| /* |
| * libslirp glue |
| * |
| * Copyright (c) 2004-2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu-common.h" |
| #include "qemu-char.h" |
| #include "slirp.h" |
| #include "proxy_common.h" |
| #include "hw/hw.h" |
| |
| #include "android/utils/debug.h" /* for dprint */ |
| #include "android/utils/bufprint.h" |
| #include "android/android.h" |
| #include "sockets.h" |
| |
| #include "qemu-queue.h" |
| |
| /* proto types */ |
| static void slirp_net_forward_init(void); |
| |
| |
| #define D(...) VERBOSE_PRINT(slirp,__VA_ARGS__) |
| #define DN(...) do { if (VERBOSE_CHECK(slirp)) dprintn(__VA_ARGS__); } while (0) |
| |
| /* host address */ |
| uint32_t our_addr_ip; |
| /* host dns address */ |
| uint32_t dns_addr[DNS_ADDR_MAX]; |
| int dns_addr_count; |
| |
| /* host loopback address */ |
| uint32_t loopback_addr_ip; |
| |
| /* address for slirp virtual addresses */ |
| uint32_t special_addr_ip; |
| |
| /* virtual address alias for host */ |
| uint32_t alias_addr_ip; |
| |
| static const uint8_t special_ethaddr[6] = { |
| 0x52, 0x54, 0x00, 0x12, 0x35, 0x00 |
| }; |
| |
| /* ARP cache for the guest IP addresses (XXX: allow many entries) */ |
| uint8_t client_ethaddr[6]; |
| static ipaddr_t client_ip; |
| |
| static const uint8_t zero_ethaddr[6] = { 0, 0, 0, 0, 0, 0 }; |
| |
| const char *slirp_special_ip = CTL_SPECIAL; |
| int slirp_restrict; |
| static int do_slowtimo; |
| int link_up; |
| struct timeval tt; |
| FILE *lfd; |
| struct ex_list *exec_list; |
| |
| /* XXX: suppress those select globals */ |
| fd_set *global_readfds, *global_writefds, *global_xfds; |
| |
| char slirp_hostname[33]; |
| |
| int slirp_add_dns_server(const SockAddress* new_dns_addr) |
| { |
| int dns_ip; |
| |
| if (dns_addr_count >= DNS_ADDR_MAX) |
| return -1; |
| |
| dns_ip = sock_address_get_ip(new_dns_addr); |
| if (dns_ip == -1) |
| return -1; |
| |
| dns_addr[dns_addr_count++] = dns_ip; |
| return 0; |
| } |
| |
| |
| #ifdef _WIN32 |
| |
| int slirp_get_system_dns_servers(void) |
| { |
| FIXED_INFO *FixedInfo=NULL; |
| ULONG BufLen; |
| DWORD ret; |
| IP_ADDR_STRING *pIPAddr; |
| |
| if (dns_addr_count > 0) |
| return dns_addr_count; |
| |
| FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO)); |
| BufLen = sizeof(FIXED_INFO); |
| |
| if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) { |
| if (FixedInfo) { |
| GlobalFree(FixedInfo); |
| FixedInfo = NULL; |
| } |
| FixedInfo = GlobalAlloc(GPTR, BufLen); |
| } |
| |
| if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) { |
| printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret ); |
| if (FixedInfo) { |
| GlobalFree(FixedInfo); |
| FixedInfo = NULL; |
| } |
| return -1; |
| } |
| |
| D( "DNS Servers:"); |
| pIPAddr = &(FixedInfo->DnsServerList); |
| while (pIPAddr && dns_addr_count < DNS_ADDR_MAX) { |
| uint32_t ip; |
| D( " %s", pIPAddr->IpAddress.String ); |
| if (inet_strtoip(pIPAddr->IpAddress.String, &ip) == 0) { |
| if (ip == loopback_addr_ip) |
| ip = our_addr_ip; |
| if (dns_addr_count < DNS_ADDR_MAX) |
| dns_addr[dns_addr_count++] = ip; |
| } |
| pIPAddr = pIPAddr->Next; |
| } |
| |
| if (FixedInfo) { |
| GlobalFree(FixedInfo); |
| FixedInfo = NULL; |
| } |
| if (dns_addr_count <= 0) |
| return -1; |
| |
| return dns_addr_count; |
| } |
| |
| #else |
| |
