blob: 81c4ac0f37af0d6e89a2f83d04677bf0517c659a [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <google/protobuf/stubs/hash.h>
#include <map>
#include <set>
#include <vector>
#include <algorithm>
#include <limits>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/descriptor_database.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/text_format.h>
#include <google/protobuf/unknown_field_set.h>
#include <google/protobuf/wire_format.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/once.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/substitute.h>
#include <google/protobuf/stubs/map-util.h>
#include <google/protobuf/stubs/stl_util-inl.h>
#undef PACKAGE // autoheader #defines this. :(
namespace google {
namespace protobuf {
const FieldDescriptor::CppType
FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = {
static_cast<CppType>(0), // 0 is reserved for errors
CPPTYPE_DOUBLE, // TYPE_DOUBLE
CPPTYPE_FLOAT, // TYPE_FLOAT
CPPTYPE_INT64, // TYPE_INT64
CPPTYPE_UINT64, // TYPE_UINT64
CPPTYPE_INT32, // TYPE_INT32
CPPTYPE_UINT64, // TYPE_FIXED64
CPPTYPE_UINT32, // TYPE_FIXED32
CPPTYPE_BOOL, // TYPE_BOOL
CPPTYPE_STRING, // TYPE_STRING
CPPTYPE_MESSAGE, // TYPE_GROUP
CPPTYPE_MESSAGE, // TYPE_MESSAGE
CPPTYPE_STRING, // TYPE_BYTES
CPPTYPE_UINT32, // TYPE_UINT32
CPPTYPE_ENUM, // TYPE_ENUM
CPPTYPE_INT32, // TYPE_SFIXED32
CPPTYPE_INT64, // TYPE_SFIXED64
CPPTYPE_INT32, // TYPE_SINT32
CPPTYPE_INT64, // TYPE_SINT64
};
const char * const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = {
"ERROR", // 0 is reserved for errors
"double", // TYPE_DOUBLE
"float", // TYPE_FLOAT
"int64", // TYPE_INT64
"uint64", // TYPE_UINT64
"int32", // TYPE_INT32
"fixed64", // TYPE_FIXED64
"fixed32", // TYPE_FIXED32
"bool", // TYPE_BOOL
"string", // TYPE_STRING
"group", // TYPE_GROUP
"message", // TYPE_MESSAGE
"bytes", // TYPE_BYTES
"uint32", // TYPE_UINT32
"enum", // TYPE_ENUM
"sfixed32", // TYPE_SFIXED32
"sfixed64", // TYPE_SFIXED64
"sint32", // TYPE_SINT32
"sint64", // TYPE_SINT64
};
const char * const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = {
"ERROR", // 0 is reserved for errors
"optional", // LABEL_OPTIONAL
"required", // LABEL_REQUIRED
"repeated", // LABEL_REPEATED
};
#ifndef _MSC_VER // MSVC doesn't need these and won't even accept them.
const int FieldDescriptor::kMaxNumber;
const int FieldDescriptor::kFirstReservedNumber;
const int FieldDescriptor::kLastReservedNumber;
#endif
namespace {
const string kEmptyString;
string ToCamelCase(const string& input) {
bool capitalize_next = false;
string result;
result.reserve(input.size());
for (int i = 0; i < input.size(); i++) {
if (input[i] == '_') {
capitalize_next = true;
} else if (capitalize_next) {
// Note: I distrust ctype.h due to locales.
if ('a' <= input[i] && input[i] <= 'z') {
result.push_back(input[i] - 'a' + 'A');
} else {
result.push_back(input[i]);
}
capitalize_next = false;
} else {
result.push_back(input[i]);
}
}
// Lower-case the first letter.
if (!result.empty() && 'A' <= result[0] && result[0] <= 'Z') {
result[0] = result[0] - 'A' + 'a';
}
return result;
}
// A DescriptorPool contains a bunch of hash_maps to implement the
// various Find*By*() methods. Since hashtable lookups are O(1), it's
// most efficient to construct a fixed set of large hash_maps used by
// all objects in the pool rather than construct one or more small
// hash_maps for each object.
//
// The keys to these hash_maps are (parent, name) or (parent, number)
// pairs. Unfortunately STL doesn't provide hash functions for pair<>,
// so we must invent our own.
//
// TODO(kenton): Use StringPiece rather than const char* in keys? It would
// be a lot cleaner but we'd just have to convert it back to const char*
// for the open source release.
typedef pair<const void*, const char*> PointerStringPair;
struct PointerStringPairEqual {
inline bool operator()(const PointerStringPair& a,
const PointerStringPair& b) const {
return a.first == b.first && strcmp(a.second, b.second) == 0;
}
};
template<typename PairType>
struct PointerIntegerPairHash {
size_t operator()(const PairType& p) const {
// FIXME(kenton): What is the best way to compute this hash? I have
// no idea! This seems a bit better than an XOR.
return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) + p.second;
}
// Used only by MSVC and platforms where hash_map is not available.
static const size_t bucket_size = 4;
static const size_t min_buckets = 8;
inline bool operator()(const PairType& a, const PairType& b) const {
return a.first < b.first ||
(a.first == b.first && a.second < b.second);
}
};
typedef pair<const Descriptor*, int> DescriptorIntPair;
typedef pair<const EnumDescriptor*, int> EnumIntPair;
struct PointerStringPairHash {
size_t operator()(const PointerStringPair& p) const {
// FIXME(kenton): What is the best way to compute this hash? I have
// no idea! This seems a bit better than an XOR.
hash<const char*> cstring_hash;
return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) +
cstring_hash(p.second);
}
// Used only by MSVC and platforms where hash_map is not available.
static const size_t bucket_size = 4;
static const size_t min_buckets = 8;
inline bool operator()(const PointerStringPair& a,
const PointerStringPair& b) const {
if (a.first < b.first) return true;
if (a.first > b.first) return false;
return strcmp(a.second, b.second) < 0;
}
};
struct Symbol {
enum Type {
NULL_SYMBOL, MESSAGE, FIELD, ENUM, ENUM_VALUE, SERVICE, METHOD, PACKAGE
};
Type type;
union {
const Descriptor* descriptor;
const FieldDescriptor* field_descriptor;
const EnumDescriptor* enum_descriptor;
const EnumValueDescriptor* enum_value_descriptor;
const ServiceDescriptor* service_descriptor;
const MethodDescriptor* method_descriptor;
const FileDescriptor* package_file_descriptor;
};
inline Symbol() : type(NULL_SYMBOL) { descriptor = NULL; }
inline bool IsNull() const { return type == NULL_SYMBOL; }
inline bool IsType() const {
return type == MESSAGE || type == ENUM;
}
inline bool IsAggregate() const {
return type == MESSAGE || type == PACKAGE
|| type == ENUM || type == SERVICE;
}
#define CONSTRUCTOR(TYPE, TYPE_CONSTANT, FIELD) \
inline explicit Symbol(const TYPE* value) { \
type = TYPE_CONSTANT; \
this->FIELD = value; \
}
CONSTRUCTOR(Descriptor , MESSAGE , descriptor )
CONSTRUCTOR(FieldDescriptor , FIELD , field_descriptor )
CONSTRUCTOR(EnumDescriptor , ENUM , enum_descriptor )
CONSTRUCTOR(EnumValueDescriptor, ENUM_VALUE, enum_value_descriptor )
CONSTRUCTOR(ServiceDescriptor , SERVICE , service_descriptor )
CONSTRUCTOR(MethodDescriptor , METHOD , method_descriptor )
CONSTRUCTOR(FileDescriptor , PACKAGE , package_file_descriptor)
#undef CONSTRUCTOR
const FileDescriptor* GetFile() const {
switch (type) {
case NULL_SYMBOL: return NULL;
case MESSAGE : return descriptor ->file();
case FIELD : return field_descriptor ->file();
case ENUM : return enum_descriptor ->file();
case ENUM_VALUE : return enum_value_descriptor->type()->file();
case SERVICE : return service_descriptor ->file();
case METHOD : return method_descriptor ->service()->file();
case PACKAGE : return package_file_descriptor;
}
return NULL;
}
};
const Symbol kNullSymbol;
typedef hash_map<const char*, Symbol,
hash<const char*>, streq>
SymbolsByNameMap;
typedef hash_map<PointerStringPair, Symbol,
PointerStringPairHash, PointerStringPairEqual>
SymbolsByParentMap;
typedef hash_map<const char*, const FileDescriptor*,
hash<const char*>, streq>
FilesByNameMap;
typedef hash_map<PointerStringPair, const FieldDescriptor*,
PointerStringPairHash, PointerStringPairEqual>
FieldsByNameMap;
typedef hash_map<DescriptorIntPair, const FieldDescriptor*,
PointerIntegerPairHash<DescriptorIntPair> >
FieldsByNumberMap;
typedef hash_map<EnumIntPair, const EnumValueDescriptor*,
PointerIntegerPairHash<EnumIntPair> >
EnumValuesByNumberMap;
// This is a map rather than a hash_map, since we use it to iterate
// through all the extensions that extend a given Descriptor, and an
// ordered data structure that implements lower_bound is convenient
// for that.
typedef map<DescriptorIntPair, const FieldDescriptor*>
ExtensionsGroupedByDescriptorMap;
} // anonymous namespace
// ===================================================================
// DescriptorPool::Tables
class DescriptorPool::Tables {
public:
Tables();
~Tables();
// Checkpoint the state of the tables. Future calls to Rollback() will
// return the Tables to this state. This is used when building files, since
// some kinds of validation errors cannot be detected until the file's
// descriptors have already been added to the tables. BuildFile() calls
// Checkpoint() before it starts building and Rollback() if it encounters
// an error.
void Checkpoint();
// Roll back the Tables to the state of the last Checkpoint(), removing
// everything that was added after that point.
void Rollback();
// The stack of files which are currently being built. Used to detect
// cyclic dependencies when loading files from a DescriptorDatabase. Not
// used when fallback_database_ == NULL.
vector<string> pending_files_;
// A set of files which we have tried to load from the fallback database
// and encountered errors. We will not attempt to load them again.
// Not used when fallback_database_ == NULL.
hash_set<string> known_bad_files_;
// The set of descriptors for which we've already loaded the full
// set of extensions numbers from fallback_database_.
hash_set<const Descriptor*> extensions_loaded_from_db_;
// -----------------------------------------------------------------
// Finding items.
// Find symbols. This returns a null Symbol (symbol.IsNull() is true)
// if not found.
inline Symbol FindSymbol(const string& key) const;
// This implements the body of DescriptorPool::Find*ByName(). It should
// really be a private method of DescriptorPool, but that would require
// declaring Symbol in descriptor.h, which would drag all kinds of other
// stuff into the header. Yay C++.
Symbol FindByNameHelper(
const DescriptorPool* pool, const string& name) const;
// These return NULL if not found.
inline const FileDescriptor* FindFile(const string& key) const;
inline const FieldDescriptor* FindExtension(const Descriptor* extendee,
int number);
inline void FindAllExtensions(const Descriptor* extendee,
vector<const FieldDescriptor*>* out) const;
// -----------------------------------------------------------------
// Adding items.
// These add items to the corresponding tables. They return false if
// the key already exists in the table. For AddSymbol(), the string passed
// in must be one that was constructed using AllocateString(), as it will
// be used as a key in the symbols_by_name_ map without copying.
bool AddSymbol(const string& full_name, Symbol symbol);
bool AddFile(const FileDescriptor* file);
bool AddExtension(const FieldDescriptor* field);
// -----------------------------------------------------------------
// Allocating memory.
// Allocate an object which will be reclaimed when the pool is
// destroyed. Note that the object's destructor will never be called,
// so its fields must be plain old data (primitive data types and
// pointers). All of the descriptor types are such objects.
template<typename Type> Type* Allocate();
// Allocate an array of objects which will be reclaimed when the
// pool in destroyed. Again, destructors are never called.
template<typename Type> Type* AllocateArray(int count);
// Allocate a string which will be destroyed when the pool is destroyed.
// The string is initialized to the given value for convenience.
string* AllocateString(const string& value);
// Allocate a protocol message object. Some older versions of GCC have
// trouble understanding explicit template instantiations in some cases, so
// in those cases we have to pass a dummy pointer of the right type as the
// parameter instead of specifying the type explicitly.
template<typename Type> Type* AllocateMessage(Type* dummy = NULL);
// Allocate a FileDescriptorTables object.
FileDescriptorTables* AllocateFileTables();
private:
vector<string*> strings_; // All strings in the pool.
vector<Message*> messages_; // All messages in the pool.
vector<FileDescriptorTables*> file_tables_; // All file tables in the pool.
vector<void*> allocations_; // All other memory allocated in the pool.
SymbolsByNameMap symbols_by_name_;
FilesByNameMap files_by_name_;
ExtensionsGroupedByDescriptorMap extensions_;
int strings_before_checkpoint_;
int messages_before_checkpoint_;
int file_tables_before_checkpoint_;
int allocations_before_checkpoint_;
vector<const char* > symbols_after_checkpoint_;
vector<const char* > files_after_checkpoint_;
vector<DescriptorIntPair> extensions_after_checkpoint_;
// Allocate some bytes which will be reclaimed when the pool is
// destroyed.
void* AllocateBytes(int size);
};
// Contains tables specific to a particular file. These tables are not
// modified once the file has been constructed, so they need not be
// protected by a mutex. This makes operations that depend only on the
// contents of a single file -- e.g. Descriptor::FindFieldByName() --
// lock-free.
//
// For historical reasons, the definitions of the methods of
// FileDescriptorTables and DescriptorPool::Tables are interleaved below.
// These used to be a single class.
class FileDescriptorTables {
public:
FileDescriptorTables();
~FileDescriptorTables();
// Empty table, used with placeholder files.
static const FileDescriptorTables kEmpty;
// -----------------------------------------------------------------
// Finding items.
// Find symbols. These return a null Symbol (symbol.IsNull() is true)
// if not found.
inline Symbol FindNestedSymbol(const void* parent,
const string& name) const;
inline Symbol FindNestedSymbolOfType(const void* parent,
const string& name,
const Symbol::Type type) const;
// These return NULL if not found.
inline const FieldDescriptor* FindFieldByNumber(
const Descriptor* parent, int number) const;
inline const FieldDescriptor* FindFieldByLowercaseName(
const void* parent, const string& lowercase_name) const;
inline const FieldDescriptor* FindFieldByCamelcaseName(
const void* parent, const string& camelcase_name) const;
inline const EnumValueDescriptor* FindEnumValueByNumber(
const EnumDescriptor* parent, int number) const;
// -----------------------------------------------------------------
// Adding items.
// These add items to the corresponding tables. They return false if
// the key already exists in the table. For AddAliasUnderParent(), the
// string passed in must be one that was constructed using AllocateString(),
// as it will be used as a key in the symbols_by_parent_ map without copying.
bool AddAliasUnderParent(const void* parent, const string& name,
Symbol symbol);
bool AddFieldByNumber(const FieldDescriptor* field);
bool AddEnumValueByNumber(const EnumValueDescriptor* value);
// Adds the field to the lowercase_name and camelcase_name maps. Never
// fails because we allow duplicates; the first field by the name wins.
void AddFieldByStylizedNames(const FieldDescriptor* field);
private:
SymbolsByParentMap symbols_by_parent_;
FieldsByNameMap fields_by_lowercase_name_;
FieldsByNameMap fields_by_camelcase_name_;
FieldsByNumberMap fields_by_number_; // Not including extensions.
EnumValuesByNumberMap enum_values_by_number_;
};
DescriptorPool::Tables::Tables()
: strings_before_checkpoint_(0),
messages_before_checkpoint_(0),
allocations_before_checkpoint_(0) {}
DescriptorPool::Tables::~Tables() {
// Note that the deletion order is important, since the destructors of some
// messages may refer to objects in allocations_.
