OUT assertions: the fields len and code are set to the optimal bit length |
| * and corresponding code. The length opt_len is updated; static_len is |
| * also updated if stree is not null. The field max_code is set. |
| */ |
| local void build_tree(s, desc) |
| deflate_state *s; |
| tree_desc *desc; /* the tree descriptor */ |
| { |
| ct_data *tree = desc->dyn_tree; |
| ct_data *stree = desc->stat_desc->static_tree; |
| int elems = desc->stat_desc->elems; |
| int n, m; /* iterate over heap elements */ |
| int max_code = -1; /* largest code with non zero frequency */ |
| int node; /* new node being created */ |
| |
| /* Construct the initial heap, with least frequent element in |
| * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
| * heap[0] is not used. |
| */ |
| s->heap_len = 0, s->heap_max = HEAP_SIZE; |
| |
| for (n = 0; n < elems; n++) { |
| if (tree[n].Freq != 0) { |
| s->heap[++(s->heap_len)] = max_code = n; |
| s->depth[n] = 0; |
| } else { |
| tree[n].Len = 0; |
| } |
| } |
| |
| /* The pkzip format requires that at least one distance code exists, |
| * and that at least one bit should be sent even if there is only one |
| * possible code. So to avoid special checks later on we force at least |
| * two codes of non zero frequency. |
| */ |
| while (s->heap_len < 2) { |
| node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
| tree[node].Freq = 1; |
| s->depth[node] = 0; |
| s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
| /* node is 0 or 1 so it does not have extra bits */ |
| } |
| desc->max_code = max_code; |
| |
| /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
| * establish sub-heaps of increasing lengths: |
| */ |
| for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
| |
| /* Construct the Huffman tree by repeatedly combining the least two |
| * frequent nodes. |
| */ |
| node = elems; /* next internal node of the tree */ |
| do { |
| pqremove(s, tree, n); /* n = node of least frequency */ |
| m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
| |
| s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
| s->heap[--(s->heap_max)] = m; |
| |
| /* Create a new node father of n and m */ |
| tree[node].Freq = tree[n].Freq + tree[m].Freq; |
| s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1); |
| tree[n].Dad = tree[m].Dad = (ush)node; |
| #ifdef DUMP_BL_TREE |
| if (tree == s->bl_tree) { |
| fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", |
| node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
| } |
| #endif |
| /* and insert the new node in the heap */ |
| s->heap[SMALLEST] = node++; |
| pqdownheap(s, tree, SMALLEST); |
| |
| } while (s->heap_len >= 2); |
| |
| s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
| |
| /* At this point, the fields freq and dad are set. We can now |
| * generate the bit lengths. |
| */ |
| gen_bitlen(s, (tree_desc *)desc); |
| |
| /* The field len is now set, we can generate the bit codes */ |
| gen_codes ((ct_data *)tree, max_code, s->bl_count); |
| } |
| |
| /* =========================================================================== |
| * Scan a literal or distance tree to determine the frequencies of the codes |
| * in the bit length tree. |
| */ |
| local void scan_tree (s, tree, max_code) |
| deflate_state *s; |
| ct_data *tree; /* the tree to be scanned */ |
| int max_code; /* and its largest code of non zero frequency */ |
| { |
| int n; /* iterates over all tree elements */ |
| int prevlen = -1; /* last emitted length */ |
| int curlen; /* length of current code */ |
| int nextlen = tree[0].Len; /* length of next code */ |
| int count = 0; /* repeat count of the current code */ |
| int max_count = 7; /* max repeat count */ |
| int min_count = 4; /* min repeat count */ |
| |
| if (nextlen == 0) max_count = 138, min_count = 3; |
| tree[max_code+1].Len = (ush)0xffff; /* guard */ |
| |
| for (n = 0; n <= max_code; n++) { |
| curlen = nextlen; nextlen = tree[n+1].Len; |
| if (++count < max_count && curlen == nextlen) { |
| continue; |
| } else if (count < min_count) { |
| s->bl_tree[curlen].Freq += count; |
| } else if (curlen != 0) { |
| if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
| s->bl_tree[REP_3_6].Freq++; |
| } else if (count <= 10) { |
| s->bl_tree[REPZ_3_10].Freq++; |
| } else { |
| s->bl_tree[REPZ_11_138].Freq++; |
| } |
| count = 0; prevlen = curlen; |
| if (nextlen == 0) { |
| max_count = 138, min_count = 3; |
| } else if (curlen == nextlen) { |
| max_count = 6, min_count = 3; |
| } else { |
| max_count = 7, min_count = 4; |
| } |
| } |
| } |
| |
| /* =========================================================================== |
| * Send a literal or distance tree in compressed form, using the codes in |
| * bl_tree. |
| */ |
| local void send_tree (s, tree, max_code) |
| deflate_state *s; |
| ct_data *tree; /* the tree to be scanned */ |
| int max_code; /* and its largest code of non zero frequency */ |
| { |
| int n; /* iterates over all tree elements */ |
| int prevlen = -1; /* last emitted length */ |
| int curlen; /* length of current code */ |
| int nextlen = tree[0].Len; /* length of next code */ |
| int count = 0; /* repeat count of the current code */ |
| int max_count = 7; /* max repeat count */ |
| int min_count = 4; /* min repeat count */ |
| |
| /* tree[max_code+1].Len = -1; */ /* guard already set */ |
| if (nextlen == 0) max_count = 138, min_count = 3; |
| |
| for (n = 0; n <= max_code; n++) { |
| curlen = nextlen; nextlen = tree[n+1].Len; |
| if (++count < max_count && curlen == nextlen) { |
| continue; |
| } else if (count < min_count) { |
| do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
| |
| } else if (curlen != 0) { |
| if (curlen != prevlen) { |
| send_code(s, curlen, s->bl_tree); count--; |
| } |
| Assert(count >= 3 && count <= 6, " 3_6?"); |
| send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); |
| |
| } else if (count <= 10) { |
| send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); |
| |
| } else { |
| send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); |
| } |
| count = 0; prevlen = curlen; |
| if (nextlen == 0) { |
| max_count = 138, min_count = 3; |
| } else if (curlen == nextlen) { |
| max_count = 6, min_count = 3; |
| } else { |
| max_count = 7, min_count = 4; |
| } |
| } |
| } |
| |
| /* =========================================================================== |
| * Construct the Huffman tree for the bit lengths and return the index in |
| * bl_order of the last bit length code to send. |
| */ |
| local int build_bl_tree(s) |
| deflate_state *s; |
| { |
| int max_blindex; /* index of last bit length code of non zero freq */ |
| |
| /* Determine the bit length frequencies for literal and distance trees */ |
| scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
| scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
| |
| /* Build the bit length tree: */ |
| build_tree(s, (tree_desc *)(&(s->bl_desc))); |
| /* opt_len now includes the length of the tree representations, except |
| * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
| */ |
| |
| /* Determine the number of bit length codes to send. The pkzip format |
| * requires that at least 4 bit length codes be sent. (appnote.txt says |
| * 3 but the actual value used is 4.) |
| */ |
| for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
| if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
| } |
| /* Update opt_len to include the bit length tree and counts */ |
| s->opt_len += 3*(max_blindex+1) + 5+5+4; |
| Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", |
| s->opt_len, s->static_len)); |
| |
| return max_blindex; |
| } |
| |
| /* =========================================================================== |
| * Send the header for a block using dynamic Huffman trees: the counts, the |
| * lengths of the bit length codes, the literal tree and the distance tree. |
| * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
| */ |
| local void send_all_trees(s, lcodes, dcodes, blcodes) |
| deflate_state *s; |
| int lcodes, dcodes, blcodes; /* number of codes for each tree */ |
| { |
| int rank; /* index in bl_order */ |
| |
| Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); |
| Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
| "too many codes"); |
| Tracev((stderr, "\nbl counts: ")); |
| send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ |
| send_bits(s, dcodes-1, 5); |
| send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ |
| for (rank = 0; rank < blcodes; rank++) { |
| Tracev((stderr, "\nbl code %2d ", bl_order[rank])); |
| send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
| } |
| Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); |
| |
| send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
| Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); |
| |
| send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
| Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); |
| } |
| |
| /* =========================================================================== |
| * Send a stored block |
| */ |
| local void ct_stored_block(s, buf, stored_len, eof) |
| deflate_state *s; |
| charf *buf; /* input block */ |
| ulg stored_len; /* length of input block */ |
| int eof; /* true if this is the last block for a file */ |
| { |
| send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ |
| s->compressed_len = (s->compressed_len + 3 + 7) & ~7L; |
| s->compressed_len += (stored_len + 4) << 3; |
| |
| copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ |
| } |
| |
| /* Send just the `stored block' type code without any length bytes or data. |
| */ |
| local void ct_stored_type_only(s) |
| deflate_state *s; |
| { |
| send_bits(s, (STORED_BLOCK << 1), 3); |
| bi_windup(s); |
| s->compressed_len = (s->compressed_len + 3) & ~7L; |
| } |
| |
| |
| /* =========================================================================== |
| * Send one empty static block to give enough lookahead for inflate. |