| int slirp_get_system_dns_servers(void) |
| { |
| char buff[512]; |
| char buff2[257]; |
| FILE *f; |
| |
| if (dns_addr_count > 0) |
| return dns_addr_count; |
| |
| #ifdef CONFIG_DARWIN |
| /* on Darwin /etc/resolv.conf is a symlink to /private/var/run/resolv.conf |
| * in some siutations, the symlink can be destroyed and the system will not |
| * re-create it. Darwin-aware applications will continue to run, but "legacy" |
| * Unix ones will not. |
| */ |
| f = fopen("/private/var/run/resolv.conf", "r"); |
| if (!f) |
| f = fopen("/etc/resolv.conf", "r"); /* desperate attempt to sanity */ |
| #else |
| f = fopen("/etc/resolv.conf", "r"); |
| #endif |
| if (!f) |
| return -1; |
| |
| DN("emulator: IP address of your DNS(s): "); |
| while (fgets(buff, 512, f) != NULL) { |
| if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) { |
| uint32_t tmp_ip; |
| |
| if (inet_strtoip(buff2, &tmp_ip) < 0) |
| continue; |
| if (tmp_ip == loopback_addr_ip) |
| tmp_ip = our_addr_ip; |
| if (dns_addr_count < DNS_ADDR_MAX) { |
| dns_addr[dns_addr_count++] = tmp_ip; |
| if (dns_addr_count > 1) |
| DN(", "); |
| DN("%s", inet_iptostr(tmp_ip)); |
| } else { |
| DN("(more)"); |
| break; |
| } |
| } |
| } |
| DN("\n"); |
| fclose(f); |
| |
| if (!dns_addr_count) |
| return -1; |
| |
| return dns_addr_count; |
| } |
| |
| #endif |
| |
| static void slirp_state_save(QEMUFile *f, void *opaque); |
| static int slirp_state_load(QEMUFile *f, void *opaque, int version_id); |
| |
| void slirp_init(int restricted, const char *special_ip) |
| { |
| #if DEBUG |
| int slirp_logmask = 0; |
| char slirp_logfile[512]; |
| { |
| const char* env = getenv( "ANDROID_SLIRP_LOGMASK" ); |
| if (env != NULL) |
| slirp_logmask = atoi(env); |
| else if (VERBOSE_CHECK(slirp)) |
| slirp_logmask = DEBUG_DEFAULT; |
| } |
| |
| { |
| char* p = slirp_logfile; |
| char* end = p + sizeof(slirp_logfile); |
| |
| p = bufprint_temp_file( p, end, "slirp.log" ); |
| if (p >= end) { |
| dprint( "cannot create slirp log file in temporary directory" ); |
| slirp_logmask = 0; |
| } |
| } |
| if (slirp_logmask) { |
| dprint( "sending slirp logs with mask %x to %s", slirp_logmask, slirp_logfile ); |
| debug_init( slirp_logfile, slirp_logmask ); |
| } |
| #endif |
| |
| link_up = 1; |
| slirp_restrict = restricted; |
| |
| if_init(); |
| ip_init(); |
| |
| /* Initialise mbufs *after* setting the MTU */ |
| m_init(); |
| |
| /* set default addresses */ |
| inet_strtoip("127.0.0.1", &loopback_addr_ip); |
| |
| if (dns_addr_count == 0) { |
| if (slirp_get_system_dns_servers() < 0) { |
| dns_addr[0] = loopback_addr_ip; |
| dns_addr_count = 1; |
| fprintf (stderr, "Warning: No DNS servers found\n"); |
| } |
| } |
| |
| inet_strtoip(CTL_SPECIAL, &special_addr_ip); |
| |
| alias_addr_ip = special_addr_ip | CTL_ALIAS; |
| getouraddr(); |
| register_savevm("slirp", 0, 1, slirp_state_save, slirp_state_load, NULL); |
| |
| slirp_net_forward_init(); |
| } |
| |
| #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
| #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) |
| #define UPD_NFDS(x) if (nfds < (x)) nfds = (x) |
| |
| /* |
| * curtime kept to an accuracy of 1ms |
| */ |
| #ifdef _WIN32 |
| static void updtime(void) |
| { |
| struct _timeb tb; |
| |
| _ftime(&tb); |
| curtime = (u_int)tb.time * (u_int)1000; |