STLDeleteElements(&messages_);
for (int i = 0; i < allocations_.size(); i++) {
operator delete(allocations_[i]);
}
STLDeleteElements(&strings_);
STLDeleteElements(&file_tables_);
}
FileDescriptorTables::FileDescriptorTables() {}
FileDescriptorTables::~FileDescriptorTables() {}
const FileDescriptorTables FileDescriptorTables::kEmpty;
void DescriptorPool::Tables::Checkpoint() {
strings_before_checkpoint_ = strings_.size();
messages_before_checkpoint_ = messages_.size();
file_tables_before_checkpoint_ = file_tables_.size();
allocations_before_checkpoint_ = allocations_.size();
symbols_after_checkpoint_.clear();
files_after_checkpoint_.clear();
extensions_after_checkpoint_.clear();
}
void DescriptorPool::Tables::Rollback() {
for (int i = 0; i < symbols_after_checkpoint_.size(); i++) {
symbols_by_name_.erase(symbols_after_checkpoint_[i]);
}
for (int i = 0; i < files_after_checkpoint_.size(); i++) {
files_by_name_.erase(files_after_checkpoint_[i]);
}
for (int i = 0; i < extensions_after_checkpoint_.size(); i++) {
extensions_.erase(extensions_after_checkpoint_[i]);
}
symbols_after_checkpoint_.clear();
files_after_checkpoint_.clear();
extensions_after_checkpoint_.clear();
STLDeleteContainerPointers(
strings_.begin() + strings_before_checkpoint_, strings_.end());
STLDeleteContainerPointers(
messages_.begin() + messages_before_checkpoint_, messages_.end());
STLDeleteContainerPointers(
file_tables_.begin() + file_tables_before_checkpoint_, file_tables_.end());
for (int i = allocations_before_checkpoint_; i < allocations_.size(); i++) {
operator delete(allocations_[i]);
}
strings_.resize(strings_before_checkpoint_);
messages_.resize(messages_before_checkpoint_);
file_tables_.resize(file_tables_before_checkpoint_);
allocations_.resize(allocations_before_checkpoint_);
}
// -------------------------------------------------------------------
inline Symbol DescriptorPool::Tables::FindSymbol(const string& key) const {
const Symbol* result = FindOrNull(symbols_by_name_, key.c_str());
if (result == NULL) {
return kNullSymbol;
} else {
return *result;
}
}
inline Symbol FileDescriptorTables::FindNestedSymbol(
const void* parent, const string& name) const {
const Symbol* result =
FindOrNull(symbols_by_parent_, PointerStringPair(parent, name.c_str()));
if (result == NULL) {
return kNullSymbol;
} else {
return *result;
}
}
inline Symbol FileDescriptorTables::FindNestedSymbolOfType(
const void* parent, const string& name, const Symbol::Type type) const {
Symbol result = FindNestedSymbol(parent, name);
if (result.type != type) return kNullSymbol;
return result;
}
Symbol DescriptorPool::Tables::FindByNameHelper(
const DescriptorPool* pool, const string& name) const {
MutexLockMaybe lock(pool->mutex_);
Symbol result = FindSymbol(name);
if (result.IsNull() && pool->underlay_ != NULL) {
// Symbol not found; check the underlay.
result =
pool->underlay_->tables_->FindByNameHelper(pool->underlay_, name);
}
if (result.IsNull()) {
// Symbol still not found, so check fallback database.
if (pool->TryFindSymbolInFallbackDatabase(name)) {
result = FindSymbol(name);
}
}
return result;
}
inline const FileDescriptor* DescriptorPool::Tables::FindFile(
const string& key) const {
return FindPtrOrNull(files_by_name_, key.c_str());
}
inline const FieldDescriptor* FileDescriptorTables::FindFieldByNumber(
const Descriptor* parent, int number) const {
return FindPtrOrNull(fields_by_number_, make_pair(parent, number));
}
inline const FieldDescriptor* FileDescriptorTables::FindFieldByLowercaseName(
const void* parent, const string& lowercase_name) const {
return FindPtrOrNull(fields_by_lowercase_name_,
PointerStringPair(parent, lowercase_name.c_str()));
}
inline const FieldDescriptor* FileDescriptorTables::FindFieldByCamelcaseName(
const void* parent, const string& camelcase_name) const {
return FindPtrOrNull(fields_by_camelcase_name_,
PointerStringPair(parent, camelcase_name.c_str()));
}
inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumber(
const EnumDescriptor* parent, int number) const {
return FindPtrOrNull(enum_values_by_number_, make_pair(parent, number));
}
inline const FieldDescriptor* DescriptorPool::Tables::FindExtension(
const Descriptor* extendee, int number) {
return FindPtrOrNull(extensions_, make_pair(extendee, number));
}
inline void DescriptorPool::Tables::FindAllExtensions(
const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
ExtensionsGroupedByDescriptorMap::const_iterator it =
extensions_.lower_bound(make_pair(extendee, 0));
for (; it != extensions_.end() && it->first.first == extendee; ++it) {
out->push_back(it->second);
}
}
// -------------------------------------------------------------------
bool DescriptorPool::Tables::AddSymbol(
const string& full_name, Symbol symbol) {
if (InsertIfNotPresent(&symbols_by_name_, full_name.c_str(), symbol)) {
symbols_after_checkpoint_.push_back(full_name.c_str());
return true;
} else {
return false;
}
}
bool FileDescriptorTables::AddAliasUnderParent(
const void* parent, const string& name, Symbol symbol) {
PointerStringPair by_parent_key(parent, name.c_str());
return InsertIfNotPresent(&symbols_by_parent_, by_parent_key, symbol);
}
bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) {
if (InsertIfNotPresent(&files_by_name_, file->name().c_str(), file)) {
files_after_checkpoint_.push_back(file->name().c_str());
return true;
} else {
return false;
}
}
void FileDescriptorTables::AddFieldByStylizedNames(
const FieldDescriptor* field) {
const void* parent;
if (field->is_extension()) {
if (field->extension_scope() == NULL) {
parent = field->file();
} else {
parent = field->extension_scope();
}
} else {
parent = field->containing_type();
}
PointerStringPair lowercase_key(parent, field->lowercase_name().c_str());
InsertIfNotPresent(&fields_by_lowercase_name_, lowercase_key, field);
PointerStringPair camelcase_key(parent, field->camelcase_name().c_str());
InsertIfNotPresent(&fields_by_camelcase_name_, camelcase_key, field);
}
bool FileDescriptorTables::AddFieldByNumber(const FieldDescriptor* field) {
DescriptorIntPair key(field->containing_type(), field->number());
return InsertIfNotPresent(&fields_by_number_, key, field);
}
bool FileDescriptorTables::AddEnumValueByNumber(
const EnumValueDescriptor* value) {
EnumIntPair key(value->type(), value->number());
return InsertIfNotPresent(&enum_values_by_number_, key, value);
}
bool DescriptorPool::Tables::AddExtension(const FieldDescriptor* field) {
DescriptorIntPair key(field->containing_type(), field->number());
if (InsertIfNotPresent(&extensions_, key, field)) {
extensions_after_checkpoint_.push_back(key);
return true;
} else {
return false;
}
}
// -------------------------------------------------------------------
template<typename Type>
Type* DescriptorPool::Tables::Allocate() {
return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type)));
}
template<typename Type>
Type* DescriptorPool::Tables::AllocateArray(int count) {
return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type) * count));
}
string* DescriptorPool::Tables::AllocateString(const string& value) {
string* result = new string(value);
strings_.push_back(result);
return result;
}
template<typename Type>
Type* DescriptorPool::Tables::AllocateMessage(Type* dummy) {
Type* result = new Type;
messages_.push_back(result);
return result;
}
FileDescriptorTables* DescriptorPool::Tables::AllocateFileTables() {
FileDescriptorTables* result = new FileDescriptorTables;
file_tables_.push_back(result);
return result;
}
void* DescriptorPool::Tables::AllocateBytes(int size) {
// TODO(kenton): Would it be worthwhile to implement this in some more
// sophisticated way? Probably not for the open source release, but for
// internal use we could easily plug in one of our existing memory pool
// allocators...
if (size == 0) return NULL;
void* result = operator new(size);
allocations_.push_back(result);
return result;
}
// ===================================================================
// DescriptorPool
DescriptorPool::ErrorCollector::~ErrorCollector() {}
DescriptorPool::DescriptorPool()
: mutex_(NULL),
fallback_database_(NULL),
default_error_collector_(NULL),
underlay_(NULL),
tables_(new Tables),
enforce_dependencies_(true),
allow_unknown_(false) {}
DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database,
ErrorCollector* error_collector)
: mutex_(new Mutex),
fallback_database_(fallback_database),
default_error_collector_(error_collector),
underlay_(NULL),
tables_(new Tables),
enforce_dependencies_(true),
allow_unknown_(false) {
}
DescriptorPool::DescriptorPool(const DescriptorPool* underlay)
: mutex_(NULL),
fallback_database_(NULL),
default_error_collector_(NULL),
underlay_(underlay),
tables_(new Tables),
enforce_dependencies_(true),
allow_unknown_(false) {}
DescriptorPool::~DescriptorPool() {
if (mutex_ != NULL) delete mutex_;
}
// DescriptorPool::BuildFile() defined later.
// DescriptorPool::BuildFileCollectingErrors() defined later.
void DescriptorPool::InternalDontEnforceDependencies() {
enforce_dependencies_ = false;
}
bool DescriptorPool::InternalIsFileLoaded(const string& filename) const {
MutexLockMaybe lock(mutex_);
return tables_->FindFile(filename) != NULL;
}
// generated_pool ====================================================
namespace {
EncodedDescriptorDatabase* generated_database_ = NULL;
DescriptorPool* generated_pool_ = NULL;
GOOGLE_PROTOBUF_DECLARE_ONCE(generated_pool_init_);
void DeleteGeneratedPool() {
delete generated_database_;
generated_database_ = NULL;
delete generated_pool_;
generated_pool_ = NULL;
}
void InitGeneratedPool() {
generated_database_ = new EncodedDescriptorDatabase;
generated_pool_ = new DescriptorPool(generated_database_);
internal::OnShutdown(&DeleteGeneratedPool);
}
inline void InitGeneratedPoolOnce() {
::google::protobuf::GoogleOnceInit(&generated_pool_init_, &InitGeneratedPool);
}
} // anonymous namespace
const DescriptorPool* DescriptorPool::generated_pool() {
InitGeneratedPoolOnce();
return generated_pool_;
}
DescriptorPool* DescriptorPool::internal_generated_pool() {
InitGeneratedPoolOnce();
return generated_pool_;
}
void DescriptorPool::InternalAddGeneratedFile(
const void* encoded_file_descriptor, int size) {
// So, this function is called in the process of initializing the
// descriptors for generated proto classes. Each generated .pb.cc file
// has an internal procedure called AddDescriptors() which is called at
// process startup, and that function calls this one in order to register
// the raw bytes of the FileDescriptorProto representing the file.
//
// We do not actually construct the descriptor objects right away. We just
// hang on to the bytes until they are actually needed. We actually construct
// the descriptor the first time one of the following things happens:
// * Someone calls a method like descriptor(), GetDescriptor(), or
// GetReflection() on the generated types, which requires returning the
// descriptor or an object based on it.
// * Someone looks up the descriptor in DescriptorPool::generated_pool().
//
// Once one of these happens, the DescriptorPool actually parses the
// FileDescriptorProto and generates a FileDescriptor (and all its children)
// based on it.
//
// Note that FileDescriptorProto is itself a generated protocol message.
// Therefore, when we parse one, we have to be very careful to avoid using
// any descriptor-based operations, since this might cause infinite recursion
// or deadlock.
InitGeneratedPoolOnce();
GOOGLE_CHECK(generated_database_->Add(encoded_file_descriptor, size));
}
// Find*By* methods ==================================================
// TODO(kenton): There's a lot of repeated code here, but I'm not sure if
// there's any good way to factor it out. Think about this some time when
// there's nothing more important to do (read: never).
const FileDescriptor* DescriptorPool::FindFileByName(const string& name) const {
MutexLockMaybe lock(mutex_);
const FileDescriptor* result = tables_->FindFile(name);
if (result != NULL) return result;
if (underlay_ != NULL) {
const FileDescriptor* result = underlay_->FindFileByName(name);
if (result != NULL) return result;
}
if (TryFindFileInFallbackDatabase(name)) {
const FileDescriptor* result = tables_->FindFile(name);
if (result != NULL) return result;
}
return NULL;
}
const FileDescriptor* DescriptorPool::FindFileContainingSymbol(
const string& symbol_name) const {
MutexLockMaybe lock(mutex_);
Symbol result = tables_->FindSymbol(symbol_name);
if (!result.IsNull()) return result.GetFile();
if (underlay_ != NULL) {
const FileDescriptor* result =
underlay_->FindFileContainingSymbol(symbol_name);
if (result != NULL) return result;
}
if (TryFindSymbolInFallbackDatabase(symbol_name)) {
Symbol result = tables_->FindSymbol(symbol_name);
if (!result.IsNull()) return result.GetFile();
}
return NULL;
}
const Descriptor* DescriptorPool::FindMessageTypeByName(
const string& name) const {
Symbol result = tables_->FindByNameHelper(this, name);
return (result.type == Symbol::MESSAGE) ? result.descriptor : NULL;
}
const FieldDescriptor* DescriptorPool::FindFieldByName(
const string& name) const {
Symbol result = tables_->FindByNameHelper(this, name);
if (result.type == Symbol::FIELD &&
!result.field_descriptor->is_extension()) {
return result.field_descriptor;
} else {
return NULL;
}
}
const FieldDescriptor* DescriptorPool::FindExtensionByName(
const string& name) const {
Symbol result = tables_->FindByNameHelper(this, name);
if (result.type == Symbol::FIELD &&
result.field_descriptor->is_extension()) {
return result.field_descriptor;
} else {
return NULL;
}
}
const EnumDescriptor* DescriptorPool::FindEnumTypeByName(
const string& name) const {
Symbol result = tables_->FindByNameHelper(this, name);
return (result.type == Symbol::ENUM) ? result.enum_descriptor : NULL;
}
const EnumValueDescriptor* DescriptorPool::FindEnumValueByName(
const string& name) const {
Symbol result = tables_->FindByNameHelper(this, name);
return (result.type == Symbol::ENUM_VALUE) ?
result.enum_value_descriptor : NULL;
}
const ServiceDescriptor* DescriptorPool::FindServiceByName(
const string& name) const {
Symbol result = tables_->FindByNameHelper(this, name);
return (result.type == Symbol::SERVICE) ? result.service_descriptor : NULL;
}
const MethodDescriptor* DescriptorPool::FindMethodByName(
const string& name) const {
Symbol result = tables_->FindByNameHelper(this, name);
return (result.type == Symbol::METHOD) ? result.method_descriptor : NULL;
}
const FieldDescriptor* DescriptorPool::FindExtensionByNumber(
const Descriptor* extendee, int number) const {
MutexLockMaybe lock(mutex_);
const FieldDescriptor* result = tables_->FindExtension(extendee, number);
if (result != NULL) {
return result;
}
if (underlay_ != NULL) {
const FieldDescriptor* result =
underlay_->FindExtensionByNumber(extendee, number);
if (result != NULL) return result;
}
if (TryFindExtensionInFallbackDatabase(extendee, number)) {
const FieldDescriptor* result = tables_->FindExtension(extendee, number);
if (result != NULL) {
return result;
}
}
return NULL;
}
void DescriptorPool::FindAllExtensions(
const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
MutexLockMaybe lock(mutex_);
// Initialize tables_->extensions_ from the fallback database first
// (but do this only once per descriptor).
if (fallback_database_ != NULL &&
tables_->extensions_loaded_from_db_.count(extendee) == 0) {
vector<int> numbers;
if (fallback_database_->FindAllExtensionNumbers(extendee->full_name(),
&numbers)) {
for (int i = 0; i < numbers.size(); ++i) {
int number = numbers[i];
if (tables_->FindExtension(extendee, number) == NULL) {
TryFindExtensionInFallbackDatabase(extendee, number);
}
}
tables_->extensions_loaded_from_db_.insert(extendee);
}
}
tables_->FindAllExtensions(extendee, out);
if (underlay_ != NULL) {
underlay_->FindAllExtensions(extendee, out);
}
}
// -------------------------------------------------------------------
const FieldDescriptor*
Descriptor::FindFieldByNumber(int key) const {
const FieldDescriptor* result =
file()->tables_->FindFieldByNumber(this, key);
if (result == NULL || result->is_extension()) {
return NULL;
} else {
return result;
}
}
const FieldDescriptor*
Descriptor::FindFieldByLowercaseName(const string& key) const {
const FieldDescriptor* result =
file()->tables_->FindFieldByLowercaseName(this, key);
if (result == NULL || result->is_extension()) {
return NULL;
} else {
return result;
}
}
const FieldDescriptor*
Descriptor::FindFieldByCamelcaseName(const string& key) const {
const FieldDescriptor* result =
file()->tables_->FindFieldByCamelcaseName(this, key);
if (result == NULL || result->is_extension()) {
return NULL;
} else {
return result;
}
}
const FieldDescriptor*
Descriptor::FindFieldByName(const string& key) const {
Symbol result =
file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
if (!result.IsNull() && !result.field_descriptor->is_extension()) {
return result.field_descriptor;
} else {
return NULL;
}
}
const FieldDescriptor*
Descriptor::FindExtensionByName(const string& key) const {
Symbol result =
file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
if (!result.IsNull() && result.field_descriptor->is_extension()) {
return result.field_descriptor;
} else {
return NULL;
}
}
const FieldDescriptor*
Descriptor::FindExtensionByLowercaseName(const string& key) const {
const FieldDescriptor* result =
file()->tables_->FindFieldByLowercaseName(this, key);
if (result == NULL || !result->is_extension()) {
return NULL;
} else {
return result;
}
}
const FieldDescriptor*
Descriptor::FindExtensionByCamelcaseName(const string& key) const {
const FieldDescriptor* result =
file()->tables_->FindFieldByCamelcaseName(this, key);
if (result == NULL || !result->is_extension()) {
return NULL;
} else {
return result;
}
}
const Descriptor*
Descriptor::FindNestedTypeByName(const string& key) const {
Symbol result =
file()->tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
if (!result.IsNull()) {
return result.descriptor;
} else {
return NULL;
}
}
const EnumDescriptor*
Descriptor::FindEnumTypeByName(const string& key) const {
Symbol result =
file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
if (!result.IsNull()) {
return result.enum_descriptor;
} else {
return NULL;
}
}
const EnumValueDescriptor*
Descriptor::FindEnumValueByName(const string& key) const {
Symbol result =
file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
if (!result.IsNull()) {
return result.enum_value_descriptor;
} else {
return NULL;
}
}
const EnumValueDescriptor*
EnumDescriptor::FindValueByName(const string& key) const {
Symbol result =
file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
if (!result.IsNull()) {
return result.enum_value_descriptor;
} else {
return NULL;
}
}
const EnumValueDescriptor*
EnumDescriptor::FindValueByNumber(int key) const {
return file()->tables_->FindEnumValueByNumber(this, key);
}
const MethodDescriptor*
ServiceDescriptor::FindMethodByName(const string& key) const {
Symbol result =
file()->tables_->FindNestedSymbolOfType(this, key, Symbol::METHOD);
if (!result.IsNull()) {
return result.method_descriptor;
} else {
return NULL;
}
}
const Descriptor*
FileDescriptor::FindMessageTypeByName(const string& key) const {
Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
if (!result.IsNull()) {
return result.descriptor;
} else {
return NULL;
}
}
const EnumDescriptor*
FileDescriptor::FindEnumTypeByName(const string& key) const {
Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
if (!result.IsNull()) {
return result.enum_descriptor;
} else {
return NULL;
}
}
const EnumValueDescriptor*
FileDescriptor::FindEnumValueByName(const string& key) const {
Symbol result =
tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
if (!result.IsNull()) {
return result.enum_value_descriptor;
} else {
return NULL;
}
}
const ServiceDescriptor*
FileDescriptor::FindServiceByName(const string& key) const {
Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::SERVICE);
if (!result.IsNull()) {
return result.service_descriptor;
} else {
return NULL;
}
}
const FieldDescriptor*
FileDescriptor::FindExtensionByName(const string& key) const {
Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
if (!result.IsNull() && result.field_descriptor->is_extension()) {
return result.field_descriptor;
} else {
return NULL;
}
}
const FieldDescriptor*
FileDescriptor::FindExtensionByLowercaseName(const string& key) const {
const FieldDescriptor* result = tables_->FindFieldByLowercaseName(this, key);
if (result == NULL || !result->is_extension()) {
return NULL;
} else {
return result;
}
}
const FieldDescriptor*
FileDescriptor::FindExtensionByCamelcaseName(const string& key) const {
const FieldDescriptor* result = tables_->FindFieldByCamelcaseName(this, key);
if (result == NULL || !result->is_extension()) {
return NULL;
} else {
return result;
}
}
bool Descriptor::IsExtensionNumber(int number) const {
// Linear search should be fine because we don't expect a message to have
// more than a couple extension ranges.