| * This takes 10 bits, of which 7 may remain in the bit buffer. |
| * The current inflate code requires 9 bits of lookahead. If the EOB |
| * code for the previous block was coded on 5 bits or less, inflate |
| * may have only 5+3 bits of lookahead to decode this EOB. |
| * (There are no problems if the previous block is stored or fixed.) |
| */ |
| local void ct_align(s) |
| deflate_state *s; |
| { |
| send_bits(s, STATIC_TREES<<1, 3); |
| send_code(s, END_BLOCK, static_ltree); |
| s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
| bi_flush(s); |
| /* Of the 10 bits for the empty block, we have already sent |
| * (10 - bi_valid) bits. The lookahead for the EOB of the previous |
| * block was thus its length plus what we have just sent. |
| */ |
| if (s->last_eob_len + 10 - s->bi_valid < 9) { |
| send_bits(s, STATIC_TREES<<1, 3); |
| send_code(s, END_BLOCK, static_ltree); |
| s->compressed_len += 10L; |
| bi_flush(s); |
| } |
| s->last_eob_len = 7; |
| } |
| |
| /* =========================================================================== |
| * Determine the best encoding for the current block: dynamic trees, static |
| * trees or store, and output the encoded block to the zip file. This function |
| * returns the total compressed length for the file so far. |
| */ |
| local ulg ct_flush_block(s, buf, stored_len, flush) |
| deflate_state *s; |
| charf *buf; /* input block, or NULL if too old */ |
| ulg stored_len; /* length of input block */ |
| int flush; /* Z_FINISH if this is the last block for a file */ |
| { |
| ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
| int max_blindex; /* index of last bit length code of non zero freq */ |
| int eof = flush == Z_FINISH; |
| |
| ++s->blocks_in_packet; |
| |
| /* Check if the file is ascii or binary */ |
| if (s->data_type == UNKNOWN) set_data_type(s); |
| |
| /* Construct the literal and distance trees */ |
| build_tree(s, (tree_desc *)(&(s->l_desc))); |
| Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, |
| s->static_len)); |
| |
| build_tree(s, (tree_desc *)(&(s->d_desc))); |
| Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, |
| s->static_len)); |
| /* At this point, opt_len and static_len are the total bit lengths of |
| * the compressed block data, excluding the tree representations. |
| */ |
| |
| /* Build the bit length tree for the above two trees, and get the index |
| * in bl_order of the last bit length code to send. |
| */ |
| max_blindex = build_bl_tree(s); |
| |
| /* Determine the best encoding. Compute first the block length in bytes */ |
| opt_lenb = (s->opt_len+3+7)>>3; |
| static_lenb = (s->static_len+3+7)>>3; |
| |
| Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", |
| opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
| s->last_lit)); |
| |
| if (static_lenb <= opt_lenb) opt_lenb = static_lenb; |
| |
| /* If compression failed and this is the first and last block, |
| * and if the .zip file can be seeked (to rewrite the local header), |
| * the whole file is transformed into a stored file: |
| */ |
| #ifdef STORED_FILE_OK |
| # ifdef FORCE_STORED_FILE |
| if (eof && compressed_len == 0L) /* force stored file */ |
| # else |
| if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) |
| # endif |
| { |
| /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ |
| if (buf == (charf*)0) error ("block vanished"); |
| |
| copy_block(buf, (unsigned)stored_len, 0); /* without header */ |
| s->compressed_len = stored_len << 3; |
| s->method = STORED; |
| } else |
| #endif /* STORED_FILE_OK */ |
| |
| /* For Z_PACKET_FLUSH, if we don't achieve the required minimum |
| * compression, and this block contains all the data since the last |
| * time we used Z_PACKET_FLUSH, then just omit this block completely |
| * from the output. |
| */ |
| if (flush == Z_PACKET_FLUSH && s->blocks_in_packet == 1 |
| && opt_lenb > stored_len - s->minCompr) { |
| s->blocks_in_packet = 0; |
| /* output nothing */ |
| } else |
| |
| #ifdef FORCE_STORED |
| if (buf != (char*)0) /* force stored block */ |
| #else |
| if (stored_len+4 <= opt_lenb && buf != (char*)0) |
| /* 4: two words for the lengths */ |
| #endif |
| { |
| /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
| * Otherwise we can't have processed more than WSIZE input bytes since |
| * the last block flush, because compression would have been |
| * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
| * transform a block into a stored block. |
| */ |
| ct_stored_block(s, buf, stored_len, eof); |
| } else |
| |
| #ifdef FORCE_STATIC |
| if (static_lenb >= 0) /* force static trees */ |
| #else |
| if (static_lenb == opt_lenb) |
| #endif |
| { |
| send_bits(s, (STATIC_TREES<<1)+eof, 3); |
| compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); |
| s->compressed_len += 3 + s->static_len; |
| } else { |
| send_bits(s, (DYN_TREES<<1)+eof, 3); |
| send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, |
| max_blindex+1); |
| compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); |
| s->compressed_len += 3 + s->opt_len; |
| } |
| Assert (s->compressed_len == s->bits_sent, "bad compressed size"); |
| init_block(s); |
| |
| if (eof) { |
| bi_windup(s); |
| s->compressed_len += 7; /* align on byte boundary */ |
| } |
| Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, |
| s->compressed_len-7*eof)); |
| |
| return s->compressed_len >> 3; |
| } |
| |
| /* =========================================================================== |
| * Save the match info and tally the frequency counts. Return true if |
| * the current block must be flushed. |
| */ |
| local int ct_tally (s, dist, lc) |
| deflate_state *s; |
| int dist; /* distance of matched string */ |
| int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ |
| { |
| s->d_buf[s->last_lit] = (ush)dist; |
| s->l_buf[s->last_lit++] = (uch)lc; |
| if (dist == 0) { |
| /* lc is the unmatched char */ |
| s->dyn_ltree[lc].Freq++; |
| } else { |
| s->matches++; |
| /* Here, lc is the match length - MIN_MATCH */ |
| dist--; /* dist = match distance - 1 */ |
| Assert((ush)dist < (ush)MAX_DIST(s) && |
| (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
| (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match"); |
| |
| s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; |
| s->dyn_dtree[d_code(dist)].Freq++; |
| } |
| |
| /* Try to guess if it is profitable to stop the current block here */ |
| if (s->level > 2 && (s->last_lit & 0xfff) == 0) { |
| /* Compute an upper bound for the compressed length */ |
| ulg out_length = (ulg)s->last_lit*8L; |
| ulg in_length = (ulg)s->strstart - s->block_start; |
| int dcode; |
| for (dcode = 0; dcode < D_CODES; dcode++) { |
| out_length += (ulg)s->dyn_dtree[dcode].Freq * |
| (5L+extra_dbits[dcode]); |
| } |
| out_length >>= 3; |
| Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", |
| s->last_lit, in_length, out_length, |
| 100L - out_length*100L/in_length)); |
| if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; |
| } |
| return (s->last_lit == s->lit_bufsize-1); |
| /* We avoid equality with lit_bufsize because of wraparound at 64K |
| * on 16 bit machines and because stored blocks are restricted to |
| * 64K-1 bytes. |
| */ |
| } |
| |
| /* =========================================================================== |
| * Send the block data compressed using the given Huffman trees |
| */ |
| local void compress_block(s, ltree, dtree) |
| deflate_state *s; |
| ct_data *ltree; /* literal tree */ |
| ct_data *dtree; /* distance tree */ |
| { |
| unsigned dist; /* distance of matched string */ |
| int lc; /* match length or unmatched char (if dist == 0) */ |
| unsigned lx = 0; /* running index in l_buf */ |
| unsigned code; /* the code to send */ |
| int extra; /* number of extra bits to send */ |
| |
| if (s->last_lit != 0) do { |
| dist = s->d_buf[lx]; |
| lc = s->l_buf[lx++]; |
| if (dist == 0) { |
| send_code(s, lc, ltree); /* send a literal byte */ |
| Tracecv(isgraph(lc), (stderr," '%c' ", lc)); |
| } else { |
| /* Here, lc is the match length - MIN_MATCH */ |
| code = length_code[lc]; |
| send_code(s, code+LITERALS+1, ltree); /* send the length code */ |
| extra = extra_lbits[code]; |
| if (extra != 0) { |
| lc -= base_length[code]; |
| send_bits(s, lc, extra); /* send the extra length bits */ |
| } |
| dist--; /* dist is now the match distance - 1 */ |
| code = d_code(dist); |
| Assert (code < D_CODES, "bad d_code"); |
| |
| send_code(s, code, dtree); /* send the distance code */ |
| extra = extra_dbits[code]; |
| if (extra != 0) { |
| dist -= base_dist[code]; |
| send_bits(s, dist, extra); /* send the extra distance bits */ |
| } |
| } /* literal or match pair ? */ |
| |
| /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ |
| Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); |
| |
| } while (lx < s->last_lit); |
| |
| send_code(s, END_BLOCK, ltree); |
| s->last_eob_len = ltree[END_BLOCK].Len; |
| } |
| |
| /* =========================================================================== |
| * Set the data type to ASCII or BINARY, using a crude approximation: |
| * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. |
| * IN assertion: the fields freq of dyn_ltree are set and the total of all |
| * frequencies does not exceed 64K (to fit in an int on 16 bit machines). |
| */ |
| local void set_data_type(s) |
| deflate_state *s; |
| { |
| int n = 0; |
| unsigned ascii_freq = 0; |
| unsigned bin_freq = 0; |
| while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; |
| while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; |
| while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; |
| s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII); |
| } |
| |
| /* =========================================================================== |
| * Reverse the first len bits of a code, using straightforward code (a faster |
| * method would use a table) |
| * IN assertion: 1 <= len <= 15 |
| */ |
| local unsigned bi_reverse(code, len) |