| curtime += (u_int)tb.millitm; |
| } |
| #else |
| static void updtime(void) |
| { |
| gettimeofday(&tt, NULL); |
| |
| curtime = (u_int)tt.tv_sec * (u_int)1000; |
| curtime += (u_int)tt.tv_usec / (u_int)1000; |
| |
| if ((tt.tv_usec % 1000) >= 500) |
| curtime++; |
| } |
| #endif |
| |
| void slirp_select_fill(int *pnfds, |
| fd_set *readfds, fd_set *writefds, fd_set *xfds) |
| { |
| struct socket *so, *so_next; |
| struct timeval timeout; |
| int nfds; |
| int tmp_time; |
| |
| /* fail safe */ |
| global_readfds = NULL; |
| global_writefds = NULL; |
| global_xfds = NULL; |
| |
| nfds = *pnfds; |
| /* |
| * First, TCP sockets |
| */ |
| do_slowtimo = 0; |
| if (link_up) { |
| /* |
| * *_slowtimo needs calling if there are IP fragments |
| * in the fragment queue, or there are TCP connections active |
| */ |
| do_slowtimo = ((tcb.so_next != &tcb) || |
| (&ipq.ip_link != ipq.ip_link.next)); |
| |
| for (so = tcb.so_next; so != &tcb; so = so_next) { |
| so_next = so->so_next; |
| |
| /* |
| * See if we need a tcp_fasttimo |
| */ |
| if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK) |
| time_fasttimo = curtime; /* Flag when we want a fasttimo */ |
| |
| /* |
| * NOFDREF can include still connecting to local-host, |
| * newly socreated() sockets etc. Don't want to select these. |
| */ |
| if (so->so_state & SS_NOFDREF || so->s == -1) |
| continue; |
| |
| /* |
| * don't register proxified socked connections here |
| */ |
| if ((so->so_state & SS_PROXIFIED) != 0) |
| continue; |
| |
| /* |
| * Set for reading sockets which are accepting |
| */ |
| if (so->so_state & SS_FACCEPTCONN) { |
| FD_SET(so->s, readfds); |
| UPD_NFDS(so->s); |
| continue; |
| } |
| |
| /* |
| * Set for writing sockets which are connecting |
| */ |
| if (so->so_state & SS_ISFCONNECTING) { |
| FD_SET(so->s, writefds); |
| UPD_NFDS(so->s); |
| continue; |
| } |
| |
| /* |
| * Set for writing if we are connected, can send more, and |
| * we have something to send |
| */ |
| if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) { |
| FD_SET(so->s, writefds); |
| UPD_NFDS(so->s); |
| } |
| |
| /* |
| * Set for reading (and urgent data) if we are connected, can |
| * receive more, and we have room for it XXX /2 ? |
| */ |
| if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) { |
| FD_SET(so->s, readfds); |
| FD_SET(so->s, xfds); |
| UPD_NFDS(so->s); |
| } |
| } |
| |
| /* |
| * UDP sockets |
| */ |
| for (so = udb.so_next; so != &udb; so = so_next) { |
| so_next = so->so_next; |
| |
| if ((so->so_state & SS_PROXIFIED) != 0) |
| continue; |
| |
| /* |
| * See if it's timed out |
| */ |
| if (so->so_expire) { |
| if (so->so_expire <= curtime) { |
| udp_detach(so); |
| continue; |
| } else |
| do_slowtimo = 1; /* Let socket expire */ |
| } |
| |
| /* |
| * When UDP packets are received from over the |
| * link, they're sendto()'d straight away, so |
| * no need for setting for writing |
| * Limit the number of packets queued by this session |
| * to 4. Note that even though we try and limit this |
| * to 4 packets, the session could have more queued |
| * if the packets needed to be fragmented |
| * (XXX <= 4 ?) |
| */ |
| if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { |
| FD_SET(so->s, readfds); |
| UPD_NFDS(so->s); |
| } |
| } |
| } |
| |
| /* |