for (int i = 0; i < extension_range_count(); i++) {
if (number >= extension_range(i)->start &&
number < extension_range(i)->end) {
return true;
}
}
return false;
}
// -------------------------------------------------------------------
bool DescriptorPool::TryFindFileInFallbackDatabase(const string& name) const {
if (fallback_database_ == NULL) return false;
if (tables_->known_bad_files_.count(name) > 0) return false;
FileDescriptorProto file_proto;
if (!fallback_database_->FindFileByName(name, &file_proto) ||
BuildFileFromDatabase(file_proto) == NULL) {
tables_->known_bad_files_.insert(name);
return false;
}
return true;
}
bool DescriptorPool::TryFindSymbolInFallbackDatabase(const string& name) const {
if (fallback_database_ == NULL) return false;
FileDescriptorProto file_proto;
if (!fallback_database_->FindFileContainingSymbol(name, &file_proto)) {
return false;
}
if (tables_->FindFile(file_proto.name()) != NULL) {
// We've already loaded this file, and it apparently doesn't contain the
// symbol we're looking for. Some DescriptorDatabases return false
// positives.
return false;
}
if (BuildFileFromDatabase(file_proto) == NULL) {
return false;
}
return true;
}
bool DescriptorPool::TryFindExtensionInFallbackDatabase(
const Descriptor* containing_type, int field_number) const {
if (fallback_database_ == NULL) return false;
FileDescriptorProto file_proto;
if (!fallback_database_->FindFileContainingExtension(
containing_type->full_name(), field_number, &file_proto)) {
return false;
}
if (tables_->FindFile(file_proto.name()) != NULL) {
// We've already loaded this file, and it apparently doesn't contain the
// extension we're looking for. Some DescriptorDatabases return false
// positives.
return false;
}
if (BuildFileFromDatabase(file_proto) == NULL) {
return false;
}
return true;
}
// ===================================================================
string FieldDescriptor::DefaultValueAsString(bool quote_string_type) const {
GOOGLE_CHECK(has_default_value()) << "No default value";
switch (cpp_type()) {
case CPPTYPE_INT32:
return SimpleItoa(default_value_int32());
break;
case CPPTYPE_INT64:
return SimpleItoa(default_value_int64());
break;
case CPPTYPE_UINT32:
return SimpleItoa(default_value_uint32());
break;
case CPPTYPE_UINT64:
return SimpleItoa(default_value_uint64());
break;
case CPPTYPE_FLOAT:
return SimpleFtoa(default_value_float());
break;
case CPPTYPE_DOUBLE:
return SimpleDtoa(default_value_double());
break;
case CPPTYPE_BOOL:
return default_value_bool() ? "true" : "false";
break;
case CPPTYPE_STRING:
if (quote_string_type) {
return "\"" + CEscape(default_value_string()) + "\"";
} else {
if (type() == TYPE_BYTES) {
return CEscape(default_value_string());
} else {
return default_value_string();
}
}
break;
case CPPTYPE_ENUM:
return default_value_enum()->name();
break;
case CPPTYPE_MESSAGE:
GOOGLE_LOG(DFATAL) << "Messages can't have default values!";
break;
}
GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string";
return "";
}
// CopyTo methods ====================================================
void FileDescriptor::CopyTo(FileDescriptorProto* proto) const {
proto->set_name(name());
if (!package().empty()) proto->set_package(package());
for (int i = 0; i < dependency_count(); i++) {
proto->add_dependency(dependency(i)->name());
}
for (int i = 0; i < message_type_count(); i++) {
message_type(i)->CopyTo(proto->add_message_type());
}
for (int i = 0; i < enum_type_count(); i++) {
enum_type(i)->CopyTo(proto->add_enum_type());
}
for (int i = 0; i < service_count(); i++) {
service(i)->CopyTo(proto->add_service());
}
for (int i = 0; i < extension_count(); i++) {
extension(i)->CopyTo(proto->add_extension());
}
if (&options() != &FileOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void Descriptor::CopyTo(DescriptorProto* proto) const {
proto->set_name(name());
for (int i = 0; i < field_count(); i++) {
field(i)->CopyTo(proto->add_field());
}
for (int i = 0; i < nested_type_count(); i++) {
nested_type(i)->CopyTo(proto->add_nested_type());
}
for (int i = 0; i < enum_type_count(); i++) {
enum_type(i)->CopyTo(proto->add_enum_type());
}
for (int i = 0; i < extension_range_count(); i++) {
DescriptorProto::ExtensionRange* range = proto->add_extension_range();
range->set_start(extension_range(i)->start);
range->set_end(extension_range(i)->end);
}
for (int i = 0; i < extension_count(); i++) {
extension(i)->CopyTo(proto->add_extension());
}
if (&options() != &MessageOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const {
proto->set_name(name());
proto->set_number(number());
// Some compilers do not allow static_cast directly between two enum types,
// so we must cast to int first.
proto->set_label(static_cast<FieldDescriptorProto::Label>(
implicit_cast<int>(label())));
proto->set_type(static_cast<FieldDescriptorProto::Type>(
implicit_cast<int>(type())));
if (is_extension()) {
if (!containing_type()->is_unqualified_placeholder_) {
proto->set_extendee(".");
}
proto->mutable_extendee()->append(containing_type()->full_name());
}
if (cpp_type() == CPPTYPE_MESSAGE) {
if (message_type()->is_placeholder_) {
// We don't actually know if the type is a message type. It could be
// an enum.
proto->clear_type();
}
if (!message_type()->is_unqualified_placeholder_) {
proto->set_type_name(".");
}
proto->mutable_type_name()->append(message_type()->full_name());
} else if (cpp_type() == CPPTYPE_ENUM) {
if (!enum_type()->is_unqualified_placeholder_) {
proto->set_type_name(".");
}
proto->mutable_type_name()->append(enum_type()->full_name());
}
if (has_default_value()) {
proto->set_default_value(DefaultValueAsString(false));
}
if (&options() != &FieldOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const {
proto->set_name(name());
for (int i = 0; i < value_count(); i++) {
value(i)->CopyTo(proto->add_value());
}
if (&options() != &EnumOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const {
proto->set_name(name());
proto->set_number(number());
if (&options() != &EnumValueOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const {
proto->set_name(name());
for (int i = 0; i < method_count(); i++) {
method(i)->CopyTo(proto->add_method());
}
if (&options() != &ServiceOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const {
proto->set_name(name());
if (!input_type()->is_unqualified_placeholder_) {
proto->set_input_type(".");
}
proto->mutable_input_type()->append(input_type()->full_name());
if (!output_type()->is_unqualified_placeholder_) {
proto->set_output_type(".");
}
proto->mutable_output_type()->append(output_type()->full_name());
if (&options() != &MethodOptions::default_instance()) {
proto->mutable_options()->CopyFrom(options());
}
}
// DebugString methods ===============================================
namespace {
// Used by each of the option formatters.
bool RetrieveOptions(const Message &options, vector<string> *option_entries) {
option_entries->clear();
const Reflection* reflection = options.GetReflection();
vector<const FieldDescriptor*> fields;
reflection->ListFields(options, &fields);
for (int i = 0; i < fields.size(); i++) {
// Doesn't make sense to have message type fields here
if (fields[i]->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
continue;
}
int count = 1;
bool repeated = false;
if (fields[i]->is_repeated()) {
count = reflection->FieldSize(options, fields[i]);
repeated = true;
}
for (int j = 0; j < count; j++) {
string fieldval;
TextFormat::PrintFieldValueToString(options, fields[i],
repeated ? count : -1, &fieldval);
option_entries->push_back(fields[i]->name() + " = " + fieldval);
}
}
return !option_entries->empty();
}
// Formats options that all appear together in brackets. Does not include
// brackets.
bool FormatBracketedOptions(const Message &options, string *output) {
vector<string> all_options;
if (RetrieveOptions(options, &all_options)) {
output->append(JoinStrings(all_options, ", "));
}
return !all_options.empty();
}
// Formats options one per line
bool FormatLineOptions(int depth, const Message &options, string *output) {
string prefix(depth * 2, ' ');
vector<string> all_options;
if (RetrieveOptions(options, &all_options)) {
for (int i = 0; i < all_options.size(); i++) {
strings::SubstituteAndAppend(output, "$0option $1;\n",
prefix, all_options[i]);
}
}
return !all_options.empty();
}
} // anonymous namespace
string FileDescriptor::DebugString() const {
string contents = "syntax = \"proto2\";\n\n";
for (int i = 0; i < dependency_count(); i++) {
strings::SubstituteAndAppend(&contents, "import \"$0\";\n",
dependency(i)->name());
}
if (!package().empty()) {
strings::SubstituteAndAppend(&contents, "package $0;\n\n", package());
}
if (FormatLineOptions(0, options(), &contents)) {
contents.append("\n"); // add some space if we had options
}
for (int i = 0; i < enum_type_count(); i++) {
enum_type(i)->DebugString(0, &contents);
contents.append("\n");
}
// Find all the 'group' type extensions; we will not output their nested
// definitions (those will be done with their group field descriptor).
set<const Descriptor*> groups;
for (int i = 0; i < extension_count(); i++) {
if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
groups.insert(extension(i)->message_type());
}
}
for (int i = 0; i < message_type_count(); i++) {
if (groups.count(message_type(i)) == 0) {
strings::SubstituteAndAppend(&contents, "message $0",
message_type(i)->name());
message_type(i)->DebugString(0, &contents);
contents.append("\n");
}
}
for (int i = 0; i < service_count(); i++) {
service(i)->DebugString(&contents);
contents.append("\n");
}
const Descriptor* containing_type = NULL;
for (int i = 0; i < extension_count(); i++) {
if (extension(i)->containing_type() != containing_type) {
if (i > 0) contents.append("}\n\n");
containing_type = extension(i)->containing_type();
strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
containing_type->full_name());
}
extension(i)->DebugString(1, &contents);
}
if (extension_count() > 0) contents.append("}\n\n");
return contents;
}
string Descriptor::DebugString() const {
string contents;
strings::SubstituteAndAppend(&contents, "message $0", name());
DebugString(0, &contents);
return contents;
}
void Descriptor::DebugString(int depth, string *contents) const {
string prefix(depth * 2, ' ');
++depth;
contents->append(" {\n");
FormatLineOptions(depth, options(), contents);
// Find all the 'group' types for fields and extensions; we will not output
// their nested definitions (those will be done with their group field
// descriptor).
set<const Descriptor*> groups;
for (int i = 0; i < field_count(); i++) {
if (field(i)->type() == FieldDescriptor::TYPE_GROUP) {
groups.insert(field(i)->message_type());
}
}
for (int i = 0; i < extension_count(); i++) {
if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
groups.insert(extension(i)->message_type());
}
}
for (int i = 0; i < nested_type_count(); i++) {
if (groups.count(nested_type(i)) == 0) {
strings::SubstituteAndAppend(contents, "$0 message $1",
prefix, nested_type(i)->name());
nested_type(i)->DebugString(depth, contents);
}
}
for (int i = 0; i < enum_type_count(); i++) {
enum_type(i)->DebugString(depth, contents);
}
for (int i = 0; i < field_count(); i++) {
field(i)->DebugString(depth, contents);
}
for (int i = 0; i < extension_range_count(); i++) {
strings::SubstituteAndAppend(contents, "$0 extensions $1 to $2;\n",
prefix,
extension_range(i)->start,
extension_range(i)->end - 1);
}
// Group extensions by what they extend, so they can be printed out together.
const Descriptor* containing_type = NULL;
for (int i = 0; i < extension_count(); i++) {
if (extension(i)->containing_type() != containing_type) {
if (i > 0) strings::SubstituteAndAppend(contents, "$0 }\n", prefix);
containing_type = extension(i)->containing_type();
strings::SubstituteAndAppend(contents, "$0 extend .$1 {\n",
prefix, containing_type->full_name());
}
extension(i)->DebugString(depth + 1, contents);
}
if (extension_count() > 0)
strings::SubstituteAndAppend(contents, "$0 }\n", prefix);
strings::SubstituteAndAppend(contents, "$0}\n", prefix);
}
string FieldDescriptor::DebugString() const {
string contents;
int depth = 0;
if (is_extension()) {
strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
containing_type()->full_name());
depth = 1;
}
DebugString(depth, &contents);
if (is_extension()) {
contents.append("}\n");
}
return contents;
}
void FieldDescriptor::DebugString(int depth, string *contents) const {
string prefix(depth * 2, ' ');
string field_type;
switch (type()) {
case TYPE_MESSAGE:
field_type = "." + message_type()->full_name();
break;
case TYPE_ENUM:
field_type = "." + enum_type()->full_name();
break;
default:
field_type = kTypeToName[type()];
}
strings::SubstituteAndAppend(contents, "$0$1 $2 $3 = $4",
prefix,
kLabelToName[label()],
field_type,
type() == TYPE_GROUP ? message_type()->name() :
name(),
number());
bool bracketed = false;
if (has_default_value()) {
bracketed = true;
strings::SubstituteAndAppend(contents, " [default = $0",
DefaultValueAsString(true));
}
string formatted_options;
if (FormatBracketedOptions(options(), &formatted_options)) {
contents->append(bracketed ? ", " : " [");
bracketed = true;
contents->append(formatted_options);
}
if (bracketed) {
contents->append("]");
}
if (type() == TYPE_GROUP) {
message_type()->DebugString(depth, contents);
} else {
contents->append(";\n");
}
}
string EnumDescriptor::DebugString() const {
string contents;
DebugString(0, &contents);
return contents;
}
void EnumDescriptor::DebugString(int depth, string *contents) const {
string prefix(depth * 2, ' ');
++depth;
strings::SubstituteAndAppend(contents, "$0enum $1 {\n",
prefix, name());
FormatLineOptions(depth, options(), contents);
for (int i = 0; i < value_count(); i++) {
value(i)->DebugString(depth, contents);
}
strings::SubstituteAndAppend(contents, "$0}\n", prefix);
}
string EnumValueDescriptor::DebugString() const {
string contents;
DebugString(0, &contents);
return contents;
}
void EnumValueDescriptor::DebugString(int depth, string *contents) const {
string prefix(depth * 2, ' ');
strings::SubstituteAndAppend(contents, "$0$1 = $2",
prefix, name(), number());
string formatted_options;
if (FormatBracketedOptions(options(), &formatted_options)) {
strings::SubstituteAndAppend(contents, " [$0]", formatted_options);
}
contents->append(";\n");
}
string ServiceDescriptor::DebugString() const {
string contents;
DebugString(&contents);
return contents;
}
void ServiceDescriptor::DebugString(string *contents) const {
strings::SubstituteAndAppend(contents, "service $0 {\n", name());
FormatLineOptions(1, options(), contents);
for (int i = 0; i < method_count(); i++) {
method(i)->DebugString(1, contents);
}
contents->append("}\n");
}
string MethodDescriptor::DebugString() const {
string contents;
DebugString(0, &contents);
return contents;
}
void MethodDescriptor::DebugString(int depth, string *contents) const {
string prefix(depth * 2, ' ');
++depth;
strings::SubstituteAndAppend(contents, "$0rpc $1(.$2) returns (.$3)",
prefix, name(),
input_type()->full_name(),
output_type()->full_name());
string formatted_options;
if (FormatLineOptions(depth, options(), &formatted_options)) {
strings::SubstituteAndAppend(contents, " {\n$0$1}\n",
formatted_options, prefix);
} else {
contents->append(";\n");
}
}
// ===================================================================
namespace {
// Represents an options message to interpret. Extension names in the option
// name are respolved relative to name_scope. element_name and orig_opt are
// used only for error reporting (since the parser records locations against
// pointers in the original options, not the mutable copy). The Message must be
// one of the Options messages in descriptor.proto.
struct OptionsToInterpret {
OptionsToInterpret(const string& ns,
const string& el,
const Message* orig_opt,
Message* opt)
: name_scope(ns),
element_name(el),
original_options(orig_opt),
options(opt) {
}
string name_scope;
string element_name;
const Message* original_options;
Message* options;
};
} // namespace
class DescriptorBuilder {
public:
DescriptorBuilder(const DescriptorPool* pool,
DescriptorPool::Tables* tables,
DescriptorPool::ErrorCollector* error_collector);
~DescriptorBuilder();
const FileDescriptor* BuildFile(const FileDescriptorProto& proto);
private:
friend class OptionInterpreter;
const DescriptorPool* pool_;
DescriptorPool::Tables* tables_; // for convenience
DescriptorPool::ErrorCollector* error_collector_;
// As we build descriptors we store copies of the options messages in
// them. We put pointers to those copies in this vector, as we build, so we
// can later (after cross-linking) interpret those options.
vector<OptionsToInterpret> options_to_interpret_;
bool had_errors_;
string filename_;
FileDescriptor* file_;
FileDescriptorTables* file_tables_;
// If LookupSymbol() finds a symbol that is in a file which is not a declared
// dependency of this file, it will fail, but will set
// possible_undeclared_dependency_ to point at that file. This is only used
// by AddNotDefinedError() to report a more useful error message.