| unsigned code; /* the value to invert */ |
| int len; /* its bit length */ |
| { |
| register unsigned res = 0; |
| do { |
| res |= code & 1; |
| code >>= 1, res <<= 1; |
| } while (--len > 0); |
| return res >> 1; |
| } |
| |
| /* =========================================================================== |
| * Flush the bit buffer, keeping at most 7 bits in it. |
| */ |
| local void bi_flush(s) |
| deflate_state *s; |
| { |
| if (s->bi_valid == 16) { |
| put_short(s, s->bi_buf); |
| s->bi_buf = 0; |
| s->bi_valid = 0; |
| } else if (s->bi_valid >= 8) { |
| put_byte(s, (Byte)s->bi_buf); |
| s->bi_buf >>= 8; |
| s->bi_valid -= 8; |
| } |
| } |
| |
| /* =========================================================================== |
| * Flush the bit buffer and align the output on a byte boundary |
| */ |
| local void bi_windup(s) |
| deflate_state *s; |
| { |
| if (s->bi_valid > 8) { |
| put_short(s, s->bi_buf); |
| } else if (s->bi_valid > 0) { |
| put_byte(s, (Byte)s->bi_buf); |
| } |
| s->bi_buf = 0; |
| s->bi_valid = 0; |
| #ifdef DEBUG_ZLIB |
| s->bits_sent = (s->bits_sent+7) & ~7; |
| #endif |
| } |
| |
| /* =========================================================================== |
| * Copy a stored block, storing first the length and its |
| * one's complement if requested. |
| */ |
| local void copy_block(s, buf, len, header) |
| deflate_state *s; |
| charf *buf; /* the input data */ |
| unsigned len; /* its length */ |
| int header; /* true if block header must be written */ |
| { |
| bi_windup(s); /* align on byte boundary */ |
| s->last_eob_len = 8; /* enough lookahead for inflate */ |
| |
| if (header) { |
| put_short(s, (ush)len); |
| put_short(s, (ush)~len); |
| #ifdef DEBUG_ZLIB |
| s->bits_sent += 2*16; |
| #endif |
| } |
| #ifdef DEBUG_ZLIB |
| s->bits_sent += (ulg)len<<3; |
| #endif |
| while (len--) { |
| put_byte(s, *buf++); |
| } |
| } |
| |
| |
| /*+++++*/ |
| /* infblock.h -- header to use infblock.c |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* WARNING: this file should *not* be used by applications. It is |
| part of the implementation of the compression library and is |
| subject to change. Applications should only use zlib.h. |
| */ |
| |
| struct inflate_blocks_state; |
| typedef struct inflate_blocks_state FAR inflate_blocks_statef; |
| |
| local inflate_blocks_statef * inflate_blocks_new OF(( |
| z_stream *z, |
| check_func c, /* check function */ |
| uInt w)); /* window size */ |
| |
| local int inflate_blocks OF(( |
| inflate_blocks_statef *, |
| z_stream *, |
| int)); /* initial return code */ |
| |
| local void inflate_blocks_reset OF(( |
| inflate_blocks_statef *, |
| z_stream *, |
| uLongf *)); /* check value on output */ |
| |
| local int inflate_blocks_free OF(( |
| inflate_blocks_statef *, |
| z_stream *, |
| uLongf *)); /* check value on output */ |
| |
| local int inflate_addhistory OF(( |
| inflate_blocks_statef *, |
| z_stream *)); |
| |
| local int inflate_packet_flush OF(( |
| inflate_blocks_statef *)); |
| |
| /*+++++*/ |
| /* inftrees.h -- header to use inftrees.c |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* WARNING: this file should *not* be used by applications. It is |
| part of the implementation of the compression library and is |
| subject to change. Applications should only use zlib.h. |
| */ |
| |
| /* Huffman code lookup table entry--this entry is four bytes for machines |
| that have 16-bit pointers (e.g. PC's in the small or medium model). */ |
| |
| typedef struct inflate_huft_s FAR inflate_huft; |
| |
| struct inflate_huft_s { |
| union { |
| struct { |
| Byte Exop; /* number of extra bits or operation */ |
| Byte Bits; /* number of bits in this code or subcode */ |
| } what; |
| uInt Nalloc; /* number of these allocated here */ |
| Bytef *pad; /* pad structure to a power of 2 (4 bytes for */ |
| } word; /* 16-bit, 8 bytes for 32-bit machines) */ |
| union { |
| uInt Base; /* literal, length base, or distance base */ |
| inflate_huft *Next; /* pointer to next level of table */ |
| } more; |
| }; |
| |
| #ifdef DEBUG_ZLIB |
| local uInt inflate_hufts; |
| #endif |
| |
| local int inflate_trees_bits OF(( |
| uIntf *, /* 19 code lengths */ |
| uIntf *, /* bits tree desired/actual depth */ |
| inflate_huft * FAR *, /* bits tree result */ |
| z_stream *)); /* for zalloc, zfree functions */ |
| |
| local int inflate_trees_dynamic OF(( |
| uInt, /* number of literal/length codes */ |
| uInt, /* number of distance codes */ |
| uIntf *, /* that many (total) code lengths */ |
| uIntf *, /* literal desired/actual bit depth */ |
| uIntf *, /* distance desired/actual bit depth */ |
| inflate_huft * FAR *, /* literal/length tree result */ |
| inflate_huft * FAR *, /* distance tree result */ |
| z_stream *)); /* for zalloc, zfree functions */ |
| |
| local int inflate_trees_fixed OF(( |
| uIntf *, /* literal desired/actual bit depth */ |
| uIntf *, /* distance desired/actual bit depth */ |
| inflate_huft * FAR *, /* literal/length tree result */ |
| inflate_huft * FAR *)); /* distance tree result */ |
| |
| local int inflate_trees_free OF(( |
| inflate_huft *, /* tables to free */ |
| z_stream *)); /* for zfree function */ |
| |
| |
| /*+++++*/ |
| /* infcodes.h -- header to use infcodes.c |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* WARNING: this file should *not* be used by applications. It is |
| part of the implementation of the compression library and is |
| subject to change. Applications should only use zlib.h. |
| */ |
| |
| struct inflate_codes_state; |
| typedef struct inflate_codes_state FAR inflate_codes_statef; |
| |
| local inflate_codes_statef *inflate_codes_new OF(( |
| uInt, uInt, |
| inflate_huft *, inflate_huft *, |
| z_stream *)); |
| |
| local int inflate_codes OF(( |
| inflate_blocks_statef *, |
| z_stream *, |
| int)); |
| |
| local void inflate_codes_free OF(( |
| inflate_codes_statef *, |
| z_stream *)); |
| |
| |
| /*+++++*/ |
| /* inflate.c -- zlib interface to inflate modules |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* inflate private state */ |
| struct internal_state { |
| |
| /* mode */ |
| enum { |
| METHOD, /* waiting for method byte */ |
| FLAG, /* waiting for flag byte */ |
| BLOCKS, /* decompressing blocks */ |
| CHECK4, /* four check bytes to go */ |
| CHECK3, /* three check bytes to go */ |
| CHECK2, /* two check bytes to go */ |
| CHECK1, /* one check byte to go */ |
| DONE, /* finished check, done */ |
| BAD} /* got an error--stay here */ |
| mode; /* current inflate mode */ |
| |
| /* mode dependent information */ |
| union { |
| uInt method; /* if FLAGS, method byte */ |
| struct { |
| uLong was; /* computed check value */ |
| uLong need; /* stream check value */ |
| } check; /* if CHECK, check values to compare */ |
| uInt marker; /* if BAD, inflateSync's marker bytes count */ |
| } sub; /* submode */ |
| |
| /* mode independent information */ |
| int nowrap; /* flag for no wrapper */ |
| uInt wbits; /* log2(window size) (8..15, defaults to 15) */ |
| inflate_blocks_statef |
| *blocks; /* current inflate_blocks state */ |
| |
| }; |
| |
| |
| int inflateReset(z) |
| z_stream *z; |
| { |
| uLong c; |
| |
| if (z == Z_NULL || z->state == Z_NULL) |
| return Z_STREAM_ERROR; |
| z->total_in = z->total_out = 0; |
| z->msg = Z_NULL; |
| z->state->mode = z->state->nowrap ? BLOCKS : METHOD; |
| inflate_blocks_reset(z->state->blocks, z, &c); |
| Trace((stderr, "inflate: reset\n")); |
| return Z_OK; |
| } |
| |
| |
| int inflateEnd(z) |
| z_stream *z; |
| { |
| uLong c; |
| |
| if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL) |
| return Z_STREAM_ERROR; |
| if (z->state->blocks != Z_NULL) |
| inflate_blocks_free(z->state->blocks, z, &c); |
| ZFREE(z, z->state, sizeof(struct internal_state)); |
| z->state = Z_NULL; |
| Trace((stderr, "inflate: end\n")); |
| return Z_OK; |
| } |
| |
| |
| int inflateInit2(z, w) |
| z_stream *z; |
| int w; |
| { |
| /* initialize state */ |
| if (z == Z_NULL) |
| return Z_STREAM_ERROR; |
| /* if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */ |
| /* if (z->zfree == Z_NULL) z->zfree = zcfree; */ |
| if ((z->state = (struct internal_state FAR *) |
| ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL) |
| return Z_MEM_ERROR; |
| z->state->blocks = Z_NULL; |
| |
| /* handle undocumented nowrap option (no zlib header or check) */ |
| z->state->nowrap = 0; |
| if (w < 0) |
| { |
| w = - w; |
| z->state->nowrap = 1; |
| } |
| |
| /* set window size */ |
| if (w < 8 || w > 15) |
| { |
| inflateEnd(z); |
| return Z_STREAM_ERROR; |
| } |
| z->state->wbits = (uInt)w; |
| |
| /* create inflate_blocks state */ |
| if ((z->state->blocks = |
| inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w)) |
| == Z_NULL) |
| { |
| inflateEnd(z); |
| return Z_MEM_ERROR; |
| } |
| Trace((stderr, "inflate: allocated\n")); |
| |
| /* reset state */ |
| inflateReset(z); |
| return Z_OK; |
| } |
| |
| |
| int inflateInit(z) |
| z_stream *z; |
| { |
| return inflateInit2(z, DEF_WBITS); |
| } |
| |
| |
| #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;} |
| #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++) |
| |
| int inflate(z, f) |
| z_stream *z; |
| int f; |
| { |
| int r; |
| uInt b; |
| |
| if (z == Z_NULL || z->next_in == Z_NULL) |
| return Z_STREAM_ERROR; |
| r = Z_BUF_ERROR; |
| while (1) switch (z->state->mode) |
| { |
| case METHOD: |
| NEEDBYTE |
| if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED) |
| { |
| z->state->mode = BAD; |
| z->msg = "unknown compression method"; |
| z->state->sub.marker = 5; /* can't try inflateSync */ |
| break; |
| } |
| if ((z->state->sub.method >> 4) + 8 > z->state->wbits) |
| { |
| z->state->mode = BAD; |
| z->msg = "invalid window size"; |
| z->state->sub.marker = 5; /* can't try inflateSync */ |
| break; |
| } |
| z->state->mode = FLAG; |
| case FLAG: |
| NEEDBYTE |
| if ((b = NEXTBYTE) & 0x20) |
| { |
| z->state->mode = BAD; |
| z->msg = "invalid reserved bit"; |