// possible_undeclared_dependency_name_ is the name of the symbol that was
// actually found in possible_undeclared_dependency_, which may be a parent
// of the symbol actually looked for.
const FileDescriptor* possible_undeclared_dependency_;
string possible_undeclared_dependency_name_;
void AddError(const string& element_name,
const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const string& error);
// Adds an error indicating that undefined_symbol was not defined. Must
// only be called after LookupSymbol() fails.
void AddNotDefinedError(
const string& element_name,
const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const string& undefined_symbol);
// Silly helper which determines if the given file is in the given package.
// I.e., either file->package() == package_name or file->package() is a
// nested package within package_name.
bool IsInPackage(const FileDescriptor* file, const string& package_name);
// Like tables_->FindSymbol(), but additionally:
// - Search the pool's underlay if not found in tables_.
// - Insure that the resulting Symbol is from one of the file's declared
// dependencies.
Symbol FindSymbol(const string& name);
// Like FindSymbol() but does not require that the symbol is in one of the
// file's declared dependencies.
Symbol FindSymbolNotEnforcingDeps(const string& name);
// Like FindSymbol(), but looks up the name relative to some other symbol
// name. This first searches siblings of relative_to, then siblings of its
// parents, etc. For example, LookupSymbol("foo.bar", "baz.qux.corge") makes
// the following calls, returning the first non-null result:
// FindSymbol("baz.qux.foo.bar"), FindSymbol("baz.foo.bar"),
// FindSymbol("foo.bar"). If AllowUnknownDependencies() has been called
// on the DescriptorPool, this will generate a placeholder type if
// the name is not found (unless the name itself is malformed). The
// placeholder_type parameter indicates what kind of placeholder should be
// constructed in this case. The resolve_mode parameter determines whether
// any symbol is returned, or only symbols that are types. Note, however,
// that LookupSymbol may still return a non-type symbol in LOOKUP_TYPES mode,
// if it believes that's all it could refer to. The caller should always
// check that it receives the type of symbol it was expecting.
enum PlaceholderType {
PLACEHOLDER_MESSAGE,
PLACEHOLDER_ENUM,
PLACEHOLDER_EXTENDABLE_MESSAGE
};
enum ResolveMode {
LOOKUP_ALL, LOOKUP_TYPES
};
Symbol LookupSymbol(const string& name, const string& relative_to,
PlaceholderType placeholder_type = PLACEHOLDER_MESSAGE,
ResolveMode resolve_mode = LOOKUP_ALL);
// Like LookupSymbol() but will not return a placeholder even if
// AllowUnknownDependencies() has been used.
Symbol LookupSymbolNoPlaceholder(const string& name,
const string& relative_to,
ResolveMode resolve_mode = LOOKUP_ALL);
// Creates a placeholder type suitable for return from LookupSymbol(). May
// return kNullSymbol if the name is not a valid type name.
Symbol NewPlaceholder(const string& name, PlaceholderType placeholder_type);
// Creates a placeholder file. Never returns NULL. This is used when an
// import is not found and AllowUnknownDependencies() is enabled.
const FileDescriptor* NewPlaceholderFile(const string& name);
// Calls tables_->AddSymbol() and records an error if it fails. Returns
// true if successful or false if failed, though most callers can ignore
// the return value since an error has already been recorded.
bool AddSymbol(const string& full_name,
const void* parent, const string& name,
const Message& proto, Symbol symbol);
// Like AddSymbol(), but succeeds if the symbol is already defined as long
// as the existing definition is also a package (because it's OK to define
// the same package in two different files). Also adds all parents of the
// packgae to the symbol table (e.g. AddPackage("foo.bar", ...) will add
// "foo.bar" and "foo" to the table).
void AddPackage(const string& name, const Message& proto,
const FileDescriptor* file);
// Checks that the symbol name contains only alphanumeric characters and
// underscores. Records an error otherwise.
void ValidateSymbolName(const string& name, const string& full_name,
const Message& proto);
// Like ValidateSymbolName(), but the name is allowed to contain periods and
// an error is indicated by returning false (not recording the error).
bool ValidateQualifiedName(const string& name);
// Used by BUILD_ARRAY macro (below) to avoid having to have the type
// specified as a macro parameter.
template <typename Type>
inline void AllocateArray(int size, Type** output) {
*output = tables_->AllocateArray<Type>(size);
}
// Allocates a copy of orig_options in tables_ and stores it in the
// descriptor. Remembers its uninterpreted options, to be interpreted
// later. DescriptorT must be one of the Descriptor messages from
// descriptor.proto.
template<class DescriptorT> void AllocateOptions(
const typename DescriptorT::OptionsType& orig_options,
DescriptorT* descriptor);
// Specialization for FileOptions.
void AllocateOptions(const FileOptions& orig_options,
FileDescriptor* descriptor);
// Implementation for AllocateOptions(). Don't call this directly.
template<class DescriptorT> void AllocateOptionsImpl(
const string& name_scope,
const string& element_name,
const typename DescriptorT::OptionsType& orig_options,
DescriptorT* descriptor);
// These methods all have the same signature for the sake of the BUILD_ARRAY
// macro, below.
void BuildMessage(const DescriptorProto& proto,
const Descriptor* parent,
Descriptor* result);
void BuildFieldOrExtension(const FieldDescriptorProto& proto,
const Descriptor* parent,
FieldDescriptor* result,
bool is_extension);
void BuildField(const FieldDescriptorProto& proto,
const Descriptor* parent,
FieldDescriptor* result) {
BuildFieldOrExtension(proto, parent, result, false);
}
void BuildExtension(const FieldDescriptorProto& proto,
const Descriptor* parent,
FieldDescriptor* result) {
BuildFieldOrExtension(proto, parent, result, true);
}
void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto,
const Descriptor* parent,
Descriptor::ExtensionRange* result);
void BuildEnum(const EnumDescriptorProto& proto,
const Descriptor* parent,
EnumDescriptor* result);
void BuildEnumValue(const EnumValueDescriptorProto& proto,
const EnumDescriptor* parent,
EnumValueDescriptor* result);
void BuildService(const ServiceDescriptorProto& proto,
const void* dummy,
ServiceDescriptor* result);
void BuildMethod(const MethodDescriptorProto& proto,
const ServiceDescriptor* parent,
MethodDescriptor* result);
// Must be run only after building.
//
// NOTE: Options will not be available during cross-linking, as they
// have not yet been interpreted. Defer any handling of options to the
// Validate*Options methods.
void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto);
void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto);
void CrossLinkField(FieldDescriptor* field,
const FieldDescriptorProto& proto);
void CrossLinkEnum(EnumDescriptor* enum_type,
const EnumDescriptorProto& proto);
void CrossLinkEnumValue(EnumValueDescriptor* enum_value,
const EnumValueDescriptorProto& proto);
void CrossLinkService(ServiceDescriptor* service,
const ServiceDescriptorProto& proto);
void CrossLinkMethod(MethodDescriptor* method,
const MethodDescriptorProto& proto);
// Must be run only after cross-linking.
void InterpretOptions();
// A helper class for interpreting options.
class OptionInterpreter {
public:
// Creates an interpreter that operates in the context of the pool of the
// specified builder, which must not be NULL. We don't take ownership of the
// builder.
explicit OptionInterpreter(DescriptorBuilder* builder);
~OptionInterpreter();
// Interprets the uninterpreted options in the specified Options message.
// On error, calls AddError() on the underlying builder and returns false.
// Otherwise returns true.
bool InterpretOptions(OptionsToInterpret* options_to_interpret);
private:
// Interprets uninterpreted_option_ on the specified message, which
// must be the mutable copy of the original options message to which
// uninterpreted_option_ belongs.
bool InterpretSingleOption(Message* options);
// Adds the uninterpreted_option to the given options message verbatim.
// Used when AllowUnknownDependencies() is in effect and we can't find
// the option's definition.
void AddWithoutInterpreting(const UninterpretedOption& uninterpreted_option,
Message* options);
// A recursive helper function that drills into the intermediate fields
// in unknown_fields to check if field innermost_field is set on the
// innermost message. Returns false and sets an error if so.
bool ExamineIfOptionIsSet(
vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
const FieldDescriptor* innermost_field, const string& debug_msg_name,
const UnknownFieldSet& unknown_fields);
// Validates the value for the option field of the currently interpreted
// option and then sets it on the unknown_field.
bool SetOptionValue(const FieldDescriptor* option_field,
UnknownFieldSet* unknown_fields);
// Convenience functions to set an int field the right way, depending on
// its wire type (a single int CppType can represent multiple wire types).
void SetInt32(int number, int32 value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields);
void SetInt64(int number, int64 value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields);
void SetUInt32(int number, uint32 value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields);
void SetUInt64(int number, uint64 value, FieldDescriptor::Type type,
UnknownFieldSet* unknown_fields);
// A helper function that adds an error at the specified location of the
// option we're currently interpreting, and returns false.
bool AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,
const string& msg) {
builder_->AddError(options_to_interpret_->element_name,
*uninterpreted_option_, location, msg);
return false;
}
// A helper function that adds an error at the location of the option name
// and returns false.
bool AddNameError(const string& msg) {
return AddOptionError(DescriptorPool::ErrorCollector::OPTION_NAME, msg);
}
// A helper function that adds an error at the location of the option name
// and returns false.
bool AddValueError(const string& msg) {
return AddOptionError(DescriptorPool::ErrorCollector::OPTION_VALUE, msg);
}
// We interpret against this builder's pool. Is never NULL. We don't own
// this pointer.
DescriptorBuilder* builder_;
// The options we're currently interpreting, or NULL if we're not in a call
// to InterpretOptions.
const OptionsToInterpret* options_to_interpret_;
// The option we're currently interpreting within options_to_interpret_, or
// NULL if we're not in a call to InterpretOptions(). This points to a
// submessage of the original option, not the mutable copy. Therefore we
// can use it to find locations recorded by the parser.
const UninterpretedOption* uninterpreted_option_;
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OptionInterpreter);
};
// Work-around for broken compilers: According to the C++ standard,
// OptionInterpreter should have access to the private members of any class
// which has declared DescriptorBuilder as a friend. Unfortunately some old
// versions of GCC and other compilers do not implement this correctly. So,
// we have to have these intermediate methods to provide access. We also
// redundantly declare OptionInterpreter a friend just to make things extra
// clear for these bad compilers.
friend class OptionInterpreter;
static inline bool get_allow_unknown(const DescriptorPool* pool) {
return pool->allow_unknown_;
}
static inline bool get_is_placeholder(const Descriptor* descriptor) {
return descriptor->is_placeholder_;
}
// Must be run only after options have been interpreted.
//
// NOTE: Validation code must only reference the options in the mutable
// descriptors, which are the ones that have been interpreted. The const
// proto references are passed in only so they can be provided to calls to
// AddError(). Do not look at their options, which have not been interpreted.
void ValidateFileOptions(FileDescriptor* file,
const FileDescriptorProto& proto);
void ValidateMessageOptions(Descriptor* message,
const DescriptorProto& proto);
void ValidateFieldOptions(FieldDescriptor* field,
const FieldDescriptorProto& proto);
void ValidateEnumOptions(EnumDescriptor* enm,
const EnumDescriptorProto& proto);
void ValidateEnumValueOptions(EnumValueDescriptor* enum_value,
const EnumValueDescriptorProto& proto);
void ValidateServiceOptions(ServiceDescriptor* service,
const ServiceDescriptorProto& proto);
void ValidateMethodOptions(MethodDescriptor* method,
const MethodDescriptorProto& proto);
void ValidateMapKey(FieldDescriptor* field,
const FieldDescriptorProto& proto);
};
const FileDescriptor* DescriptorPool::BuildFile(
const FileDescriptorProto& proto) {
GOOGLE_CHECK(fallback_database_ == NULL)
<< "Cannot call BuildFile on a DescriptorPool that uses a "
"DescriptorDatabase. You must instead find a way to get your file "
"into the underlying database.";
GOOGLE_CHECK(mutex_ == NULL); // Implied by the above GOOGLE_CHECK.
return DescriptorBuilder(this, tables_.get(), NULL).BuildFile(proto);
}
const FileDescriptor* DescriptorPool::BuildFileCollectingErrors(
const FileDescriptorProto& proto,
ErrorCollector* error_collector) {
GOOGLE_CHECK(fallback_database_ == NULL)
<< "Cannot call BuildFile on a DescriptorPool that uses a "
"DescriptorDatabase. You must instead find a way to get your file "
"into the underlying database.";
GOOGLE_CHECK(mutex_ == NULL); // Implied by the above GOOGLE_CHECK.
return DescriptorBuilder(this, tables_.get(),
error_collector).BuildFile(proto);
}
const FileDescriptor* DescriptorPool::BuildFileFromDatabase(
const FileDescriptorProto& proto) const {
mutex_->AssertHeld();
return DescriptorBuilder(this, tables_.get(),
default_error_collector_).BuildFile(proto);
}
DescriptorBuilder::DescriptorBuilder(
const DescriptorPool* pool,
DescriptorPool::Tables* tables,
DescriptorPool::ErrorCollector* error_collector)
: pool_(pool),
tables_(tables),
error_collector_(error_collector),
had_errors_(false),
possible_undeclared_dependency_(NULL) {}
DescriptorBuilder::~DescriptorBuilder() {}
void DescriptorBuilder::AddError(
const string& element_name,
const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const string& error) {
if (error_collector_ == NULL) {
if (!had_errors_) {
GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_
<< "\":";
}
GOOGLE_LOG(ERROR) << " " << element_name << ": " << error;
} else {
error_collector_->AddError(filename_, element_name,
&descriptor, location, error);
}
had_errors_ = true;
}
void DescriptorBuilder::AddNotDefinedError(
const string& element_name,
const Message& descriptor,
DescriptorPool::ErrorCollector::ErrorLocation location,
const string& undefined_symbol) {
if (possible_undeclared_dependency_ == NULL) {
AddError(element_name, descriptor, location,
"\"" + undefined_symbol + "\" is not defined.");
} else {
AddError(element_name, descriptor, location,
"\"" + possible_undeclared_dependency_name_ +
"\" seems to be defined in \"" +
possible_undeclared_dependency_->name() + "\", which is not "
"imported by \"" + filename_ + "\". To use it here, please "
"add the necessary import.");
}
}
bool DescriptorBuilder::IsInPackage(const FileDescriptor* file,
const string& package_name) {
return HasPrefixString(file->package(), package_name) &&
(file->package().size() == package_name.size() ||
file->package()[package_name.size()] == '.');
}
Symbol DescriptorBuilder::FindSymbolNotEnforcingDeps(const string& name) {
Symbol result;
// We need to search our pool and all its underlays.
const DescriptorPool* pool = pool_;
while (true) {
// If we are looking at an underlay, we must lock its mutex_, since we are
// accessing the underlay's tables_ dircetly.
MutexLockMaybe lock((pool == pool_) ? NULL : pool->mutex_);
// Note that we don't have to check fallback_database_ here because the
// symbol has to be in one of its file's direct dependencies, and we have
// already loaded those by the time we get here.
result = pool->tables_->FindSymbol(name);
if (!result.IsNull()) break;
if (pool->underlay_ == NULL) return kNullSymbol;
pool = pool->underlay_;
}
return result;
}
Symbol DescriptorBuilder::FindSymbol(const string& name) {
Symbol result = FindSymbolNotEnforcingDeps(name);
if (!pool_->enforce_dependencies_) {
// Hack for CompilerUpgrader.
return result;
}
// Only find symbols which were defined in this file or one of its
// dependencies.
const FileDescriptor* file = result.GetFile();
if (file == file_) return result;
for (int i = 0; i < file_->dependency_count(); i++) {
if (file == file_->dependency(i)) return result;
}
if (result.type == Symbol::PACKAGE) {
// Arg, this is overcomplicated. The symbol is a package name. It could
// be that the package was defined in multiple files. result.GetFile()
// returns the first file we saw that used this package. We've determined
// that that file is not a direct dependency of the file we are currently
// building, but it could be that some other file which *is* a direct
// dependency also defines the same package. We can't really rule out this
// symbol unless none of the dependencies define it.
if (IsInPackage(file_, name)) return result;
for (int i = 0; i < file_->dependency_count(); i++) {
// Note: A dependency may be NULL if it was not found or had errors.
if (file_->dependency(i) != NULL &&
IsInPackage(file_->dependency(i), name)) {
return result;
}
}
}
possible_undeclared_dependency_ = file;
possible_undeclared_dependency_name_ = name;
return kNullSymbol;
}
Symbol DescriptorBuilder::LookupSymbolNoPlaceholder(
const string& name, const string& relative_to, ResolveMode resolve_mode) {
possible_undeclared_dependency_ = NULL;
if (name.size() > 0 && name[0] == '.') {
// Fully-qualified name.
return FindSymbol(name.substr(1));
}
// If name is something like "Foo.Bar.baz", and symbols named "Foo" are
// defined in multiple parent scopes, we only want to find "Bar.baz" in the
// innermost one. E.g., the following should produce an error:
// message Bar { message Baz {} }
// message Foo {
// message Bar {
// }
// optional Bar.Baz baz = 1;
// }
// So, we look for just "Foo" first, then look for "Bar.baz" within it if
// found.
int name_dot_pos = name.find_first_of('.');
string first_part_of_name;
if (name_dot_pos == string::npos) {
first_part_of_name = name;
} else {
first_part_of_name = name.substr(0, name_dot_pos);
}
string scope_to_try(relative_to);
while (true) {
// Chop off the last component of the scope.
string::size_type dot_pos = scope_to_try.find_last_of('.');
if (dot_pos == string::npos) {
return FindSymbol(name);
} else {
scope_to_try.erase(dot_pos);
}
// Append ".first_part_of_name" and try to find.
string::size_type old_size = scope_to_try.size();
scope_to_try.append(1, '.');
scope_to_try.append(first_part_of_name);
Symbol result = FindSymbol(scope_to_try);
if (!result.IsNull()) {
if (first_part_of_name.size() < name.size()) {
// name is a compound symbol, of which we only found the first part.
// Now try to look up the rest of it.
if (result.IsAggregate()) {
scope_to_try.append(name, first_part_of_name.size(),
name.size() - first_part_of_name.size());
return FindSymbol(scope_to_try);
} else {
// We found a symbol but it's not an aggregate. Continue the loop.
}
} else {
if (resolve_mode == LOOKUP_TYPES && !result.IsType()) {
// We found a symbol but it's not a type. Continue the loop.
} else {
return result;
}
}
}
// Not found. Remove the name so we can try again.
scope_to_try.erase(old_size);
}
}
Symbol DescriptorBuilder::LookupSymbol(
const string& name, const string& relative_to,
PlaceholderType placeholder_type, ResolveMode resolve_mode) {
Symbol result = LookupSymbolNoPlaceholder(
name, relative_to, resolve_mode);
if (result.IsNull() && pool_->allow_unknown_) {
// Not found, but AllowUnknownDependencies() is enabled. Return a
// placeholder instead.
result = NewPlaceholder(name, placeholder_type);
}
return result;
}
Symbol DescriptorBuilder::NewPlaceholder(const string& name,
PlaceholderType placeholder_type) {
// Compute names.
const string* placeholder_full_name;
const string* placeholder_name;
const string* placeholder_package;
if (!ValidateQualifiedName(name)) return kNullSymbol;
if (name[0] == '.') {
// Fully-qualified.
placeholder_full_name = tables_->AllocateString(name.substr(1));
} else {
placeholder_full_name = tables_->AllocateString(name);
}
string::size_type dotpos = placeholder_full_name->find_last_of('.');
if (dotpos != string::npos) {
placeholder_package = tables_->AllocateString(
placeholder_full_name->substr(0, dotpos));
placeholder_name = tables_->AllocateString(
placeholder_full_name->substr(dotpos + 1));
} else {
placeholder_package = &kEmptyString;
placeholder_name = placeholder_full_name;
}
// Create the placeholders.
FileDescriptor* placeholder_file = tables_->Allocate<FileDescriptor>();
memset(placeholder_file, 0, sizeof(*placeholder_file));
placeholder_file->name_ =
tables_->AllocateString(*placeholder_full_name + ".placeholder.proto");
placeholder_file->package_ = placeholder_package;
placeholder_file->pool_ = pool_;
placeholder_file->options_ = &FileOptions::default_instance();
placeholder_file->tables_ = &FileDescriptorTables::kEmpty;
// All other fields are zero or NULL.
if (placeholder_type == PLACEHOLDER_ENUM) {
placeholder_file->enum_type_count_ = 1;
placeholder_file->enum_types_ =
tables_->AllocateArray<EnumDescriptor>(1);
EnumDescriptor* placeholder_enum = &placeholder_file->enum_types_[0];
memset(placeholder_enum, 0, sizeof(*placeholder_enum));
placeholder_enum->full_name_ = placeholder_full_name;
placeholder_enum->name_ = placeholder_name;
placeholder_enum->file_ = placeholder_file;
placeholder_enum->options_ = &EnumOptions::default_instance();
placeholder_enum->is_placeholder_ = true;
placeholder_enum->is_unqualified_placeholder_ = (name[0] != '.');
// Enums must have at least one value.
placeholder_enum->value_count_ = 1;
placeholder_enum->values_ = tables_->AllocateArray<EnumValueDescriptor>(1);
EnumValueDescriptor* placeholder_value = &placeholder_enum->values_[0];
memset(placeholder_value, 0, sizeof(*placeholder_value));
placeholder_value->name_ = tables_->AllocateString("PLACEHOLDER_VALUE");
// Note that enum value names are siblings of their type, not children.
placeholder_value->full_name_ =
placeholder_package->empty() ? placeholder_value->name_ :
tables_->AllocateString(*placeholder_package + ".PLACEHOLDER_VALUE");
placeholder_value->number_ = 0;
placeholder_value->type_ = placeholder_enum;
placeholder_value->options_ = &EnumValueOptions::default_instance();
return Symbol(placeholder_enum);
} else {
placeholder_file->message_type_count_ = 1;
placeholder_file->message_types_ =
tables_->AllocateArray<Descriptor>(1);
Descriptor* placeholder_message = &placeholder_file->message_types_[0];
memset(placeholder_message, 0, sizeof(*placeholder_message));
placeholder_message->full_name_ = placeholder_full_name;
placeholder_message->name_ = placeholder_name;
placeholder_message->file_ = placeholder_file;
placeholder_message->options_ = &MessageOptions::default_instance();
placeholder_message->is_placeholder_ = true;
placeholder_message->is_unqualified_placeholder_ = (name[0] != '.');
if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) {
placeholder_message->extension_range_count_ = 1;
placeholder_message->extension_ranges_ =
tables_->AllocateArray<Descriptor::ExtensionRange>(1);
placeholder_message->extension_ranges_->start = 1;
// kMaxNumber + 1 because ExtensionRange::end is exclusive.
placeholder_message->extension_ranges_->end =
FieldDescriptor::kMaxNumber + 1;
}
return Symbol(placeholder_message);
}
}
const FileDescriptor* DescriptorBuilder::NewPlaceholderFile(
const string& name) {
FileDescriptor* placeholder = tables_->Allocate<FileDescriptor>();
memset(placeholder, 0, sizeof(*placeholder));
placeholder->name_ = tables_->AllocateString(name);
placeholder->package_ = &kEmptyString;
placeholder->pool_ = pool_;
placeholder->options_ = &FileOptions::default_instance();
placeholder->tables_ = &FileDescriptorTables::kEmpty;
// All other fields are zero or NULL.
return placeholder;
}
bool DescriptorBuilder::AddSymbol(
const string& full_name, const void* parent, const string& name,
const Message& proto, Symbol symbol) {
// If the caller passed NULL for the parent, the symbol is at file scope.
// Use its file as the parent instead.
if (parent == NULL) parent = file_;
if (tables_->AddSymbol(full_name, symbol)) {
if (!file_tables_->AddAliasUnderParent(parent, name, symbol)) {
GOOGLE_LOG(DFATAL) << "\"" << full_name << "\" not previously defined in "
"symbols_by_name_, but was defined in symbols_by_parent_; "
"this shouldn't be possible.";
return false;
}
return true;
} else {
const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile();
if (other_file == file_) {
string::size_type dot_pos = full_name.find_last_of('.');
if (dot_pos == string::npos) {
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + full_name + "\" is already defined.");
} else {
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + full_name.substr(dot_pos + 1) +
"\" is already defined in \"" +
full_name.substr(0, dot_pos) + "\".");
}
} else {
// Symbol seems to have been defined in a different file.
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + full_name + "\" is already defined in file \"" +
other_file->name() + "\".");
}
return false;
}
}
void DescriptorBuilder::AddPackage(
const string& name, const Message& proto, const FileDescriptor* file) {
if (tables_->AddSymbol(name, Symbol(file))) {
// Success. Also add parent package, if any.
string::size_type dot_pos = name.find_last_of('.');
if (dot_pos == string::npos) {
// No parents.
ValidateSymbolName(name, name, proto);
} else {
// Has parent.
string* parent_name = tables_->AllocateString(name.substr(0, dot_pos));
AddPackage(*parent_name, proto, file);
ValidateSymbolName(name.substr(dot_pos + 1), name, proto);
}
} else {
Symbol existing_symbol = tables_->FindSymbol(name);
// It's OK to redefine a package.
if (existing_symbol.type != Symbol::PACKAGE) {
// Symbol seems to have been defined in a different file.
AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + name + "\" is already defined (as something other than "
"a package) in file \"" + existing_symbol.GetFile()->name() +
"\".");
}
}
}
void DescriptorBuilder::ValidateSymbolName(
const string& name, const string& full_name, const Message& proto) {
if (name.empty()) {
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"Missing name.");
} else {
for (int i = 0; i < name.size(); i++) {
// I don't trust isalnum() due to locales. :(
if ((name[i] < 'a' || 'z' < name[i]) &&
(name[i] < 'A' || 'Z' < name[i]) &&
(name[i] < '0' || '9' < name[i]) &&
(name[i] != '_')) {
AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
"\"" + name + "\" is not a valid identifier.");
}
}
}
}
bool DescriptorBuilder::ValidateQualifiedName(const string& name) {
bool last_was_period = false;
for (int i = 0; i < name.size(); i++) {
// I don't trust isalnum() due to locales. :(
if (('a' <= name[i] && name[i] <= 'z') ||
('A' <= name[i] && name[i] <= 'Z') ||
('0' <= name[i] && name[i] <= '9') ||
(name[i] == '_')) {
last_was_period = false;
} else if (name[i] == '.') {
if (last_was_period) return false;
last_was_period = true;
} else {
return false;
}
}
return !name.empty() && !last_was_period;
}
// -------------------------------------------------------------------
// This generic implementation is good for all descriptors except
// FileDescriptor.
template<class DescriptorT> void DescriptorBuilder::AllocateOptions(
const typename DescriptorT::OptionsType& orig_options,
DescriptorT* descriptor) {
AllocateOptionsImpl(descriptor->full_name(), descriptor->full_name(),
orig_options, descriptor);
}
// We specialize for FileDescriptor.
void DescriptorBuilder::AllocateOptions(const FileOptions& orig_options,
FileDescriptor* descriptor) {
// We add the dummy token so that LookupSymbol does the right thing.
AllocateOptionsImpl(descriptor->package() + ".dummy", descriptor->name(),
orig_options, descriptor);
}
template<class DescriptorT> void DescriptorBuilder::AllocateOptionsImpl(
const string& name_scope,
const string& element_name,
const typename DescriptorT::OptionsType& orig_options,
DescriptorT* descriptor) {
// We need to use a dummy pointer to work around a bug in older versions of
// GCC. Otherwise, the following two lines could be replaced with:
// typename DescriptorT::OptionsType* options =
// tables_->AllocateMessage<typename DescriptorT::OptionsType>();
typename DescriptorT::OptionsType* const dummy = NULL;
typename DescriptorT::OptionsType* options = tables_->AllocateMessage(dummy);
options->CopyFrom(orig_options);
descriptor->options_ = options;
// Don't add to options_to_interpret_ unless there were uninterpreted
// options. This not only avoids unnecessary work, but prevents a
// bootstrapping problem when building descriptors for descriptor.proto.
// descriptor.proto does not contain any uninterpreted options, but
// attempting to interpret options anyway will cause
// OptionsType::GetDescriptor() to be called which may then deadlock since
// we're still trying to build it.
if (options->uninterpreted_option_size() > 0) {
options_to_interpret_.push_back(
OptionsToInterpret(name_scope, element_name, &orig_options, options));
}
}
// A common pattern: We want to convert a repeated field in the descriptor
// to an array of values, calling some method to build each value.
#define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT) \
OUTPUT->NAME##_count_ = INPUT.NAME##_size(); \
AllocateArray(INPUT.NAME##_size(), &OUTPUT->NAME##s_); \
for (int i = 0; i < INPUT.NAME##_size(); i++) { \
METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i); \
}
const FileDescriptor* DescriptorBuilder::BuildFile(
const FileDescriptorProto& proto) {
filename_ = proto.name();
// Check if the file already exists and is identical to the one being built.
// Note: This only works if the input is canonical -- that is, it
// fully-qualifies all type names, has no UninterpretedOptions, etc.
// This is fine, because this idempotency "feature" really only exists to
// accomodate one hack in the proto1->proto2 migration layer.
const FileDescriptor* existing_file = tables_->FindFile(filename_);
if (existing_file != NULL) {
// File already in pool. Compare the existing one to the input.
FileDescriptorProto existing_proto;
existing_file->CopyTo(&existing_proto);
if (existing_proto.SerializeAsString() == proto.SerializeAsString()) {
// They're identical. Return the existing descriptor.
return existing_file;
}
// Not a match. The error will be detected and handled later.
}
// Check to see if this file is already on the pending files list.
// TODO(kenton): Allow recursive imports? It may not work with some
// (most?) programming languages. E.g., in C++, a forward declaration
// of a type is not sufficient to allow it to be used even in a
// generated header file due to inlining. This could perhaps be
// worked around using tricks involving inserting #include statements
// mid-file, but that's pretty ugly, and I'm pretty sure there are
// some languages out there that do not allow recursive dependencies
// at all.
for (int i = 0; i < tables_->pending_files_.size(); i++) {
if (tables_->pending_files_[i] == proto.name()) {
string error_message("File recursively imports itself: ");
for (; i < tables_->pending_files_.size(); i++) {
error_message.append(tables_->pending_files_[i]);
error_message.append(" -> ");
}
error_message.append(proto.name());
AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
error_message);
return NULL;
}
}
// If we have a fallback_database_, attempt to load all dependencies now,
// before checkpointing tables_. This avoids confusion with recursive
// checkpoints.
if (pool_->fallback_database_ != NULL) {
tables_->pending_files_.push_back(proto.name());
for (int i = 0; i < proto.dependency_size(); i++) {
if (tables_->FindFile(proto.dependency(i)) == NULL &&
(pool_->underlay_ == NULL ||
pool_->underlay_->FindFileByName(proto.dependency(i)) == NULL)) {
// We don't care what this returns since we'll find out below anyway.
pool_->TryFindFileInFallbackDatabase(proto.dependency(i));
}
}
tables_->pending_files_.pop_back();
}
// Checkpoint the tables so that we can roll back if something goes wrong.
tables_->Checkpoint();
FileDescriptor* result = tables_->Allocate<FileDescriptor>();
file_ = result;
file_tables_ = tables_->AllocateFileTables();
file_->tables_ = file_tables_;
if (!proto.has_name()) {
AddError("", proto, DescriptorPool::ErrorCollector::OTHER,
"Missing field: FileDescriptorProto.name.");
}
result->name_ = tables_->AllocateString(proto.name());
if (proto.has_package()) {
result->package_ = tables_->AllocateString(proto.package());
} else {
// We cannot rely on proto.package() returning a valid string if
// proto.has_package() is false, because we might be running at static
// initialization time, in which case default values have not yet been
// initialized.
result->package_ = tables_->AllocateString("");
}
result->pool_ = pool_;
// Add to tables.
if (!tables_->AddFile(result)) {
AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
"A file with this name is already in the pool.");
// Bail out early so that if this is actually the exact same file, we
// don't end up reporting that every single symbol is already defined.
tables_->Rollback();
return NULL;
}
if (!result->package().empty()) {
AddPackage(result->package(), proto, result);
}
// Make sure all dependencies are loaded.
set<string> seen_dependencies;
result->dependency_count_ = proto.dependency_size();
result->dependencies_ =
tables_->AllocateArray<const FileDescriptor*>(proto.dependency_size());
for (int i = 0; i < proto.dependency_size(); i++) {
if (!seen_dependencies.insert(proto.dependency(i)).second) {
AddError(proto.name(), proto,
DescriptorPool::ErrorCollector::OTHER,
"Import \"" + proto.dependency(i) + "\" was listed twice.");
}
const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i));
if (dependency == NULL && pool_->underlay_ != NULL) {
dependency = pool_->underlay_->FindFileByName(proto.dependency(i));
}
if (dependency == NULL) {
if (pool_->allow_unknown_) {
dependency = NewPlaceholderFile(proto.dependency(i));
} else {
string message;
if (pool_->fallback_database_ == NULL) {
message = "Import \"" + proto.dependency(i) +
"\" has not been loaded.";
} else {
message = "Import \"" + proto.dependency(i) +
"\" was not found or had errors.";
}
AddError(proto.name(), proto,
DescriptorPool::ErrorCollector::OTHER,
message);
}
}
result->dependencies_[i] = dependency;
}
// Convert children.