| z->state->sub.marker = 5; /* can't try inflateSync */ |
| break; |
| } |
| if (((z->state->sub.method << 8) + b) % 31) |
| { |
| z->state->mode = BAD; |
| z->msg = "incorrect header check"; |
| z->state->sub.marker = 5; /* can't try inflateSync */ |
| break; |
| } |
| Trace((stderr, "inflate: zlib header ok\n")); |
| z->state->mode = BLOCKS; |
| case BLOCKS: |
| r = inflate_blocks(z->state->blocks, z, r); |
| if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0) |
| r = inflate_packet_flush(z->state->blocks); |
| if (r == Z_DATA_ERROR) |
| { |
| z->state->mode = BAD; |
| z->state->sub.marker = 0; /* can try inflateSync */ |
| break; |
| } |
| if (r != Z_STREAM_END) |
| return r; |
| r = Z_OK; |
| inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was); |
| if (z->state->nowrap) |
| { |
| z->state->mode = DONE; |
| break; |
| } |
| z->state->mode = CHECK4; |
| case CHECK4: |
| NEEDBYTE |
| z->state->sub.check.need = (uLong)NEXTBYTE << 24; |
| z->state->mode = CHECK3; |
| case CHECK3: |
| NEEDBYTE |
| z->state->sub.check.need += (uLong)NEXTBYTE << 16; |
| z->state->mode = CHECK2; |
| case CHECK2: |
| NEEDBYTE |
| z->state->sub.check.need += (uLong)NEXTBYTE << 8; |
| z->state->mode = CHECK1; |
| case CHECK1: |
| NEEDBYTE |
| z->state->sub.check.need += (uLong)NEXTBYTE; |
| |
| if (z->state->sub.check.was != z->state->sub.check.need) |
| { |
| z->state->mode = BAD; |
| z->msg = "incorrect data check"; |
| z->state->sub.marker = 5; /* can't try inflateSync */ |
| break; |
| } |
| Trace((stderr, "inflate: zlib check ok\n")); |
| z->state->mode = DONE; |
| case DONE: |
| return Z_STREAM_END; |
| case BAD: |
| return Z_DATA_ERROR; |
| default: |
| return Z_STREAM_ERROR; |
| } |
| |
| empty: |
| if (f != Z_PACKET_FLUSH) |
| return r; |
| z->state->mode = BAD; |
| z->state->sub.marker = 0; /* can try inflateSync */ |
| return Z_DATA_ERROR; |
| } |
| |
| /* |
| * This subroutine adds the data at next_in/avail_in to the output history |
| * without performing any output. The output buffer must be "caught up"; |
| * i.e. no pending output (hence s->read equals s->write), and the state must |
| * be BLOCKS (i.e. we should be willing to see the start of a series of |
| * BLOCKS). On exit, the output will also be caught up, and the checksum |
| * will have been updated if need be. |
| */ |
| |
| int inflateIncomp(z) |
| z_stream *z; |
| { |
| if (z->state->mode != BLOCKS) |
| return Z_DATA_ERROR; |
| return inflate_addhistory(z->state->blocks, z); |
| } |
| |
| |
| int inflateSync(z) |
| z_stream *z; |
| { |
| uInt n; /* number of bytes to look at */ |
| Bytef *p; /* pointer to bytes */ |
| uInt m; /* number of marker bytes found in a row */ |
| uLong r, w; /* temporaries to save total_in and total_out */ |
| |
| /* set up */ |
| if (z == Z_NULL || z->state == Z_NULL) |
| return Z_STREAM_ERROR; |
| if (z->state->mode != BAD) |
| { |
| z->state->mode = BAD; |
| z->state->sub.marker = 0; |
| } |
| if ((n = z->avail_in) == 0) |
| return Z_BUF_ERROR; |
| p = z->next_in; |
| m = z->state->sub.marker; |
| |
| /* search */ |
| while (n && m < 4) |
| { |
| if (*p == (Byte)(m < 2 ? 0 : 0xff)) |
| m++; |
| else if (*p) |
| m = 0; |
| else |
| m = 4 - m; |
| p++, n--; |
| } |
| |
| /* restore */ |
| z->total_in += p - z->next_in; |
| z->next_in = p; |
| z->avail_in = n; |
| z->state->sub.marker = m; |
| |
| /* return no joy or set up to restart on a new block */ |
| if (m != 4) |
| return Z_DATA_ERROR; |
| r = z->total_in; w = z->total_out; |
| inflateReset(z); |
| z->total_in = r; z->total_out = w; |
| z->state->mode = BLOCKS; |
| return Z_OK; |
| } |
| |
| #undef NEEDBYTE |
| #undef NEXTBYTE |
| |
| /*+++++*/ |
| /* infutil.h -- types and macros common to blocks and codes |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* WARNING: this file should *not* be used by applications. It is |
| part of the implementation of the compression library and is |
| subject to change. Applications should only use zlib.h. |
| */ |
| |
| /* inflate blocks semi-private state */ |
| struct inflate_blocks_state { |
| |
| /* mode */ |
| enum { |
| TYPE, /* get type bits (3, including end bit) */ |
| LENS, /* get lengths for stored */ |
| STORED, /* processing stored block */ |
| TABLE, /* get table lengths */ |
| BTREE, /* get bit lengths tree for a dynamic block */ |
| DTREE, /* get length, distance trees for a dynamic block */ |
| CODES, /* processing fixed or dynamic block */ |
| DRY, /* output remaining window bytes */ |
| DONEB, /* finished last block, done */ |
| BADB} /* got a data error--stuck here */ |
| mode; /* current inflate_block mode */ |
| |
| /* mode dependent information */ |
| union { |
| uInt left; /* if STORED, bytes left to copy */ |
| struct { |
| uInt table; /* table lengths (14 bits) */ |
| uInt index; /* index into blens (or border) */ |
| uIntf *blens; /* bit lengths of codes */ |
| uInt bb; /* bit length tree depth */ |
| inflate_huft *tb; /* bit length decoding tree */ |
| int nblens; /* # elements allocated at blens */ |
| } trees; /* if DTREE, decoding info for trees */ |
| struct { |
| inflate_huft *tl, *td; /* trees to free */ |
| inflate_codes_statef |
| *codes; |
| } decode; /* if CODES, current state */ |
| } sub; /* submode */ |
| uInt last; /* true if this block is the last block */ |
| |
| /* mode independent information */ |
| uInt bitk; /* bits in bit buffer */ |
| uLong bitb; /* bit buffer */ |
| Bytef *window; /* sliding window */ |
| Bytef *end; /* one byte after sliding window */ |
| Bytef *read; /* window read pointer */ |
| Bytef *write; /* window write pointer */ |
| check_func checkfn; /* check function */ |
| uLong check; /* check on output */ |
| |
| }; |
| |
| |
| /* defines for inflate input/output */ |
| /* update pointers and return */ |
| #define UPDBITS {s->bitb=b;s->bitk=k;} |
| #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;} |
| #define UPDOUT {s->write=q;} |
| #define UPDATE {UPDBITS UPDIN UPDOUT} |
| #define LEAVE {UPDATE return inflate_flush(s,z,r);} |
| /* get bytes and bits */ |
| #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;} |
| #define NEEDBYTE {if(n)r=Z_OK;else LEAVE} |
| #define NEXTBYTE (n--,*p++) |
| #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}} |
| #define DUMPBITS(j) {b>>=(j);k-=(j);} |
| /* output bytes */ |
| #define WAVAIL (q<s->read?s->read-q-1:s->end-q) |
| #define LOADOUT {q=s->write;m=WAVAIL;} |
| #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}} |
| #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT} |
| #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;} |
| #define OUTBYTE(a) {*q++=(Byte)(a);m--;} |
| /* load local pointers */ |
| #define LOAD {LOADIN LOADOUT} |
| |
| /* And'ing with mask[n] masks the lower n bits */ |
| local uInt inflate_mask[] = { |
| 0x0000, |
| 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, |
| 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff |
| }; |
| |
| /* copy as much as possible from the sliding window to the output area */ |
| local int inflate_flush OF(( |
| inflate_blocks_statef *, |
| z_stream *, |
| int)); |
| |
| /*+++++*/ |
| /* inffast.h -- header to use inffast.c |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* WARNING: this file should *not* be used by applications. It is |
| part of the implementation of the compression library and is |
| subject to change. Applications should only use zlib.h. |
| */ |
| |
| local int inflate_fast OF(( |
| uInt, |
| uInt, |
| inflate_huft *, |
| inflate_huft *, |
| inflate_blocks_statef *, |
| z_stream *)); |
| |
| |
| /*+++++*/ |
| /* infblock.c -- interpret and process block types to last block |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* Table for deflate from PKZIP's appnote.txt. */ |
| local uInt border[] = { /* Order of the bit length code lengths */ |
| 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
| |
| /* |
| Notes beyond the 1.93a appnote.txt: |
| |
| 1. Distance pointers never point before the beginning of the output |
| stream. |
| 2. Distance pointers can point back across blocks, up to 32k away. |
| 3. There is an implied maximum of 7 bits for the bit length table and |
| 15 bits for the actual data. |
| 4. If only one code exists, then it is encoded using one bit. (Zero |
| would be more efficient, but perhaps a little confusing.) If two |
| codes exist, they are coded using one bit each (0 and 1). |
| 5. There is no way of sending zero distance codes--a dummy must be |
| sent if there are none. (History: a pre 2.0 version of PKZIP would |
| store blocks with no distance codes, but this was discovered to be |
| too harsh a criterion.) Valid only for 1.93a. 2.04c does allow |
| zero distance codes, which is sent as one code of zero bits in |
| length. |
| 6. There are up to 286 literal/length codes. Code 256 represents the |
| end-of-block. Note however that the static length tree defines |
| 288 codes just to fill out the Huffman codes. Codes 286 and 287 |
| cannot be used though, since there is no length base or extra bits |
| defined for them. Similarily, there are up to 30 distance codes. |
| However, static trees define 32 codes (all 5 bits) to fill out the |
| Huffman codes, but the last two had better not show up in the data. |
| 7. Unzip can check dynamic Huffman blocks for complete code sets. |
| The exception is that a single code would not be complete (see #4). |
| 8. The five bits following the block type is really the number of |
| literal codes sent minus 257. |
| 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits |
| (1+6+6). Therefore, to output three times the length, you output |
| three codes (1+1+1), whereas to output four times the same length, |
| you only need two codes (1+3). Hmm. |
| 10. In the tree reconstruction algorithm, Code = Code + Increment |
| only if BitLength(i) is not zero. (Pretty obvious.) |
| 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) |
| 12. Note: length code 284 can represent 227-258, but length code 285 |