BUILD_ARRAY(proto, result, message_type, BuildMessage , NULL);
BUILD_ARRAY(proto, result, enum_type , BuildEnum , NULL);
BUILD_ARRAY(proto, result, service , BuildService , NULL);
BUILD_ARRAY(proto, result, extension , BuildExtension, NULL);
// Copy options.
if (!proto.has_options()) {
result->options_ = NULL; // Will set to default_instance later.
} else {
AllocateOptions(proto.options(), result);
}
// Note that the following steps must occur in exactly the specified order.
// Cross-link.
CrossLinkFile(result, proto);
// Interpret any remaining uninterpreted options gathered into
// options_to_interpret_ during descriptor building. Cross-linking has made
// extension options known, so all interpretations should now succeed.
if (!had_errors_) {
OptionInterpreter option_interpreter(this);
for (vector<OptionsToInterpret>::iterator iter =
options_to_interpret_.begin();
iter != options_to_interpret_.end(); ++iter) {
option_interpreter.InterpretOptions(&(*iter));
}
options_to_interpret_.clear();
}
// Validate options.
if (!had_errors_) {
ValidateFileOptions(result, proto);
}
if (had_errors_) {
tables_->Rollback();
return NULL;
} else {
tables_->Checkpoint();
return result;
}
}
void DescriptorBuilder::BuildMessage(const DescriptorProto& proto,
const Descriptor* parent,
Descriptor* result) {
const string& scope = (parent == NULL) ?
file_->package() : parent->full_name();
string* full_name = tables_->AllocateString(scope);
if (!full_name->empty()) full_name->append(1, '.');
full_name->append(proto.name());
ValidateSymbolName(proto.name(), *full_name, proto);
result->name_ = tables_->AllocateString(proto.name());
result->full_name_ = full_name;
result->file_ = file_;
result->containing_type_ = parent;
result->is_placeholder_ = false;
result->is_unqualified_placeholder_ = false;
BUILD_ARRAY(proto, result, field , BuildField , result);
BUILD_ARRAY(proto, result, nested_type , BuildMessage , result);
BUILD_ARRAY(proto, result, enum_type , BuildEnum , result);
BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result);
BUILD_ARRAY(proto, result, extension , BuildExtension , result);
// Copy options.
if (!proto.has_options()) {
result->options_ = NULL; // Will set to default_instance later.
} else {
AllocateOptions(proto.options(), result);
}
AddSymbol(result->full_name(), parent, result->name(),
proto, Symbol(result));
// Check that no fields have numbers in extension ranges.
for (int i = 0; i < result->field_count(); i++) {
const FieldDescriptor* field = result->field(i);
for (int j = 0; j < result->extension_range_count(); j++) {
const Descriptor::ExtensionRange* range = result->extension_range(j);
if (range->start <= field->number() && field->number() < range->end) {
AddError(field->full_name(), proto.extension_range(j),
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute(
"Extension range $0 to $1 includes field \"$2\" ($3).",
range->start, range->end - 1,
field->name(), field->number()));
}
}
}
// Check that extension ranges don't overlap.
for (int i = 0; i < result->extension_range_count(); i++) {
const Descriptor::ExtensionRange* range1 = result->extension_range(i);
for (int j = i + 1; j < result->extension_range_count(); j++) {
const Descriptor::ExtensionRange* range2 = result->extension_range(j);
if (range1->end > range2->start && range2->end > range1->start) {
AddError(result->full_name(), proto.extension_range(j),
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Extension range $0 to $1 overlaps with "
"already-defined range $2 to $3.",
range2->start, range2->end - 1,
range1->start, range1->end - 1));
}
}
}
}
void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto,
const Descriptor* parent,
FieldDescriptor* result,
bool is_extension) {
const string& scope = (parent == NULL) ?
file_->package() : parent->full_name();
string* full_name = tables_->AllocateString(scope);
if (!full_name->empty()) full_name->append(1, '.');
full_name->append(proto.name());
ValidateSymbolName(proto.name(), *full_name, proto);
result->name_ = tables_->AllocateString(proto.name());
result->full_name_ = full_name;
result->file_ = file_;
result->number_ = proto.number();
result->is_extension_ = is_extension;
// If .proto files follow the style guide then the name should already be
// lower-cased. If that's the case we can just reuse the string we already
// allocated rather than allocate a new one.
string lowercase_name(proto.name());
LowerString(&lowercase_name);
if (lowercase_name == proto.name()) {
result->lowercase_name_ = result->name_;
} else {
result->lowercase_name_ = tables_->AllocateString(lowercase_name);
}
// Don't bother with the above optimization for camel-case names since
// .proto files that follow the guide shouldn't be using names in this
// format, so the optimization wouldn't help much.
result->camelcase_name_ = tables_->AllocateString(ToCamelCase(proto.name()));
// Some compilers do not allow static_cast directly between two enum types,
// so we must cast to int first.
result->type_ = static_cast<FieldDescriptor::Type>(
implicit_cast<int>(proto.type()));
result->label_ = static_cast<FieldDescriptor::Label>(
implicit_cast<int>(proto.label()));
// Some of these may be filled in when cross-linking.
result->containing_type_ = NULL;
result->extension_scope_ = NULL;
result->experimental_map_key_ = NULL;
result->message_type_ = NULL;
result->enum_type_ = NULL;
result->has_default_value_ = proto.has_default_value();
if (proto.has_default_value() && result->is_repeated()) {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Repeated fields can't have default values.");
}
if (proto.has_type()) {
if (proto.has_default_value()) {
char* end_pos = NULL;
switch (result->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32:
result->default_value_int32_ =
strtol(proto.default_value().c_str(), &end_pos, 0);
break;
case FieldDescriptor::CPPTYPE_INT64:
result->default_value_int64_ =
strto64(proto.default_value().c_str(), &end_pos, 0);
break;
case FieldDescriptor::CPPTYPE_UINT32:
result->default_value_uint32_ =
strtoul(proto.default_value().c_str(), &end_pos, 0);
break;
case FieldDescriptor::CPPTYPE_UINT64:
result->default_value_uint64_ =
strtou64(proto.default_value().c_str(), &end_pos, 0);
break;
case FieldDescriptor::CPPTYPE_FLOAT:
if (proto.default_value() == "inf") {
result->default_value_float_ = numeric_limits<float>::infinity();
} else if (proto.default_value() == "-inf") {
result->default_value_float_ = -numeric_limits<float>::infinity();
} else if (proto.default_value() == "nan") {
result->default_value_float_ = numeric_limits<float>::quiet_NaN();
} else {
result->default_value_float_ =
NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
}
break;
case FieldDescriptor::CPPTYPE_DOUBLE:
if (proto.default_value() == "inf") {
result->default_value_double_ = numeric_limits<double>::infinity();
} else if (proto.default_value() == "-inf") {
result->default_value_double_ = -numeric_limits<double>::infinity();
} else if (proto.default_value() == "nan") {
result->default_value_double_ = numeric_limits<double>::quiet_NaN();
} else {
result->default_value_double_ =
NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
}
break;
case FieldDescriptor::CPPTYPE_BOOL:
if (proto.default_value() == "true") {
result->default_value_bool_ = true;
} else if (proto.default_value() == "false") {
result->default_value_bool_ = false;
} else {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Boolean default must be true or false.");
}
break;
case FieldDescriptor::CPPTYPE_ENUM:
// This will be filled in when cross-linking.
result->default_value_enum_ = NULL;
break;
case FieldDescriptor::CPPTYPE_STRING:
if (result->type() == FieldDescriptor::TYPE_BYTES) {
result->default_value_string_ = tables_->AllocateString(
UnescapeCEscapeString(proto.default_value()));
} else {
result->default_value_string_ =
tables_->AllocateString(proto.default_value());
}
break;
case FieldDescriptor::CPPTYPE_MESSAGE:
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Messages can't have default values.");
result->has_default_value_ = false;
break;
}
if (end_pos != NULL) {
// end_pos is only set non-NULL by the parsers for numeric types, above.
// This checks that the default was non-empty and had no extra junk
// after the end of the number.
if (proto.default_value().empty() || *end_pos != '\0') {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Couldn't parse default value.");
}
}
} else {
// No explicit default value
switch (result->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32:
result->default_value_int32_ = 0;
break;
case FieldDescriptor::CPPTYPE_INT64:
result->default_value_int64_ = 0;
break;
case FieldDescriptor::CPPTYPE_UINT32:
result->default_value_uint32_ = 0;
break;
case FieldDescriptor::CPPTYPE_UINT64:
result->default_value_uint64_ = 0;
break;
case FieldDescriptor::CPPTYPE_FLOAT:
result->default_value_float_ = 0.0f;
break;
case FieldDescriptor::CPPTYPE_DOUBLE:
result->default_value_double_ = 0.0;
break;
case FieldDescriptor::CPPTYPE_BOOL:
result->default_value_bool_ = false;
break;
case FieldDescriptor::CPPTYPE_ENUM:
// This will be filled in when cross-linking.
result->default_value_enum_ = NULL;
break;
case FieldDescriptor::CPPTYPE_STRING:
result->default_value_string_ = &kEmptyString;
break;
case FieldDescriptor::CPPTYPE_MESSAGE:
break;
}
}
}
if (result->number() <= 0) {
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
"Field numbers must be positive integers.");
} else if (result->number() > FieldDescriptor::kMaxNumber) {
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Field numbers cannot be greater than $0.",
FieldDescriptor::kMaxNumber));
} else if (result->number() >= FieldDescriptor::kFirstReservedNumber &&
result->number() <= FieldDescriptor::kLastReservedNumber) {
AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute(
"Field numbers $0 through $1 are reserved for the protocol "
"buffer library implementation.",
FieldDescriptor::kFirstReservedNumber,
FieldDescriptor::kLastReservedNumber));
}
if (is_extension) {
if (!proto.has_extendee()) {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
"FieldDescriptorProto.extendee not set for extension field.");
}
result->extension_scope_ = parent;
} else {
if (proto.has_extendee()) {
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
"FieldDescriptorProto.extendee set for non-extension field.");
}
result->containing_type_ = parent;
}
// Copy options.
if (!proto.has_options()) {
result->options_ = NULL; // Will set to default_instance later.
} else {
AllocateOptions(proto.options(), result);
}
AddSymbol(result->full_name(), parent, result->name(),
proto, Symbol(result));
}
void DescriptorBuilder::BuildExtensionRange(
const DescriptorProto::ExtensionRange& proto,
const Descriptor* parent,
Descriptor::ExtensionRange* result) {
result->start = proto.start();
result->end = proto.end();
if (result->start <= 0) {
AddError(parent->full_name(), proto,
DescriptorPool::ErrorCollector::NUMBER,
"Extension numbers must be positive integers.");
}
if (result->end > FieldDescriptor::kMaxNumber + 1) {
AddError(parent->full_name(), proto,
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Extension numbers cannot be greater than $0.",
FieldDescriptor::kMaxNumber));
}
if (result->start >= result->end) {
AddError(parent->full_name(), proto,
DescriptorPool::ErrorCollector::NUMBER,
"Extension range end number must be greater than start number.");
}
}
void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto,
const Descriptor* parent,
EnumDescriptor* result) {
const string& scope = (parent == NULL) ?
file_->package() : parent->full_name();
string* full_name = tables_->AllocateString(scope);
if (!full_name->empty()) full_name->append(1, '.');
full_name->append(proto.name());
ValidateSymbolName(proto.name(), *full_name, proto);
result->name_ = tables_->AllocateString(proto.name());
result->full_name_ = full_name;
result->file_ = file_;
result->containing_type_ = parent;
result->is_placeholder_ = false;
result->is_unqualified_placeholder_ = false;
if (proto.value_size() == 0) {
// We cannot allow enums with no values because this would mean there
// would be no valid default value for fields of this type.
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::NAME,
"Enums must contain at least one value.");
}
BUILD_ARRAY(proto, result, value, BuildEnumValue, result);
// Copy options.
if (!proto.has_options()) {
result->options_ = NULL; // Will set to default_instance later.
} else {
AllocateOptions(proto.options(), result);
}
AddSymbol(result->full_name(), parent, result->name(),
proto, Symbol(result));
}
void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto,
const EnumDescriptor* parent,
EnumValueDescriptor* result) {
result->name_ = tables_->AllocateString(proto.name());
result->number_ = proto.number();
result->type_ = parent;
// Note: full_name for enum values is a sibling to the parent's name, not a
// child of it.
string* full_name = tables_->AllocateString(*parent->full_name_);
full_name->resize(full_name->size() - parent->name_->size());
full_name->append(*result->name_);
result->full_name_ = full_name;
ValidateSymbolName(proto.name(), *full_name, proto);
// Copy options.
if (!proto.has_options()) {
result->options_ = NULL; // Will set to default_instance later.
} else {
AllocateOptions(proto.options(), result);
}
// Again, enum values are weird because we makes them appear as siblings
// of the enum type instead of children of it. So, we use
// parent->containing_type() as the value's parent.
bool added_to_outer_scope =
AddSymbol(result->full_name(), parent->containing_type(), result->name(),
proto, Symbol(result));
// However, we also want to be able to search for values within a single
// enum type, so we add it as a child of the enum type itself, too.
// Note: This could fail, but if it does, the error has already been
// reported by the above AddSymbol() call, so we ignore the return code.
bool added_to_inner_scope =
file_tables_->AddAliasUnderParent(parent, result->name(), Symbol(result));
if (added_to_inner_scope && !added_to_outer_scope) {
// This value did not conflict with any values defined in the same enum,
// but it did conflict with some other symbol defined in the enum type's
// scope. Let's print an additional error to explain this.
string outer_scope;
if (parent->containing_type() == NULL) {
outer_scope = file_->package();
} else {
outer_scope = parent->containing_type()->full_name();
}
if (outer_scope.empty()) {
outer_scope = "the global scope";
} else {
outer_scope = "\"" + outer_scope + "\"";
}
AddError(result->full_name(), proto,
DescriptorPool::ErrorCollector::NAME,
"Note that enum values use C++ scoping rules, meaning that "
"enum values are siblings of their type, not children of it. "
"Therefore, \"" + result->name() + "\" must be unique within "
+ outer_scope + ", not just within \"" + parent->name() + "\".");
}
// An enum is allowed to define two numbers that refer to the same value.
// FindValueByNumber() should return the first such value, so we simply
// ignore AddEnumValueByNumber()'s return code.
file_tables_->AddEnumValueByNumber(result);
}
void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto,
const void* dummy,
ServiceDescriptor* result) {
string* full_name = tables_->AllocateString(file_->package());
if (!full_name->empty()) full_name->append(1, '.');
full_name->append(proto.name());
ValidateSymbolName(proto.name(), *full_name, proto);
result->name_ = tables_->AllocateString(proto.name());
result->full_name_ = full_name;
result->file_ = file_;
BUILD_ARRAY(proto, result, method, BuildMethod, result);
// Copy options.
if (!proto.has_options()) {
result->options_ = NULL; // Will set to default_instance later.
} else {
AllocateOptions(proto.options(), result);
}
AddSymbol(result->full_name(), NULL, result->name(),
proto, Symbol(result));
}
void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto,
const ServiceDescriptor* parent,
MethodDescriptor* result) {
result->name_ = tables_->AllocateString(proto.name());
result->service_ = parent;
string* full_name = tables_->AllocateString(parent->full_name());
full_name->append(1, '.');
full_name->append(*result->name_);
result->full_name_ = full_name;
ValidateSymbolName(proto.name(), *full_name, proto);
// These will be filled in when cross-linking.
result->input_type_ = NULL;
result->output_type_ = NULL;
// Copy options.
if (!proto.has_options()) {
result->options_ = NULL; // Will set to default_instance later.
} else {
AllocateOptions(proto.options(), result);
}
AddSymbol(result->full_name(), parent, result->name(),
proto, Symbol(result));
}
#undef BUILD_ARRAY
// -------------------------------------------------------------------
void DescriptorBuilder::CrossLinkFile(
FileDescriptor* file, const FileDescriptorProto& proto) {
if (file->options_ == NULL) {
file->options_ = &FileOptions::default_instance();
}
for (int i = 0; i < file->message_type_count(); i++) {
CrossLinkMessage(&file->message_types_[i], proto.message_type(i));
}
for (int i = 0; i < file->extension_count(); i++) {
CrossLinkField(&file->extensions_[i], proto.extension(i));
}
for (int i = 0; i < file->enum_type_count(); i++) {
CrossLinkEnum(&file->enum_types_[i], proto.enum_type(i));
}
for (int i = 0; i < file->service_count(); i++) {
CrossLinkService(&file->services_[i], proto.service(i));
}
}
void DescriptorBuilder::CrossLinkMessage(
Descriptor* message, const DescriptorProto& proto) {
if (message->options_ == NULL) {
message->options_ = &MessageOptions::default_instance();
}
for (int i = 0; i < message->nested_type_count(); i++) {
CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i));
}
for (int i = 0; i < message->enum_type_count(); i++) {
CrossLinkEnum(&message->enum_types_[i], proto.enum_type(i));
}
for (int i = 0; i < message->field_count(); i++) {
CrossLinkField(&message->fields_[i], proto.field(i));
}
for (int i = 0; i < message->extension_count(); i++) {
CrossLinkField(&message->extensions_[i], proto.extension(i));
}
}
void DescriptorBuilder::CrossLinkField(
FieldDescriptor* field, const FieldDescriptorProto& proto) {
if (field->options_ == NULL) {
field->options_ = &FieldOptions::default_instance();
}
if (proto.has_extendee()) {
Symbol extendee = LookupSymbol(proto.extendee(), field->full_name(),
PLACEHOLDER_EXTENDABLE_MESSAGE);
if (extendee.IsNull()) {
AddNotDefinedError(field->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
proto.extendee());
return;
} else if (extendee.type != Symbol::MESSAGE) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
"\"" + proto.extendee() + "\" is not a message type.");
return;
}
field->containing_type_ = extendee.descriptor;
if (!field->containing_type()->IsExtensionNumber(field->number())) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("\"$0\" does not declare $1 as an "
"extension number.",
field->containing_type()->full_name(),
field->number()));
}
}
if (proto.has_type_name()) {
// Assume we are expecting a message type unless the proto contains some
// evidence that it expects an enum type. This only makes a difference if
// we end up creating a placeholder.
bool expecting_enum = (proto.type() == FieldDescriptorProto::TYPE_ENUM) ||
proto.has_default_value();
Symbol type =
LookupSymbol(proto.type_name(), field->full_name(),
expecting_enum ? PLACEHOLDER_ENUM : PLACEHOLDER_MESSAGE,
LOOKUP_TYPES);
if (type.IsNull()) {
AddNotDefinedError(field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
proto.type_name());
return;
}
if (!proto.has_type()) {
// Choose field type based on symbol.
if (type.type == Symbol::MESSAGE) {
field->type_ = FieldDescriptor::TYPE_MESSAGE;
} else if (type.type == Symbol::ENUM) {
field->type_ = FieldDescriptor::TYPE_ENUM;
} else {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
"\"" + proto.type_name() + "\" is not a type.");
return;
}
}
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
if (type.type != Symbol::MESSAGE) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
"\"" + proto.type_name() + "\" is not a message type.");
return;
}
field->message_type_ = type.descriptor;
if (field->has_default_value()) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Messages can't have default values.");
}
} else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
if (type.type != Symbol::ENUM) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
"\"" + proto.type_name() + "\" is not an enum type.");
return;
}
field->enum_type_ = type.enum_descriptor;
if (field->enum_type()->is_placeholder_) {
// We can't look up default values for placeholder types. We'll have
// to just drop them.
field->has_default_value_ = false;
}
if (field->has_default_value()) {
// We can't just use field->enum_type()->FindValueByName() here
// because that locks the pool's mutex, which we have already locked
// at this point.
Symbol default_value =
LookupSymbolNoPlaceholder(proto.default_value(),
field->enum_type()->full_name());
if (default_value.type == Symbol::ENUM_VALUE &&
default_value.enum_value_descriptor->type() == field->enum_type()) {
field->default_value_enum_ = default_value.enum_value_descriptor;
} else {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::DEFAULT_VALUE,
"Enum type \"" + field->enum_type()->full_name() +
"\" has no value named \"" + proto.default_value() + "\".");
}
} else if (field->enum_type()->value_count() > 0) {
// All enums must have at least one value, or we would have reported
// an error elsewhere. We use the first defined value as the default
// if a default is not explicitly defined.
field->default_value_enum_ = field->enum_type()->value(0);
}
} else {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Field with primitive type has type_name.");
}
} else {
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE ||
field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Field with message or enum type missing type_name.");
}
}
// Add the field to the fields-by-number table.
// Note: We have to do this *after* cross-linking because extensions do not
// know their containing type until now.
if (!file_tables_->AddFieldByNumber(field)) {
const FieldDescriptor* conflicting_field =
file_tables_->FindFieldByNumber(field->containing_type(),
field->number());
if (field->is_extension()) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Extension number $0 has already been used "
"in \"$1\" by extension \"$2\".",
field->number(),
field->containing_type()->full_name(),
conflicting_field->full_name()));
} else {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::NUMBER,
strings::Substitute("Field number $0 has already been used in "
"\"$1\" by field \"$2\".",
field->number(),
field->containing_type()->full_name(),
conflicting_field->name()));
}
}
if (field->is_extension()) {
// No need for error checking: if the extension number collided,
// we've already been informed of it by the if() above.
tables_->AddExtension(field);
}
// Add the field to the lowercase-name and camelcase-name tables.
file_tables_->AddFieldByStylizedNames(field);
}
void DescriptorBuilder::CrossLinkEnum(
EnumDescriptor* enum_type, const EnumDescriptorProto& proto) {
if (enum_type->options_ == NULL) {
enum_type->options_ = &EnumOptions::default_instance();
}
for (int i = 0; i < enum_type->value_count(); i++) {
CrossLinkEnumValue(&enum_type->values_[i], proto.value(i));
}
}
void DescriptorBuilder::CrossLinkEnumValue(
EnumValueDescriptor* enum_value, const EnumValueDescriptorProto& proto) {
if (enum_value->options_ == NULL) {
enum_value->options_ = &EnumValueOptions::default_instance();
}
}
void DescriptorBuilder::CrossLinkService(
ServiceDescriptor* service, const ServiceDescriptorProto& proto) {
if (service->options_ == NULL) {
service->options_ = &ServiceOptions::default_instance();
}
for (int i = 0; i < service->method_count(); i++) {
CrossLinkMethod(&service->methods_[i], proto.method(i));
}
}
void DescriptorBuilder::CrossLinkMethod(
MethodDescriptor* method, const MethodDescriptorProto& proto) {
if (method->options_ == NULL) {
method->options_ = &MethodOptions::default_instance();
}
Symbol input_type = LookupSymbol(proto.input_type(), method->full_name());
if (input_type.IsNull()) {
AddNotDefinedError(method->full_name(), proto,
DescriptorPool::ErrorCollector::INPUT_TYPE,
proto.input_type());
} else if (input_type.type != Symbol::MESSAGE) {
AddError(method->full_name(), proto,
DescriptorPool::ErrorCollector::INPUT_TYPE,
"\"" + proto.input_type() + "\" is not a message type.");
} else {
method->input_type_ = input_type.descriptor;
}
Symbol output_type = LookupSymbol(proto.output_type(), method->full_name());
if (output_type.IsNull()) {
AddNotDefinedError(method->full_name(), proto,
DescriptorPool::ErrorCollector::OUTPUT_TYPE,
proto.output_type());
} else if (output_type.type != Symbol::MESSAGE) {
AddError(method->full_name(), proto,
DescriptorPool::ErrorCollector::OUTPUT_TYPE,
"\"" + proto.output_type() + "\" is not a message type.");
} else {
method->output_type_ = output_type.descriptor;
}
}
// -------------------------------------------------------------------
#define VALIDATE_OPTIONS_FROM_ARRAY(descriptor, array_name, type) \
for (int i = 0; i < descriptor->array_name##_count(); ++i) { \
Validate##type##Options(descriptor->array_name##s_ + i, \
proto.array_name(i)); \
}
// Determine if the file uses optimize_for = LITE_RUNTIME, being careful to
// avoid problems that exist at init time.
static bool IsLite(const FileDescriptor* file) {
// TODO(kenton): I don't even remember how many of these conditions are
// actually possible. I'm just being super-safe.
return file != NULL &&
&file->options() != NULL &&
&file->options() != &FileOptions::default_instance() &&
file->options().optimize_for() == FileOptions::LITE_RUNTIME;
}
void DescriptorBuilder::ValidateFileOptions(FileDescriptor* file,
const FileDescriptorProto& proto) {
VALIDATE_OPTIONS_FROM_ARRAY(file, message_type, Message);
VALIDATE_OPTIONS_FROM_ARRAY(file, enum_type, Enum);
VALIDATE_OPTIONS_FROM_ARRAY(file, service, Service);
VALIDATE_OPTIONS_FROM_ARRAY(file, extension, Field);
// Lite files can only be imported by other Lite files.
if (!IsLite(file)) {
for (int i = 0; i < file->dependency_count(); i++) {
if (IsLite(file->dependency(i))) {
AddError(
file->name(), proto,
DescriptorPool::ErrorCollector::OTHER,
"Files that do not use optimize_for = LITE_RUNTIME cannot import "
"files which do use this option. This file is not lite, but it "
"imports \"" + file->dependency(i)->name() + "\" which is.");
break;
}
}
}
}
void DescriptorBuilder::ValidateMessageOptions(Descriptor* message,
const DescriptorProto& proto) {
VALIDATE_OPTIONS_FROM_ARRAY(message, field, Field);
VALIDATE_OPTIONS_FROM_ARRAY(message, nested_type, Message);
VALIDATE_OPTIONS_FROM_ARRAY(message, enum_type, Enum);
VALIDATE_OPTIONS_FROM_ARRAY(message, extension, Field);
}
void DescriptorBuilder::ValidateFieldOptions(FieldDescriptor* field,
const FieldDescriptorProto& proto) {
if (field->options().has_experimental_map_key()) {
ValidateMapKey(field, proto);
}
// Only repeated primitive fields may be packed.
if (field->options().packed() && !field->is_packable()) {
AddError(
field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
"[packed = true] can only be specified for repeated primitive fields.");
}
// Note: Default instance may not yet be initialized here, so we have to
// avoid reading from it.
if (field->containing_type_ != NULL &&
&field->containing_type()->options() !=
&MessageOptions::default_instance() &&
field->containing_type()->options().message_set_wire_format()) {
if (field->is_extension()) {
if (!field->is_optional() ||
field->type() != FieldDescriptor::TYPE_MESSAGE) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::TYPE,
"Extensions of MessageSets must be optional messages.");
}
} else {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::NAME,
"MessageSets cannot have fields, only extensions.");
}
}
// Lite extensions can only be of Lite types.
if (IsLite(field->file()) &&
field->containing_type_ != NULL &&
!IsLite(field->containing_type()->file())) {
AddError(field->full_name(), proto,
DescriptorPool::ErrorCollector::EXTENDEE,
"Extensions to non-lite types can only be declared in non-lite "
"files. Note that you cannot extend a non-lite type to contain "
"a lite type, but the reverse is allowed.");
}
}
void DescriptorBuilder::ValidateEnumOptions(EnumDescriptor* enm,
const EnumDescriptorProto& proto) {
VALIDATE_OPTIONS_FROM_ARRAY(enm, value, EnumValue);
}
void DescriptorBuilder::ValidateEnumValueOptions(
EnumValueDescriptor* enum_value, const EnumValueDescriptorProto& proto) {
// Nothing to do so far.
}
void DescriptorBuilder::ValidateServiceOptions(ServiceDescriptor* service,
const ServiceDescriptorProto& proto) {
if (IsLite(service->file())) {
AddError(service->full_name(), proto,
DescriptorPool::ErrorCollector::NAME,
"Files with optimize_for = LITE_RUNTIME cannot define services.");
}
VALIDATE_OPTIONS_FROM_ARRAY(service, method, Method);
}
void DescriptorBuilder::ValidateMethodOptions(MethodDescriptor* method,
const MethodDescriptorProto& proto) {
// Nothing to do so far.
}
void DescriptorBuilder::ValidateMapKey(FieldDescriptor* field,
const FieldDescriptorProto& proto) {
if (!field->is_repeated()) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"map type is only allowed for repeated fields.");
return;
}
if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"map type is only allowed for fields with a message type.");
return;
}
const Descriptor* item_type = field->message_type();
if (item_type == NULL) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Could not find field type.");
return;
}
// Find the field in item_type named by "experimental_map_key"
const string& key_name = field->options().experimental_map_key();
const Symbol key_symbol = LookupSymbol(
key_name,
// We append ".key_name" to the containing type's name since
// LookupSymbol() searches for peers of the supplied name, not
// children of the supplied name.
item_type->full_name() + "." + key_name);
if (key_symbol.IsNull() || key_symbol.field_descriptor->is_extension()) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"Could not find field named \"" + key_name + "\" in type \"" +
item_type->full_name() + "\".");
return;
}
const FieldDescriptor* key_field = key_symbol.field_descriptor;
if (key_field->is_repeated()) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"map_key must not name a repeated field.");
return;
}
if (key_field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
"map key must name a scalar or string field.");
return;
}
field->experimental_map_key_ = key_field;
}
#undef VALIDATE_OPTIONS_FROM_ARRAY
// -------------------------------------------------------------------
DescriptorBuilder::OptionInterpreter::OptionInterpreter(
DescriptorBuilder* builder) : builder_(builder) {
GOOGLE_CHECK(builder_);
}
DescriptorBuilder::OptionInterpreter::~OptionInterpreter() {
}
bool DescriptorBuilder::OptionInterpreter::InterpretOptions(
OptionsToInterpret* options_to_interpret) {
// Note that these may be in different pools, so we can't use the same
// descriptor and reflection objects on both.
Message* options = options_to_interpret->options;
const Message* original_options = options_to_interpret->original_options;
bool failed = false;
options_to_interpret_ = options_to_interpret;
// Find the uninterpreted_option field in the mutable copy of the options
// and clear them, since we're about to interpret them.
const FieldDescriptor* uninterpreted_options_field =
options->GetDescriptor()->FindFieldByName("uninterpreted_option");
GOOGLE_CHECK(uninterpreted_options_field != NULL)
<< "No field named \"uninterpreted_option\" in the Options proto.";
options->GetReflection()->ClearField(options, uninterpreted_options_field);
// Find the uninterpreted_option field in the original options.
const FieldDescriptor* original_uninterpreted_options_field =
original_options->GetDescriptor()->
FindFieldByName("uninterpreted_option");
GOOGLE_CHECK(original_uninterpreted_options_field != NULL)
<< "No field named \"uninterpreted_option\" in the Options proto.";
const int num_uninterpreted_options = original_options->GetReflection()->
FieldSize(*original_options, original_uninterpreted_options_field);
for (int i = 0; i < num_uninterpreted_options; ++i) {
uninterpreted_option_ = down_cast<const UninterpretedOption*>(
&original_options->GetReflection()->GetRepeatedMessage(
*original_options, original_uninterpreted_options_field, i));
if (!InterpretSingleOption(options)) {
// Error already added by InterpretSingleOption().
failed = true;
break;
}
}
// Reset these, so we don't have any dangling pointers.
uninterpreted_option_ = NULL;
options_to_interpret_ = NULL;
if (!failed) {
// InterpretSingleOption() added the interpreted options in the
// UnknownFieldSet, in case the option isn't yet known to us. Now we
// serialize the options message and deserialize it back. That way, any
// option fields that we do happen to know about will get moved from the
// UnknownFieldSet into the real fields, and thus be available right away.
// If they are not known, that's OK too. They will get reparsed into the
// UnknownFieldSet and wait there until the message is parsed by something
// that does know about the options.
string buf;
options->AppendToString(&buf);
GOOGLE_CHECK(options->ParseFromString(buf))
<< "Protocol message serialized itself in invalid fashion.";
}
return !failed;
}
bool DescriptorBuilder::OptionInterpreter::InterpretSingleOption(
Message* options) {
// First do some basic validation.
if (uninterpreted_option_->name_size() == 0) {
// This should never happen unless the parser has gone seriously awry or
// someone has manually created the uninterpreted option badly.
return AddNameError("Option must have a name.");
}
if (uninterpreted_option_->name(0).name_part() == "uninterpreted_option") {
return AddNameError("Option must not use reserved name "
"\"uninterpreted_option\".");
}
const Descriptor* options_descriptor = NULL;
// Get the options message's descriptor from the builder's pool, so that we
// get the version that knows about any extension options declared in the
// file we're currently building. The descriptor should be there as long as
// the file we're building imported "google/protobuf/descriptors.proto".
// Note that we use DescriptorBuilder::FindSymbol(), not
// DescriptorPool::FindMessageTypeByName() because we're already holding the
// pool's mutex, and the latter method locks it again.