| really is 258. The last length deserves its own, short code |
| since it gets used a lot in very redundant files. The length |
| 258 is special since 258 - 3 (the min match length) is 255. |
| 13. The literal/length and distance code bit lengths are read as a |
| single stream of lengths. It is possible (and advantageous) for |
| a repeat code (16, 17, or 18) to go across the boundary between |
| the two sets of lengths. |
| */ |
| |
| |
| local void inflate_blocks_reset(s, z, c) |
| inflate_blocks_statef *s; |
| z_stream *z; |
| uLongf *c; |
| { |
| if (s->checkfn != Z_NULL) |
| *c = s->check; |
| if (s->mode == BTREE || s->mode == DTREE) |
| ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt)); |
| if (s->mode == CODES) |
| { |
| inflate_codes_free(s->sub.decode.codes, z); |
| inflate_trees_free(s->sub.decode.td, z); |
| inflate_trees_free(s->sub.decode.tl, z); |
| } |
| s->mode = TYPE; |
| s->bitk = 0; |
| s->bitb = 0; |
| s->read = s->write = s->window; |
| if (s->checkfn != Z_NULL) |
| s->check = (*s->checkfn)(0L, Z_NULL, 0); |
| Trace((stderr, "inflate: blocks reset\n")); |
| } |
| |
| |
| local inflate_blocks_statef *inflate_blocks_new(z, c, w) |
| z_stream *z; |
| check_func c; |
| uInt w; |
| { |
| inflate_blocks_statef *s; |
| |
| if ((s = (inflate_blocks_statef *)ZALLOC |
| (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL) |
| return s; |
| if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL) |
| { |
| ZFREE(z, s, sizeof(struct inflate_blocks_state)); |
| return Z_NULL; |
| } |
| s->end = s->window + w; |
| s->checkfn = c; |
| s->mode = TYPE; |
| Trace((stderr, "inflate: blocks allocated\n")); |
| inflate_blocks_reset(s, z, &s->check); |
| return s; |
| } |
| |
| |
| local int inflate_blocks(s, z, r) |
| inflate_blocks_statef *s; |
| z_stream *z; |
| int r; |
| { |
| uInt t; /* temporary storage */ |
| uLong b; /* bit buffer */ |
| uInt k; /* bits in bit buffer */ |
| Bytef *p; /* input data pointer */ |
| uInt n; /* bytes available there */ |
| Bytef *q; /* output window write pointer */ |
| uInt m; /* bytes to end of window or read pointer */ |
| |
| /* copy input/output information to locals (UPDATE macro restores) */ |
| LOAD |
| |
| /* process input based on current state */ |
| while (1) switch (s->mode) |
| { |
| case TYPE: |
| NEEDBITS(3) |
| t = (uInt)b & 7; |
| s->last = t & 1; |
| switch (t >> 1) |
| { |
| case 0: /* stored */ |
| Trace((stderr, "inflate: stored block%s\n", |
| s->last ? " (last)" : "")); |
| DUMPBITS(3) |
| t = k & 7; /* go to byte boundary */ |
| DUMPBITS(t) |
| s->mode = LENS; /* get length of stored block */ |
| break; |
| case 1: /* fixed */ |
| Trace((stderr, "inflate: fixed codes block%s\n", |
| s->last ? " (last)" : "")); |
| { |
| uInt bl, bd; |
| inflate_huft *tl, *td; |
| |
| inflate_trees_fixed(&bl, &bd, &tl, &td); |
| s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z); |
| if (s->sub.decode.codes == Z_NULL) |
| { |
| r = Z_MEM_ERROR; |
| LEAVE |
| } |
| s->sub.decode.tl = Z_NULL; /* don't try to free these */ |
| s->sub.decode.td = Z_NULL; |
| } |
| DUMPBITS(3) |
| s->mode = CODES; |
| break; |
| case 2: /* dynamic */ |
| Trace((stderr, "inflate: dynamic codes block%s\n", |
| s->last ? " (last)" : "")); |
| DUMPBITS(3) |
| s->mode = TABLE; |
| break; |
| case 3: /* illegal */ |
| DUMPBITS(3) |
| s->mode = BADB; |
| z->msg = "invalid block type"; |
| r = Z_DATA_ERROR; |
| LEAVE |
| } |
| break; |
| case LENS: |
| NEEDBITS(32) |
| if (((~b) >> 16) != (b & 0xffff)) |
| { |
| s->mode = BADB; |
| z->msg = "invalid stored block lengths"; |
| r = Z_DATA_ERROR; |
| LEAVE |
| } |
| s->sub.left = (uInt)b & 0xffff; |
| b = k = 0; /* dump bits */ |
| Tracev((stderr, "inflate: stored length %u\n", s->sub.left)); |
| s->mode = s->sub.left ? STORED : TYPE; |
| break; |
| case STORED: |
| if (n == 0) |
| LEAVE |
| NEEDOUT |
| t = s->sub.left; |
| if (t > n) t = n; |
| if (t > m) t = m; |
| zmemcpy(q, p, t); |
| p += t; n -= t; |
| q += t; m -= t; |
| if ((s->sub.left -= t) != 0) |
| break; |
| Tracev((stderr, "inflate: stored end, %lu total out\n", |
| z->total_out + (q >= s->read ? q - s->read : |
| (s->end - s->read) + (q - s->window)))); |
| s->mode = s->last ? DRY : TYPE; |
| break; |
| case TABLE: |
| NEEDBITS(14) |
| s->sub.trees.table = t = (uInt)b & 0x3fff; |
| #ifndef PKZIP_BUG_WORKAROUND |
| if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) |
| { |
| s->mode = BADB; |
| z->msg = "too many length or distance symbols"; |
| r = Z_DATA_ERROR; |
| LEAVE |
| } |
| #endif |
| t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); |
| if (t < 19) |
| t = 19; |
| if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL) |
| { |
| r = Z_MEM_ERROR; |
| LEAVE |
| } |
| s->sub.trees.nblens = t; |
| DUMPBITS(14) |
| s->sub.trees.index = 0; |
| Tracev((stderr, "inflate: table sizes ok\n")); |
| s->mode = BTREE; |
| case BTREE: |
| while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10)) |
| { |
| NEEDBITS(3) |
| s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7; |
| DUMPBITS(3) |
| } |
| while (s->sub.trees.index < 19) |
| s->sub.trees.blens[border[s->sub.trees.index++]] = 0; |
| s->sub.trees.bb = 7; |
| t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb, |
| &s->sub.trees.tb, z); |
| if (t != Z_OK) |
| { |
| r = t; |
| if (r == Z_DATA_ERROR) |
| s->mode = BADB; |
| LEAVE |
| } |
| s->sub.trees.index = 0; |
| Tracev((stderr, "inflate: bits tree ok\n")); |
| s->mode = DTREE; |
| case DTREE: |
| while (t = s->sub.trees.table, |
| s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)) |
| { |
| inflate_huft *h; |
| uInt i, j, c; |
| |
| t = s->sub.trees.bb; |
| NEEDBITS(t) |
| h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]); |
| t = h->word.what.Bits; |
| c = h->more.Base; |
| if (c < 16) |
| { |
| DUMPBITS(t) |
| s->sub.trees.blens[s->sub.trees.index++] = c; |
| } |
| else /* c == 16..18 */ |
| { |
| i = c == 18 ? 7 : c - 14; |
| j = c == 18 ? 11 : 3; |
| NEEDBITS(t + i) |
| DUMPBITS(t) |
| j += (uInt)b & inflate_mask[i]; |
| DUMPBITS(i) |
| i = s->sub.trees.index; |
| t = s->sub.trees.table; |
| if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || |
| (c == 16 && i < 1)) |
| { |
| s->mode = BADB; |
| z->msg = "invalid bit length repeat"; |
| r = Z_DATA_ERROR; |
| LEAVE |
| } |
| c = c == 16 ? s->sub.trees.blens[i - 1] : 0; |
| do { |
| s->sub.trees.blens[i++] = c; |
| } while (--j); |
| s->sub.trees.index = i; |
| } |
| } |
| inflate_trees_free(s->sub.trees.tb, z); |
| s->sub.trees.tb = Z_NULL; |
| { |
| uInt bl, bd; |
| inflate_huft *tl, *td; |
| inflate_codes_statef *c; |
| |
| bl = 9; /* must be <= 9 for lookahead assumptions */ |
| bd = 6; /* must be <= 9 for lookahead assumptions */ |
| t = s->sub.trees.table; |
| t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), |
| s->sub.trees.blens, &bl, &bd, &tl, &td, z); |
| if (t != Z_OK) |
| { |
| if (t == (uInt)Z_DATA_ERROR) |
| s->mode = BADB; |
| r = t; |
| LEAVE |
| } |
| Tracev((stderr, "inflate: trees ok\n")); |
| if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL) |
| { |
| inflate_trees_free(td, z); |
| inflate_trees_free(tl, z); |
| r = Z_MEM_ERROR; |
| LEAVE |
| } |
| ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt)); |
| s->sub.decode.codes = c; |
| s->sub.decode.tl = tl; |
| s->sub.decode.td = td; |
| } |
| s->mode = CODES; |
| case CODES: |
| UPDATE |
| if ((r = inflate_codes(s, z, r)) != Z_STREAM_END) |
| return inflate_flush(s, z, r); |
| r = Z_OK; |
| inflate_codes_free(s->sub.decode.codes, z); |
| inflate_trees_free(s->sub.decode.td, z); |
| inflate_trees_free(s->sub.decode.tl, z); |
| LOAD |
| Tracev((stderr, "inflate: codes end, %lu total out\n", |
| z->total_out + (q >= s->read ? q - s->read : |
| (s->end - s->read) + (q - s->window)))); |
| if (!s->last) |
| { |
| s->mode = TYPE; |
| break; |
| } |
| if (k > 7) /* return unused byte, if any */ |
| { |
| Assert(k < 16, "inflate_codes grabbed too many bytes") |
| k -= 8; |
| n++; |
| p--; /* can always return one */ |
| } |
| s->mode = DRY; |
| case DRY: |
| FLUSH |
| if (s->read != s->write) |
| LEAVE |
| s->mode = DONEB; |
| case DONEB: |
| r = Z_STREAM_END; |
| LEAVE |
| case BADB: |
| r = Z_DATA_ERROR; |
| LEAVE |
| default: |
| r = Z_STREAM_ERROR; |
| LEAVE |
| } |
| } |
| |
| |
| local int inflate_blocks_free(s, z, c) |
| inflate_blocks_statef *s; |
| z_stream *z; |
| uLongf *c; |
| { |
| inflate_blocks_reset(s, z, c); |
| ZFREE(z, s->window, s->end - s->window); |
| ZFREE(z, s, sizeof(struct inflate_blocks_state)); |
| Trace((stderr, "inflate: blocks freed\n")); |
| return Z_OK; |
| } |
| |
| /* |
| * This subroutine adds the data at next_in/avail_in to the output history |
| * without performing any output. The output buffer must be "caught up"; |
| * i.e. no pending output (hence s->read equals s->write), and the state must |
| * be BLOCKS (i.e. we should be willing to see the start of a series of |
| * BLOCKS). On exit, the output will also be caught up, and the checksum |
| * will have been updated if need be. |
| */ |
| local int inflate_addhistory(s, z) |
| inflate_blocks_statef *s; |
| z_stream *z; |
| { |
| uLong b; /* bit buffer */ /* NOT USED HERE */ |
| uInt k; /* bits in bit buffer */ /* NOT USED HERE */ |
| uInt t; /* temporary storage */ |
| Bytef *p; /* input data pointer */ |
| uInt n; /* bytes available there */ |
| Bytef *q; /* output window write pointer */ |
| uInt m; /* bytes to end of window or read pointer */ |
| |
| if (s->read != s->write) |
| return Z_STREAM_ERROR; |
| if (s->mode != TYPE) |
| return Z_DATA_ERROR; |
| |
| /* we're ready to rock */ |
| LOAD |
| /* while there is input ready, copy to output buffer, moving |
| * pointers as needed. |
| */ |
| while (n) { |
| t = n; /* how many to do */ |
| /* is there room until end of buffer? */ |
| if (t > m) t = m; |
| /* update check information */ |
| if (s->checkfn != Z_NULL) |
| s->check = (*s->checkfn)(s->check, q, t); |
| zmemcpy(q, p, t); |
| q += t; |
| p += t; |
| n -= t; |
| z->total_out += t; |
| s->read = q; /* drag read pointer forward */ |
| /* WRAP */ /* expand WRAP macro by hand to handle s->read */ |
| if (q == s->end) { |
| s->read = q = s->window; |
| m = WAVAIL; |
| } |
| } |
| UPDATE |
| return Z_OK; |
| } |
| |
| |
| /* |
| * At the end of a Deflate-compressed PPP packet, we expect to have seen |
| * a `stored' block type value but not the (zero) length bytes. |
| */ |
| local int inflate_packet_flush(s) |
| inflate_blocks_statef *s; |
| { |
| if (s->mode != LENS) |
| return Z_DATA_ERROR; |
| s->mode = TYPE; |
| return Z_OK; |
| } |
| |
| |
| /*+++++*/ |
| /* inftrees.c -- generate Huffman trees for efficient decoding |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* simplify the use of the inflate_huft type with some defines */ |
| #define base more.Base |
| #define next more.Next |
| #define exop word.what.Exop |
| #define bits word.what.Bits |
| |
| |
| local int huft_build OF(( |
| uIntf *, /* code lengths in bits */ |
| uInt, /* number of codes */ |
| uInt, /* number of "simple" codes */ |
| uIntf *, /* list of base values for non-simple codes */ |
| uIntf *, /* list of extra bits for non-simple codes */ |
| inflate_huft * FAR*,/* result: starting table */ |
| uIntf *, /* maximum lookup bits (returns actual) */ |
| z_stream *)); /* for zalloc function */ |
| |
| local voidpf falloc OF(( |
| voidpf, /* opaque pointer (not used) */ |
| uInt, /* number of items */ |
| uInt)); /* size of item */ |
| |
| local void ffree OF(( |
| voidpf q, /* opaque pointer (not used) */ |
| voidpf p, /* what to free (not used) */ |
| uInt n)); /* number of bytes (not used) */ |
| |
| /* Tables for deflate from PKZIP's appnote.txt. */ |
| local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */ |
| 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
| 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; |
| /* actually lengths - 2; also see note #13 above about 258 */ |
| local uInt cplext[] = { /* Extra bits for literal codes 257..285 */ |
| 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
| 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */ |
| local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */ |
| 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, |
| 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, |
| 8193, 12289, 16385, 24577}; |
| local uInt cpdext[] = { /* Extra bits for distance codes */ |
| 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, |
| 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, |
| 12, 12, 13, 13}; |
| |
| /* |
| Huffman code decoding is performed using a multi-level table lookup. |
| The fastest way to decode is to simply build a lookup table whose |
| size is determined by the longest code. However, the time it takes |
| to build this table can also be a factor if the data being decoded |
| is not very long. The most common codes are necessarily the |
| shortest codes, so those codes dominate the decoding time, and hence |
| the speed. The idea is you can have a shorter table that decodes the |
| shorter, more probable codes, and then point to subsidiary tables for |
| the longer codes. The time it costs to decode the longer codes is |
| then traded against the time it takes to make longer tables. |
| |
| This results of this trade are in the variables lbits and dbits |
| below. lbits is the number of bits the first level table for literal/ |
| length codes can decode in one step, and dbits is the same thing for |
| the distance codes. Subsequent tables are also less than or equal to |
| those sizes. These values may be adjusted either when all of the |
| codes are shorter than that, in which case the longest code length in |
| bits is used, or when the shortest code is *longer* than the requested |
| table size, in which case the length of the shortest code in bits is |
| used. |
| |
| There are two different values for the two tables, since they code a |
| different number of possibilities each. The literal/length table |
| codes 286 possible values, or in a flat code, a little over eight |
| bits. The distance table codes 30 possible values, or a little less |
| than five bits, flat. The optimum values for speed end up being |
| about one bit more than those, so lbits is 8+1 and dbits is 5+1. |
| The optimum values may differ though from machine to machine, and |
| possibly even between compilers. Your mileage may vary. |
| */ |
| |
| |
| /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ |
| #define BMAX 15 /* maximum bit length of any code */ |
| #define N_MAX 288 /* maximum number of codes in any set */ |
| |
| #ifdef DEBUG_ZLIB |
| uInt inflate_hufts; |
| #endif |
| |
| local int huft_build(b, n, s, d, e, t, m, zs) |
| uIntf *b; /* code lengths in bits (all assumed <= BMAX) */ |
| uInt n; /* number of codes (assumed <= N_MAX) */ |
| uInt s; /* number of simple-valued codes (0..s-1) */ |
| uIntf *d; /* list of base values for non-simple codes */ |
| uIntf *e; /* list of extra bits for non-simple codes */ |
| inflate_huft * FAR *t; /* result: starting table */ |
| uIntf *m; /* maximum lookup bits, returns actual */ |
| z_stream *zs; /* for zalloc function */ |
| /* Given a list of code lengths and a maximum table size, make a set of |
| tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR |
| if the given code set is incomplete (the tables are still built in this |
| case), Z_DATA_ERROR if the input is invalid (all zero length codes or an |
| over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */ |
| { |
| |
| uInt a; /* counter for codes of length k */ |
| uInt c[BMAX+1]; /* bit length count table */ |
| uInt f; /* i repeats in table every f entries */ |
| int g; /* maximum code length */ |
| int h; /* table level */ |
| register uInt i; /* counter, current code */ |
| register uInt j; /* counter */ |
| register int k; /* number of bits in current code */ |
| int l; /* bits per table (returned in m) */ |
| register uIntf *p; /* pointer into c[], b[], or v[] */ |
| inflate_huft *q; /* points to current table */ |
| struct inflate_huft_s r; /* table entry for structure assignment */ |
| inflate_huft *u[BMAX]; /* table stack */ |
| uInt v[N_MAX]; /* values in order of bit length */ |
| register int w; /* bits before this table == (l * h) */ |
| uInt x[BMAX+1]; /* bit offsets, then code stack */ |
| uIntf *xp; /* pointer into x */ |
| int y; /* number of dummy codes added */ |
| uInt z; /* number of entries in current table */ |
| |
| |
| /* Generate counts for each bit length */ |
| p = c; |
| #define C0 *p++ = 0; |
| #define C2 C0 C0 C0 C0 |
| #define C4 C2 C2 C2 C2 |
| C4 /* clear c[]--assume BMAX+1 is 16 */ |
| p = b; i = n; |
| do { |
| c[*p++]++; /* assume all entries <= BMAX */ |
| } while (--i); |
| if (c[0] == n) /* null input--all zero length codes */ |
| { |
| *t = (inflate_huft *)Z_NULL; |
| *m = 0; |
| return Z_OK; |
| } |
| |
| |
| /* Find minimum and maximum length, bound *m by those */ |
| l = *m; |
| for (j = 1; j <= BMAX; j++) |
| if (c[j]) |
| break; |
| k = j; /* minimum code length */ |
| if ((uInt)l < j) |
| l = j; |
| for (i = BMAX; i; i--) |
| if (c[i]) |
| break; |
| g = i; /* maximum code length */ |
| if ((uInt)l > i) |
| l = i; |
| *m = l; |
| |
| |
| /* Adjust last length count to fill out codes, if needed */ |
| for (y = 1 << j; j < i; j++, y <<= 1) |
| if ((y -= c[j]) < 0) |
| return Z_DATA_ERROR; |
| if ((y -= c[i]) < 0) |
| return Z_DATA_ERROR; |
| c[i] += y; |
| |
| |
| /* Generate starting offsets into the value table for each length */ |
| x[1] = j = 0; |
| p = c + 1; xp = x + 2; |
| while (--i) { /* note that i == g from above */ |
| *xp++ = (j += *p++); |
| } |
| |
| |
| /* Make a table of values in order of bit lengths */ |
| p = b; i = 0; |
| do { |
| if ((j = *p++) != 0) |
| v[x[j]++] = i; |
| } while (++i < n); |
| |
| |
| /* Generate the Huffman codes and for each, make the table entries */ |
| x[0] = i = 0; /* first Huffman code is zero */ |
| p = v; /* grab values in bit order */ |
| h = -1; /* no tables yet--level -1 */ |
| w = -l; /* bits decoded == (l * h) */ |
| u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ |
| q = (inflate_huft *)Z_NULL; /* ditto */ |
| z = 0; /* ditto */ |
| |
| /* go through the bit lengths (k already is bits in shortest code) */ |
| for (; k <= g; k++) |
| { |
| a = c[k]; |
| while (a--) |
| { |
| /* here i is the Huffman code of length k bits for value *p */ |
| /* make tables up to required level */ |
| while (k > w + l) |
| { |
| h++; |
| w += l; /* previous table always l bits */ |
| |
| /* compute minimum size table less than or equal to l bits */ |
| z = (z = g - w) > (uInt)l ? l : z; /* table size upper limit */ |
| if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ |
| { /* too few codes for k-w bit table */ |
| f -= a + 1; /* deduct codes from patterns left */ |
| xp = c + k; |
| if (j < z) |
| while (++j < z) /* try smaller tables up to z bits */ |
| { |
| if ((f <<= 1) <= *++xp) |
| break; /* enough codes to use up j bits */ |
| f -= *xp; /* else deduct codes from patterns */ |
| } |
| } |
| z = 1 << j; /* table entries for j-bit table */ |
| |
| /* allocate and link in new table */ |
| if ((q = (inflate_huft *)ZALLOC |
| (zs,z + 1,sizeof(inflate_huft))) == Z_NULL) |
| { |
| if (h) |
| inflate_trees_free(u[0], zs); |
| return Z_MEM_ERROR; /* not enough memory */ |
| } |
| q->word.Nalloc = z + 1; |
| #ifdef DEBUG_ZLIB |
| inflate_hufts += z + 1; |
| #endif |
| *t = q + 1; /* link to list for huft_free() */ |
| *(t = &(q->next)) = Z_NULL; |
| u[h] = ++q; /* table starts after link */ |
| |
| /* connect to last table, if there is one */ |
| if (h) |
| { |
| x[h] = i; /* save pattern for backing up */ |
| r.bits = (Byte)l; /* bits to dump before this table */ |
| r.exop = (Byte)j; /* bits in this table */ |
| r.next = q; /* pointer to this table */ |
| j = i >> (w - l); /* (get around Turbo C bug) */ |
| u[h-1][j] = r; /* connect to last table */ |
| } |
| } |
| |
| /* set up table entry in r */ |
| r.bits = (Byte)(k - w); |