Symbol symbol = builder_->FindSymbolNotEnforcingDeps(
options->GetDescriptor()->full_name());
if (!symbol.IsNull() && symbol.type == Symbol::MESSAGE) {
options_descriptor = symbol.descriptor;
} else {
// The options message's descriptor was not in the builder's pool, so use
// the standard version from the generated pool. We're not holding the
// generated pool's mutex, so we can search it the straightforward way.
options_descriptor = options->GetDescriptor();
}
GOOGLE_CHECK(options_descriptor);
// We iterate over the name parts to drill into the submessages until we find
// the leaf field for the option. As we drill down we remember the current
// submessage's descriptor in |descriptor| and the next field in that
// submessage in |field|. We also track the fields we're drilling down
// through in |intermediate_fields|. As we go, we reconstruct the full option
// name in |debug_msg_name|, for use in error messages.
const Descriptor* descriptor = options_descriptor;
const FieldDescriptor* field = NULL;
vector<const FieldDescriptor*> intermediate_fields;
string debug_msg_name = "";
for (int i = 0; i < uninterpreted_option_->name_size(); ++i) {
const string& name_part = uninterpreted_option_->name(i).name_part();
if (debug_msg_name.size() > 0) {
debug_msg_name += ".";
}
if (uninterpreted_option_->name(i).is_extension()) {
debug_msg_name += "(" + name_part + ")";
// Search for the extension's descriptor as an extension in the builder's
// pool. Note that we use DescriptorBuilder::LookupSymbol(), not
// DescriptorPool::FindExtensionByName(), for two reasons: 1) It allows
// relative lookups, and 2) because we're already holding the pool's
// mutex, and the latter method locks it again.
Symbol symbol = builder_->LookupSymbol(name_part,
options_to_interpret_->name_scope);
if (!symbol.IsNull() && symbol.type == Symbol::FIELD) {
field = symbol.field_descriptor;
}
// If we don't find the field then the field's descriptor was not in the
// builder's pool, but there's no point in looking in the generated
// pool. We require that you import the file that defines any extensions
// you use, so they must be present in the builder's pool.
} else {
debug_msg_name += name_part;
// Search for the field's descriptor as a regular field.
field = descriptor->FindFieldByName(name_part);
}
if (field == NULL) {
if (get_allow_unknown(builder_->pool_)) {
// We can't find the option, but AllowUnknownDependencies() is enabled,
// so we will just leave it as uninterpreted.
AddWithoutInterpreting(*uninterpreted_option_, options);
return true;
} else {
return AddNameError("Option \"" + debug_msg_name + "\" unknown.");
}
} else if (field->containing_type() != descriptor) {
if (get_is_placeholder(field->containing_type())) {
// The field is an extension of a placeholder type, so we can't
// reliably verify whether it is a valid extension to use here (e.g.
// we don't know if it is an extension of the correct *Options message,
// or if it has a valid field number, etc.). Just leave it as
// uninterpreted instead.
AddWithoutInterpreting(*uninterpreted_option_, options);
return true;
} else {
// This can only happen if, due to some insane misconfiguration of the
// pools, we find the options message in one pool but the field in
// another. This would probably imply a hefty bug somewhere.
return AddNameError("Option field \"" + debug_msg_name +
"\" is not a field or extension of message \"" +
descriptor->name() + "\".");
}
} else if (field->is_repeated()) {
return AddNameError("Option field \"" + debug_msg_name +
"\" is repeated. Repeated options are not "
"supported.");
} else if (i < uninterpreted_option_->name_size() - 1) {
if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
return AddNameError("Option \"" + debug_msg_name +
"\" is an atomic type, not a message.");
} else {
// Drill down into the submessage.
intermediate_fields.push_back(field);
descriptor = field->message_type();
}
} else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
return AddNameError("Option field \"" + debug_msg_name +
"\" cannot be of message type.");
}
}
// We've found the leaf field. Now we use UnknownFieldSets to set its value
// on the options message. We do so because the message may not yet know
// about its extension fields, so we may not be able to set the fields
// directly. But the UnknownFieldSets will serialize to the same wire-format
// message, so reading that message back in once the extension fields are
// known will populate them correctly.
// First see if the option is already set.
if (!ExamineIfOptionIsSet(
intermediate_fields.begin(),
intermediate_fields.end(),
field, debug_msg_name,
options->GetReflection()->GetUnknownFields(*options))) {
return false; // ExamineIfOptionIsSet() already added the error.
}
// First set the value on the UnknownFieldSet corresponding to the
// innermost message.
scoped_ptr<UnknownFieldSet> unknown_fields(new UnknownFieldSet());
if (!SetOptionValue(field, unknown_fields.get())) {
return false; // SetOptionValue() already added the error.
}
// Now wrap the UnknownFieldSet with UnknownFieldSets corresponding to all
// the intermediate messages.
for (vector<const FieldDescriptor*>::reverse_iterator iter =
intermediate_fields.rbegin();
iter != intermediate_fields.rend(); ++iter) {
scoped_ptr<UnknownFieldSet> parent_unknown_fields(new UnknownFieldSet());
switch ((*iter)->type()) {
case FieldDescriptor::TYPE_MESSAGE: {
io::StringOutputStream outstr(
parent_unknown_fields->AddLengthDelimited((*iter)->number()));
io::CodedOutputStream out(&outstr);
internal::WireFormat::SerializeUnknownFields(*unknown_fields, &out);
GOOGLE_CHECK(!out.HadError())
<< "Unexpected failure while serializing option submessage "
<< debug_msg_name << "\".";
break;
}
case FieldDescriptor::TYPE_GROUP: {
parent_unknown_fields->AddGroup((*iter)->number())
->MergeFrom(*unknown_fields);
break;
}
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: "
<< (*iter)->type();
return false;
}
unknown_fields.reset(parent_unknown_fields.release());
}
// Now merge the UnknownFieldSet corresponding to the top-level message into
// the options message.
options->GetReflection()->MutableUnknownFields(options)->MergeFrom(
*unknown_fields);
return true;
}
void DescriptorBuilder::OptionInterpreter::AddWithoutInterpreting(
const UninterpretedOption& uninterpreted_option, Message* options) {
const FieldDescriptor* field =
options->GetDescriptor()->FindFieldByName("uninterpreted_option");
GOOGLE_CHECK(field != NULL);
options->GetReflection()->AddMessage(options, field)
->CopyFrom(uninterpreted_option);
}
bool DescriptorBuilder::OptionInterpreter::ExamineIfOptionIsSet(
vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
const FieldDescriptor* innermost_field, const string& debug_msg_name,
const UnknownFieldSet& unknown_fields) {
// We do linear searches of the UnknownFieldSet and its sub-groups. This
// should be fine since it's unlikely that any one options structure will
// contain more than a handful of options.
if (intermediate_fields_iter == intermediate_fields_end) {
// We're at the innermost submessage.
for (int i = 0; i < unknown_fields.field_count(); i++) {
if (unknown_fields.field(i).number() == innermost_field->number()) {
return AddNameError("Option \"" + debug_msg_name +
"\" was already set.");
}
}
return true;
}
for (int i = 0; i < unknown_fields.field_count(); i++) {
if (unknown_fields.field(i).number() ==
(*intermediate_fields_iter)->number()) {
const UnknownField* unknown_field = &unknown_fields.field(i);
FieldDescriptor::Type type = (*intermediate_fields_iter)->type();
// Recurse into the next submessage.
switch (type) {
case FieldDescriptor::TYPE_MESSAGE:
if (unknown_field->type() == UnknownField::TYPE_LENGTH_DELIMITED) {
UnknownFieldSet intermediate_unknown_fields;
if (intermediate_unknown_fields.ParseFromString(
unknown_field->length_delimited()) &&
!ExamineIfOptionIsSet(intermediate_fields_iter + 1,
intermediate_fields_end,
innermost_field, debug_msg_name,
intermediate_unknown_fields)) {
return false; // Error already added.
}
}
break;
case FieldDescriptor::TYPE_GROUP:
if (unknown_field->type() == UnknownField::TYPE_GROUP) {
if (!ExamineIfOptionIsSet(intermediate_fields_iter + 1,
intermediate_fields_end,
innermost_field, debug_msg_name,
unknown_field->group())) {
return false; // Error already added.
}
}
break;
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << type;
return false;
}
}
}
return true;
}
bool DescriptorBuilder::OptionInterpreter::SetOptionValue(
const FieldDescriptor* option_field,
UnknownFieldSet* unknown_fields) {
// We switch on the CppType to validate.
switch (option_field->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32:
if (uninterpreted_option_->has_positive_int_value()) {
if (uninterpreted_option_->positive_int_value() >
static_cast<uint64>(kint32max)) {
return AddValueError("Value out of range for int32 option \"" +
option_field->full_name() + "\".");
} else {
SetInt32(option_field->number(),
uninterpreted_option_->positive_int_value(),
option_field->type(), unknown_fields);
}
} else if (uninterpreted_option_->has_negative_int_value()) {
if (uninterpreted_option_->negative_int_value() <
static_cast<int64>(kint32min)) {
return AddValueError("Value out of range for int32 option \"" +
option_field->full_name() + "\".");
} else {
SetInt32(option_field->number(),
uninterpreted_option_->negative_int_value(),
option_field->type(), unknown_fields);
}
} else {
return AddValueError("Value must be integer for int32 option \"" +
option_field->full_name() + "\".");
}
break;
case FieldDescriptor::CPPTYPE_INT64:
if (uninterpreted_option_->has_positive_int_value()) {
if (uninterpreted_option_->positive_int_value() >
static_cast<uint64>(kint64max)) {
return AddValueError("Value out of range for int64 option \"" +
option_field->full_name() + "\".");
} else {
SetInt64(option_field->number(),
uninterpreted_option_->positive_int_value(),
option_field->type(), unknown_fields);
}
} else if (uninterpreted_option_->has_negative_int_value()) {
SetInt64(option_field->number(),
uninterpreted_option_->negative_int_value(),
option_field->type(), unknown_fields);
} else {
return AddValueError("Value must be integer for int64 option \"" +
option_field->full_name() + "\".");
}
break;
case FieldDescriptor::CPPTYPE_UINT32:
if (uninterpreted_option_->has_positive_int_value()) {
if (uninterpreted_option_->positive_int_value() > kuint32max) {
return AddValueError("Value out of range for uint32 option \"" +
option_field->name() + "\".");
} else {
SetUInt32(option_field->number(),
uninterpreted_option_->positive_int_value(),
option_field->type(), unknown_fields);
}
} else {
return AddValueError("Value must be non-negative integer for uint32 "
"option \"" + option_field->full_name() + "\".");
}
break;
case FieldDescriptor::CPPTYPE_UINT64:
if (uninterpreted_option_->has_positive_int_value()) {
SetUInt64(option_field->number(),
uninterpreted_option_->positive_int_value(),
option_field->type(), unknown_fields);
} else {
return AddValueError("Value must be non-negative integer for uint64 "
"option \"" + option_field->full_name() + "\".");
}
break;
case FieldDescriptor::CPPTYPE_FLOAT: {
float value;
if (uninterpreted_option_->has_double_value()) {
value = uninterpreted_option_->double_value();
} else if (uninterpreted_option_->has_positive_int_value()) {
value = uninterpreted_option_->positive_int_value();
} else if (uninterpreted_option_->has_negative_int_value()) {
value = uninterpreted_option_->negative_int_value();
} else {
return AddValueError("Value must be number for float option \"" +
option_field->full_name() + "\".");
}
unknown_fields->AddFixed32(option_field->number(),
google::protobuf::internal::WireFormatLite::EncodeFloat(value));
break;
}
case FieldDescriptor::CPPTYPE_DOUBLE: {
double value;
if (uninterpreted_option_->has_double_value()) {
value = uninterpreted_option_->double_value();
} else if (uninterpreted_option_->has_positive_int_value()) {
value = uninterpreted_option_->positive_int_value();
} else if (uninterpreted_option_->has_negative_int_value()) {
value = uninterpreted_option_->negative_int_value();
} else {
return AddValueError("Value must be number for double option \"" +
option_field->full_name() + "\".");
}
unknown_fields->AddFixed64(option_field->number(),
google::protobuf::internal::WireFormatLite::EncodeDouble(value));
break;
}
case FieldDescriptor::CPPTYPE_BOOL:
uint64 value;
if (!uninterpreted_option_->has_identifier_value()) {
return AddValueError("Value must be identifier for boolean option "
"\"" + option_field->full_name() + "\".");
}
if (uninterpreted_option_->identifier_value() == "true") {
value = 1;
} else if (uninterpreted_option_->identifier_value() == "false") {
value = 0;
} else {
return AddValueError("Value must be \"true\" or \"false\" for boolean "
"option \"" + option_field->full_name() + "\".");
}
unknown_fields->AddVarint(option_field->number(), value);
break;
case FieldDescriptor::CPPTYPE_ENUM: {
if (!uninterpreted_option_->has_identifier_value()) {
return AddValueError("Value must be identifier for enum-valued option "
"\"" + option_field->full_name() + "\".");
}
const EnumDescriptor* enum_type = option_field->enum_type();
const string& value_name = uninterpreted_option_->identifier_value();
const EnumValueDescriptor* enum_value = NULL;
if (enum_type->file()->pool() != DescriptorPool::generated_pool()) {
// Note that the enum value's fully-qualified name is a sibling of the
// enum's name, not a child of it.
string fully_qualified_name = enum_type->full_name();
fully_qualified_name.resize(fully_qualified_name.size() -
enum_type->name().size());
fully_qualified_name += value_name;
// Search for the enum value's descriptor in the builder's pool. Note
// that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
// DescriptorPool::FindEnumValueByName() because we're already holding
// the pool's mutex, and the latter method locks it again.
Symbol symbol =
builder_->FindSymbolNotEnforcingDeps(fully_qualified_name);
if (!symbol.IsNull() && symbol.type == Symbol::ENUM_VALUE) {
if (symbol.enum_value_descriptor->type() != enum_type) {
return AddValueError("Enum type \"" + enum_type->full_name() +
"\" has no value named \"" + value_name + "\" for option \"" +
option_field->full_name() +
"\". This appears to be a value from a sibling type.");
} else {
enum_value = symbol.enum_value_descriptor;
}
}
} else {
// The enum type is in the generated pool, so we can search for the
// value there.
enum_value = enum_type->FindValueByName(value_name);
}
if (enum_value == NULL) {
return AddValueError("Enum type \"" +
option_field->enum_type()->full_name() +
"\" has no value named \"" + value_name + "\" for "
"option \"" + option_field->full_name() + "\".");
} else {
// Sign-extension is not a problem, since we cast directly from int32 to
// uint64, without first going through uint32.
unknown_fields->AddVarint(option_field->number(),
static_cast<uint64>(static_cast<int64>(enum_value->number())));
}
break;
}
case FieldDescriptor::CPPTYPE_STRING:
if (!uninterpreted_option_->has_string_value()) {
return AddValueError("Value must be quoted string for string option "
"\"" + option_field->full_name() + "\".");
}
// The string has already been unquoted and unescaped by the parser.
unknown_fields->AddLengthDelimited(option_field->number(),
uninterpreted_option_->string_value());
break;
case FieldDescriptor::CPPTYPE_MESSAGE:
// We don't currently support defining a message-typed option, so we
// should never actually get here.
return AddValueError("Option \"" + option_field->full_name() +
"\" is a message. To set fields within it, use "
"syntax like \"" + option_field->name() +
".foo = value\".");
break;
}
return true;
}
void DescriptorBuilder::OptionInterpreter::SetInt32(int number, int32 value,
FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
switch (type) {
case FieldDescriptor::TYPE_INT32:
unknown_fields->AddVarint(number,
static_cast<uint64>(static_cast<int64>(value)));
break;
case FieldDescriptor::TYPE_SFIXED32:
unknown_fields->AddFixed32(number, static_cast<uint32>(value));
break;
case FieldDescriptor::TYPE_SINT32:
unknown_fields->AddVarint(number,
google::protobuf::internal::WireFormatLite::ZigZagEncode32(value));
break;
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT32: " << type;
break;
}
}
void DescriptorBuilder::OptionInterpreter::SetInt64(int number, int64 value,
FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
switch (type) {
case FieldDescriptor::TYPE_INT64:
unknown_fields->AddVarint(number, static_cast<uint64>(value));
break;
case FieldDescriptor::TYPE_SFIXED64:
unknown_fields->AddFixed64(number, static_cast<uint64>(value));
break;
case FieldDescriptor::TYPE_SINT64:
unknown_fields->AddVarint(number,
google::protobuf::internal::WireFormatLite::ZigZagEncode64(value));
break;
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT64: " << type;
break;
}
}
void DescriptorBuilder::OptionInterpreter::SetUInt32(int number, uint32 value,
FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
switch (type) {
case FieldDescriptor::TYPE_UINT32:
unknown_fields->AddVarint(number, static_cast<uint64>(value));
break;
case FieldDescriptor::TYPE_FIXED32:
unknown_fields->AddFixed32(number, static_cast<uint32>(value));
break;
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT32: " << type;
break;
}
}
void DescriptorBuilder::OptionInterpreter::SetUInt64(int number, uint64 value,
FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
switch (type) {
case FieldDescriptor::TYPE_UINT64:
unknown_fields->AddVarint(number, value);
break;
case FieldDescriptor::TYPE_FIXED64:
unknown_fields->AddFixed64(number, value);
break;
default:
GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT64: " << type;
break;
}
}
} // namespace protobuf
} // namespace google