| if (p >= v + n) |
| r.exop = 128 + 64; /* out of values--invalid code */ |
| else if (*p < s) |
| { |
| r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */ |
| r.base = *p++; /* simple code is just the value */ |
| } |
| else |
| { |
| r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */ |
| r.base = d[*p++ - s]; |
| } |
| |
| /* fill code-like entries with r */ |
| f = 1 << (k - w); |
| for (j = i >> w; j < z; j += f) |
| q[j] = r; |
| |
| /* backwards increment the k-bit code i */ |
| for (j = 1 << (k - 1); i & j; j >>= 1) |
| i ^= j; |
| i ^= j; |
| |
| /* backup over finished tables */ |
| while ((i & ((1 << w) - 1)) != x[h]) |
| { |
| h--; /* don't need to update q */ |
| w -= l; |
| } |
| } |
| } |
| |
| |
| /* Return Z_BUF_ERROR if we were given an incomplete table */ |
| return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; |
| } |
| |
| |
| local int inflate_trees_bits(c, bb, tb, z) |
| uIntf *c; /* 19 code lengths */ |
| uIntf *bb; /* bits tree desired/actual depth */ |
| inflate_huft * FAR *tb; /* bits tree result */ |
| z_stream *z; /* for zfree function */ |
| { |
| int r; |
| |
| r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z); |
| if (r == Z_DATA_ERROR) |
| z->msg = "oversubscribed dynamic bit lengths tree"; |
| else if (r == Z_BUF_ERROR) |
| { |
| inflate_trees_free(*tb, z); |
| z->msg = "incomplete dynamic bit lengths tree"; |
| r = Z_DATA_ERROR; |
| } |
| return r; |
| } |
| |
| |
| local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z) |
| uInt nl; /* number of literal/length codes */ |
| uInt nd; /* number of distance codes */ |
| uIntf *c; /* that many (total) code lengths */ |
| uIntf *bl; /* literal desired/actual bit depth */ |
| uIntf *bd; /* distance desired/actual bit depth */ |
| inflate_huft * FAR *tl; /* literal/length tree result */ |
| inflate_huft * FAR *td; /* distance tree result */ |
| z_stream *z; /* for zfree function */ |
| { |
| int r; |
| |
| /* build literal/length tree */ |
| if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK) |
| { |
| if (r == Z_DATA_ERROR) |
| z->msg = "oversubscribed literal/length tree"; |
| else if (r == Z_BUF_ERROR) |
| { |
| inflate_trees_free(*tl, z); |
| z->msg = "incomplete literal/length tree"; |
| r = Z_DATA_ERROR; |
| } |
| return r; |
| } |
| |
| /* build distance tree */ |
| if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK) |
| { |
| if (r == Z_DATA_ERROR) |
| z->msg = "oversubscribed literal/length tree"; |
| else if (r == Z_BUF_ERROR) { |
| #ifdef PKZIP_BUG_WORKAROUND |
| r = Z_OK; |
| } |
| #else |
| inflate_trees_free(*td, z); |
| z->msg = "incomplete literal/length tree"; |
| r = Z_DATA_ERROR; |
| } |
| inflate_trees_free(*tl, z); |
| return r; |
| #endif |
| } |
| |
| /* done */ |
| return Z_OK; |
| } |
| |
| |
| /* build fixed tables only once--keep them here */ |
| local int fixed_lock = 0; |
| local int fixed_built = 0; |
| #define FIXEDH 530 /* number of hufts used by fixed tables */ |
| local uInt fixed_left = FIXEDH; |
| local inflate_huft fixed_mem[FIXEDH]; |
| local uInt fixed_bl; |
| local uInt fixed_bd; |
| local inflate_huft *fixed_tl; |
| local inflate_huft *fixed_td; |
| |
| |
| local voidpf falloc(q, n, s) |
| voidpf q; /* opaque pointer (not used) */ |
| uInt n; /* number of items */ |
| uInt s; /* size of item */ |
| { |
| Assert(s == sizeof(inflate_huft) && n <= fixed_left, |
| "inflate_trees falloc overflow"); |
| if (q) s++; /* to make some compilers happy */ |
| fixed_left -= n; |
| return (voidpf)(fixed_mem + fixed_left); |
| } |
| |
| |
| local void ffree(q, p, n) |
| voidpf q; |
| voidpf p; |
| uInt n; |
| { |
| Assert(0, "inflate_trees ffree called!"); |
| if (q) q = p; /* to make some compilers happy */ |
| } |
| |
| |
| local int inflate_trees_fixed(bl, bd, tl, td) |
| uIntf *bl; /* literal desired/actual bit depth */ |
| uIntf *bd; /* distance desired/actual bit depth */ |
| inflate_huft * FAR *tl; /* literal/length tree result */ |
| inflate_huft * FAR *td; /* distance tree result */ |
| { |
| /* build fixed tables if not built already--lock out other instances */ |
| while (++fixed_lock > 1) |
| fixed_lock--; |
| if (!fixed_built) |
| { |
| int k; /* temporary variable */ |
| unsigned c[288]; /* length list for huft_build */ |
| z_stream z; /* for falloc function */ |
| |
| /* set up fake z_stream for memory routines */ |
| z.zalloc = falloc; |
| z.zfree = ffree; |
| z.opaque = Z_NULL; |
| |
| /* literal table */ |
| for (k = 0; k < 144; k++) |
| c[k] = 8; |
| for (; k < 256; k++) |
| c[k] = 9; |
| for (; k < 280; k++) |
| c[k] = 7; |
| for (; k < 288; k++) |
| c[k] = 8; |
| fixed_bl = 7; |
| huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z); |
| |
| /* distance table */ |
| for (k = 0; k < 30; k++) |
| c[k] = 5; |
| fixed_bd = 5; |
| huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z); |
| |
| /* done */ |
| fixed_built = 1; |
| } |
| fixed_lock--; |
| *bl = fixed_bl; |
| *bd = fixed_bd; |
| *tl = fixed_tl; |
| *td = fixed_td; |
| return Z_OK; |
| } |
| |
| |
| local int inflate_trees_free(t, z) |
| inflate_huft *t; /* table to free */ |
| z_stream *z; /* for zfree function */ |
| /* Free the malloc'ed tables built by huft_build(), which makes a linked |
| list of the tables it made, with the links in a dummy first entry of |
| each table. */ |
| { |
| register inflate_huft *p, *q; |
| |
| /* Go through linked list, freeing from the malloced (t[-1]) address. */ |
| p = t; |
| while (p != Z_NULL) |
| { |
| q = (--p)->next; |
| ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft)); |
| p = q; |
| } |
| return Z_OK; |
| } |
| |
| /*+++++*/ |
| /* infcodes.c -- process literals and length/distance pairs |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* simplify the use of the inflate_huft type with some defines */ |
| #define base more.Base |
| #define next more.Next |
| #define exop word.what.Exop |
| #define bits word.what.Bits |
| |
| /* inflate codes private state */ |
| struct inflate_codes_state { |
| |
| /* mode */ |
| enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */ |
| START, /* x: set up for LEN */ |
| LEN, /* i: get length/literal/eob next */ |
| LENEXT, /* i: getting length extra (have base) */ |
| DIST, /* i: get distance next */ |
| DISTEXT, /* i: getting distance extra */ |
| COPY, /* o: copying bytes in window, waiting for space */ |
| LIT, /* o: got literal, waiting for output space */ |
| WASH, /* o: got eob, possibly still output waiting */ |
| END, /* x: got eob and all data flushed */ |
| BADCODE} /* x: got error */ |
| mode; /* current inflate_codes mode */ |
| |
| /* mode dependent information */ |
| uInt len; |
| union { |
| struct { |
| inflate_huft *tree; /* pointer into tree */ |
| uInt need; /* bits needed */ |
| } code; /* if LEN or DIST, where in tree */ |
| uInt lit; /* if LIT, literal */ |
| struct { |
| uInt get; /* bits to get for extra */ |
| uInt dist; /* distance back to copy from */ |
| } copy; /* if EXT or COPY, where and how much */ |
| } sub; /* submode */ |
| |
| /* mode independent information */ |
| Byte lbits; /* ltree bits decoded per branch */ |
| Byte dbits; /* dtree bits decoder per branch */ |
| inflate_huft *ltree; /* literal/length/eob tree */ |
| inflate_huft *dtree; /* distance tree */ |
| |
| }; |
| |
| |
| local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z) |
| uInt bl, bd; |
| inflate_huft *tl, *td; |
| z_stream *z; |
| { |
| inflate_codes_statef *c; |
| |
| if ((c = (inflate_codes_statef *) |
| ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL) |
| { |
| c->mode = START; |
| c->lbits = (Byte)bl; |
| c->dbits = (Byte)bd; |
| c->ltree = tl; |
| c->dtree = td; |
| Tracev((stderr, "inflate: codes new\n")); |
| } |
| return c; |
| } |
| |
| |
| local int inflate_codes(s, z, r) |
| inflate_blocks_statef *s; |
| z_stream *z; |
| int r; |
| { |
| uInt j; /* temporary storage */ |
| inflate_huft *t; /* temporary pointer */ |
| uInt e; /* extra bits or operation */ |
| uLong b; /* bit buffer */ |
| uInt k; /* bits in bit buffer */ |
| Bytef *p; /* input data pointer */ |
| uInt n; /* bytes available there */ |
| Bytef *q; /* output window write pointer */ |
| uInt m; /* bytes to end of window or read pointer */ |
| Bytef *f; /* pointer to copy strings from */ |
| inflate_codes_statef *c = s->sub.decode.codes; /* codes state */ |
| |
| /* copy input/output information to locals (UPDATE macro restores) */ |
| LOAD |
| |
| /* process input and output based on current state */ |
| while (1) switch (c->mode) |
| { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */ |
| case START: /* x: set up for LEN */ |
| #ifndef SLOW |
| if (m >= 258 && n >= 10) |
| { |
| UPDATE |
| r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z); |
| LOAD |
| if (r != Z_OK) |
| { |
| c->mode = r == Z_STREAM_END ? WASH : BADCODE; |
| break; |
| } |
| } |
| #endif /* !SLOW */ |
| c->sub.code.need = c->lbits; |
| c->sub.code.tree = c->ltree; |
| c->mode = LEN; |
| case LEN: /* i: get length/literal/eob next */ |
| j = c->sub.code.need; |
| NEEDBITS(j) |
| t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); |
| DUMPBITS(t->bits) |
| e = (uInt)(t->exop); |
| if (e == 0) /* literal */ |
| { |
| c->sub.lit = t->base; |
| Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? |
| "inflate: literal '%c'\n" : |
| "inflate: literal 0x%02x\n", t->base)); |
| c->mode = LIT; |
| break; |
| } |
| if (e & 16) /* length */ |
| { |
| c->sub.copy.get = e & 15; |
| c->len = t->base; |
| c->mode = LENEXT; |
| break; |
| } |
| if ((e & 64) == 0) /* next table */ |
| { |
| c->sub.code.need = e; |
| c->sub.code.tree = t->next; |
| break; |
| } |
| if (e & 32) /* end of block */ |
| { |
| Tracevv((stderr, "inflate: end of block\n")); |
| c->mode = WASH; |
| break; |
| } |
| c->mode = BADCODE; /* invalid code */ |
| z->msg = "invalid literal/length code"; |
| r = Z_DATA_ERROR; |
| LEAVE |
| case LENEXT: /* i: getting length extra (have base) */ |
| j = c->sub.copy.get; |
| NEEDBITS(j) |
| c->len += (uInt)b & inflate_mask[j]; |
| DUMPBITS(j) |
| c->sub.code.need = c->dbits; |
| c->sub.code.tree = c->dtree; |
| Tracevv((stderr, "inflate: length %u\n", c->len)); |
| c->mode = DIST; |
| case DIST: /* i: get distance next */ |
| j = c->sub.code.need; |
| NEEDBITS(j) |
| t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); |
| DUMPBITS(t->bits) |
| e = (uInt)(t->exop); |
| if (e & 16) /* distance */ |
| { |
| c->sub.copy.get = e & 15; |
| c->sub.copy.dist = t->base; |
| c->mode = DISTEXT; |
| break; |
| } |
| if ((e & 64) == 0) /* next table */ |
| { |
| c->sub.code.need = e; |
| c->sub.code.tree = t->next; |
| break; |
| } |
| c->mode = BADCODE; /* invalid code */ |
| z->msg = "invalid distance code"; |
| r = Z_DATA_ERROR; |
| LEAVE |
| case DISTEXT: /* i: getting distance extra */ |
| j = c->sub.copy.get; |
| NEEDBITS(j) |
| c->sub.copy.dist += (uInt)b & inflate_mask[j]; |
| DUMPBITS(j) |
| Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist)); |
| c->mode = COPY; |
| case COPY: /* o: copying bytes in window, waiting for space */ |
| #ifndef __TURBOC__ /* Turbo C bug for following expression */ |
| f = (uInt)(q - s->window) < c->sub.copy.dist ? |
| s->end - (c->sub.copy.dist - (q - s->window)) : |
| q - c->sub.copy.dist; |
| #else |
| f = q - c->sub.copy.dist; |
| if ((uInt)(q - s->window) < c->sub.copy.dist) |
| f = s->end - (c->sub.copy.dist - (q - s->window)); |
| #endif |
| while (c->len) |
| { |
| NEEDOUT |
| OUTBYTE(*f++) |
| if (f == s->end) |
| f = s->window; |
| c->len--; |
| } |
| c->mode = START; |
| break; |
| case LIT: /* o: got literal, waiting for output space */ |
| NEEDOUT |
| OUTBYTE(c->sub.lit) |
| c->mode = START; |
| break; |
| case WASH: /* o: got eob, possibly more output */ |
| FLUSH |
| if (s->read != s->write) |
| LEAVE |
| c->mode = END; |
| case END: |
| r = Z_STREAM_END; |
| LEAVE |
| case BADCODE: /* x: got error */ |
| r = Z_DATA_ERROR; |
| LEAVE |
| default: |
| r = Z_STREAM_ERROR; |
| LEAVE |
| } |
| } |
| |
| |
| local void inflate_codes_free(c, z) |
| inflate_codes_statef *c; |
| z_stream *z; |
| { |
| ZFREE(z, c, sizeof(struct inflate_codes_state)); |
| Tracev((stderr, "inflate: codes free\n")); |
| } |
| |
| /*+++++*/ |
| /* inflate_util.c -- data and routines common to blocks and codes |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* copy as much as possible from the sliding window to the output area */ |
| local int inflate_flush(s, z, r) |
| inflate_blocks_statef *s; |
| z_stream *z; |
| int r; |
| { |
| uInt n; |
| Bytef *p, *q; |
| |
| /* local copies of source and destination pointers */ |
| p = z->next_out; |
| q = s->read; |
| |
| /* compute number of bytes to copy as far as end of window */ |
| n = (uInt)((q <= s->write ? s->write : s->end) - q); |
| if (n > z->avail_out) n = z->avail_out; |
| if (n && r == Z_BUF_ERROR) r = Z_OK; |
| |
| /* update counters */ |
| z->avail_out -= n; |
| z->total_out += n; |
| |
| /* update check information */ |
| if (s->checkfn != Z_NULL) |
| s->check = (*s->checkfn)(s->check, q, n); |
| |
| /* copy as far as end of window */ |
| if (p != NULL) { |
| zmemcpy(p, q, n); |
| p += n; |
| } |
| q += n; |
| |
| /* see if more to copy at beginning of window */ |
| if (q == s->end) |
| { |
| /* wrap pointers */ |
| q = s->window; |
| if (s->write == s->end) |
| s->write = s->window; |
| |
| /* compute bytes to copy */ |
| n = (uInt)(s->write - q); |
| if (n > z->avail_out) n = z->avail_out; |
| if (n && r == Z_BUF_ERROR) r = Z_OK; |
| |
| /* update counters */ |
| z->avail_out -= n; |
| z->total_out += n; |
| |
| /* update check information */ |
| if (s->checkfn != Z_NULL) |
| s->check = (*s->checkfn)(s->check, q, n); |
| |
| /* copy */ |
| if (p != NULL) { |
| zmemcpy(p, q, n); |
| p += n; |
| } |
| q += n; |
| } |
| |
| /* update pointers */ |
| z->next_out = p; |
| s->read = q; |
| |
| /* done */ |
| return r; |
| } |
| |
| |
| /*+++++*/ |
| /* inffast.c -- process literals and length/distance pairs fast |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* simplify the use of the inflate_huft type with some defines */ |
| #define base more.Base |
| #define next more.Next |
| #define exop word.what.Exop |
| #define bits word.what.Bits |
| |
| /* macros for bit input with no checking and for returning unused bytes */ |
| #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}} |
| #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;} |
| |
| /* Called with number of bytes left to write in window at least 258 |
| (the maximum string length) and number of input bytes available |
| at least ten. The ten bytes are six bytes for the longest length/ |
| distance pair plus four bytes for overloading the bit buffer. */ |
| |
| local int inflate_fast(bl, bd, tl, td, s, z) |
| uInt bl, bd; |
| inflate_huft *tl, *td; |
| inflate_blocks_statef *s; |
| z_stream *z; |
| { |
| inflate_huft *t; /* temporary pointer */ |
| uInt e; /* extra bits or operation */ |
| uLong b; /* bit buffer */ |
| uInt k; /* bits in bit buffer */ |
| Bytef *p; /* input data pointer */ |
| uInt n; /* bytes available there */ |
| Bytef *q; /* output window write pointer */ |
| uInt m; /* bytes to end of window or read pointer */ |
| uInt ml; /* mask for literal/length tree */ |
| uInt md; /* mask for distance tree */ |
| uInt c; /* bytes to copy */ |
| uInt d; /* distance back to copy from */ |
| Bytef *r; /* copy source pointer */ |
| |
| /* load input, output, bit values */ |
| LOAD |
| |
| /* initialize masks */ |
| ml = inflate_mask[bl]; |
| md = inflate_mask[bd]; |
| |
| /* do until not enough input or output space for fast loop */ |
| do { /* assume called with m >= 258 && n >= 10 */ |
| /* get literal/length code */ |
| GRABBITS(20) /* max bits for literal/length code */ |
| if ((e = (t = tl + ((uInt)b & ml))->exop) == 0) |
| { |
| DUMPBITS(t->bits) |
| Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? |
| "inflate: * literal '%c'\n" : |
| "inflate: * literal 0x%02x\n", t->base)); |
| *q++ = (Byte)t->base; |
| m--; |
| continue; |
| } |
| do { |
| DUMPBITS(t->bits) |
| if (e & 16) |
| { |
| /* get extra bits for length */ |
| e &= 15; |
| c = t->base + ((uInt)b & inflate_mask[e]); |
| DUMPBITS(e) |
| Tracevv((stderr, "inflate: * length %u\n", c)); |
| |
| /* decode distance base of block to copy */ |
| GRABBITS(15); /* max bits for distance code */ |
| e = (t = td + ((uInt)b & md))->exop; |
| do { |
| DUMPBITS(t->bits) |
| if (e & 16) |
| { |
| /* get extra bits to add to distance base */ |
| e &= 15; |
| GRABBITS(e) /* get extra bits (up to 13) */ |
| d = t->base + ((uInt)b & inflate_mask[e]); |
| DUMPBITS(e) |
| Tracevv((stderr, "inflate: * distance %u\n", d)); |
| |
| /* do the copy */ |
| m -= c; |
| if ((uInt)(q - s->window) >= d) /* offset before dest */ |
| { /* just copy */ |
| r = q - d; |
| *q++ = *r++; c--; /* minimum count is three, */ |
| *q++ = *r++; c--; /* so unroll loop a little */ |
| } |
| else /* else offset after destination */ |
| { |
| e = d - (q - s->window); /* bytes from offset to end */ |
| r = s->end - e; /* pointer to offset */ |
| if (c > e) /* if source crosses, */ |
| { |
| c -= e; /* copy to end of window */ |
| do { |
| *q++ = *r++; |
| } while (--e); |
| r = s->window; /* copy rest from start of window */ |
| } |
| } |
| do { /* copy all or what's left */ |
| *q++ = *r++; |
| } while (--c); |
| break; |
| } |
| else if ((e & 64) == 0) |
| e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop; |
| else |
| { |
| z->msg = "invalid distance code"; |
| UNGRAB |
| UPDATE |
| return Z_DATA_ERROR; |
| } |
| } while (1); |
| break; |
| } |
| if ((e & 64) == 0) |
| { |
| if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0) |
| { |
| DUMPBITS(t->bits) |
| Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? |
| "inflate: * literal '%c'\n" : |
| "inflate: * literal 0x%02x\n", t->base)); |
| *q++ = (Byte)t->base; |
| m--; |
| break; |
| } |
| } |
| else if (e & 32) |
| { |
| Tracevv((stderr, "inflate: * end of block\n")); |
| UNGRAB |
| UPDATE |
| return Z_STREAM_END; |
| } |
| else |
| { |
| z->msg = "invalid literal/length code"; |
| UNGRAB |
| UPDATE |
| return Z_DATA_ERROR; |
| } |
| } while (1); |
| } while (m >= 258 && n >= 10); |
| |
| /* not enough input or output--restore pointers and return */ |
| UNGRAB |
| UPDATE |
| return Z_OK; |
| } |
| |
| |
| /*+++++*/ |
| /* zutil.c -- target dependent utility functions for the compression library |
| * Copyright (C) 1995 Jean-loup Gailly. |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */ |
| |
| char *zlib_version = ZLIB_VERSION; |
| |
| char *z_errmsg[] = { |
| "stream end", /* Z_STREAM_END 1 */ |
| "", /* Z_OK 0 */ |
| "file error", /* Z_ERRNO (-1) */ |
| "stream error", /* Z_STREAM_ERROR (-2) */ |
| "data error", /* Z_DATA_ERROR (-3) */ |
| "insufficient memory", /* Z_MEM_ERROR (-4) */ |
| "buffer error", /* Z_BUF_ERROR (-5) */ |
| ""}; |
| |
| |
| /*+++++*/ |
| /* adler32.c -- compute the Adler-32 checksum of a data stream |
| * Copyright (C) 1995 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */ |
| |
| #define BASE 65521L /* largest prime smaller than 65536 */ |
| #define NMAX 5552 |
| /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
| |
| #define DO1(buf) {s1 += *buf++; s2 += s1;} |
| #define DO2(buf) DO1(buf); DO1(buf); |
| #define DO4(buf) DO2(buf); DO2(buf); |
| #define DO8(buf) DO4(buf); DO4(buf); |
| #define DO16(buf) DO8(buf); DO8(buf); |
| |
| /* ========================================================================= */ |
| uLong adler32(adler, buf, len) |
| uLong adler; |
| Bytef *buf; |
| uInt len; |
| { |
| unsigned long s1 = adler & 0xffff; |
| unsigned long s2 = (adler >> 16) & 0xffff; |
| int k; |
| |
| if (buf == Z_NULL) return 1L; |
| |
| while (len > 0) { |
| k = len < NMAX ? len : NMAX; |
| len -= k; |
| while (k >= 16) { |
| DO16(buf); |
| k -= 16; |
| } |
| if (k != 0) do { |
| DO1(buf); |
| } while (--k); |
| s1 %= BASE; |
| s2 %= BASE; |
| } |
| return (s2 << 16) | s1; |
| } |