| * Setup timeout to use minimum CPU usage, especially when idle |
| */ |
| |
| /* |
| * First, see the timeout needed by *timo |
| */ |
| timeout.tv_sec = 0; |
| timeout.tv_usec = -1; |
| /* |
| * If a slowtimo is needed, set timeout to 500ms from the last |
| * slow timeout. If a fast timeout is needed, set timeout within |
| * 200ms of when it was requested. |
| */ |
| if (do_slowtimo) { |
| /* XXX + 10000 because some select()'s aren't that accurate */ |
| timeout.tv_usec = ((500 - (curtime - last_slowtimo)) * 1000) + 10000; |
| if (timeout.tv_usec < 0) |
| timeout.tv_usec = 0; |
| else if (timeout.tv_usec > 510000) |
| timeout.tv_usec = 510000; |
| |
| /* Can only fasttimo if we also slowtimo */ |
| if (time_fasttimo) { |
| tmp_time = (200 - (curtime - time_fasttimo)) * 1000; |
| if (tmp_time < 0) |
| tmp_time = 0; |
| |
| /* Choose the smallest of the 2 */ |
| if (tmp_time < timeout.tv_usec) |
| timeout.tv_usec = (u_int)tmp_time; |
| } |
| } |
| /* |
| * now, the proxified sockets |
| */ |
| proxy_manager_select_fill(&nfds, readfds, writefds, xfds); |
| |
| *pnfds = nfds; |
| } |
| |
| void slirp_select_poll(fd_set *readfds, fd_set *writefds, fd_set *xfds) |
| { |
| struct socket *so, *so_next; |
| int ret; |
| |
| global_readfds = readfds; |
| global_writefds = writefds; |
| global_xfds = xfds; |
| |
| /* Update time */ |
| updtime(); |
| |
| /* |
| * See if anything has timed out |
| */ |
| if (link_up) { |
| if (time_fasttimo && ((curtime - time_fasttimo) >= 2)) { |
| tcp_fasttimo(); |
| time_fasttimo = 0; |
| } |
| if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) { |
| ip_slowtimo(); |
| tcp_slowtimo(); |
| last_slowtimo = curtime; |
| } |
| } |
| |
| /* |
| * Check sockets |
| */ |
| if (link_up) { |
| /* |
| * Check TCP sockets |
| */ |
| for (so = tcb.so_next; so != &tcb; so = so_next) { |
| so_next = so->so_next; |
| |
| /* |
| * FD_ISSET is meaningless on these sockets |
| * (and they can crash the program) |
| */ |
| if (so->so_state & SS_NOFDREF || so->s == -1) |
| continue; |
| |
| /* |
| * proxified sockets are polled later in this |
| * function. |
| */ |
| if ((so->so_state & SS_PROXIFIED) != 0) |
| continue; |
| |
| /* |
| * Check for URG data |
| * This will soread as well, so no need to |
| * test for readfds below if this succeeds |
| */ |
| if (FD_ISSET(so->s, xfds)) |
| sorecvoob(so); |
| /* |
| * Check sockets for reading |
| */ |
| else if (FD_ISSET(so->s, readfds)) { |
| /* |
| * Check for incoming connections |
| */ |
| if (so->so_state & SS_FACCEPTCONN) { |
| tcp_connect(so); |
| continue; |
| } /* else */ |
| ret = soread(so); |
| |
| /* Output it if we read something */ |
| if (ret > 0) |
| tcp_output(sototcpcb(so)); |
| } |
| |
| /* |
| * Check sockets for writing |
| */ |
| if (FD_ISSET(so->s, writefds)) { |
| /* |
| * Check for non-blocking, still-connecting sockets |
| */ |
| if (so->so_state & SS_ISFCONNECTING) { |
| /* Connected */ |
| so->so_state &= ~SS_ISFCONNECTING; |
| |
| ret = socket_send(so->s, (const void *)&ret, 0); |
| if (ret < 0) { |
| /* XXXXX Must fix, zero bytes is a NOP */ |
| if (errno == EAGAIN || errno == EWOULDBLOCK || |
| errno == EINPROGRESS || errno == ENOTCONN) |
| continue; |
| |
| /* else failed */ |
| so->so_state = SS_NOFDREF; |
| } |
| /* else so->so_state &= ~SS_ISFCONNECTING; */ |
| |
| /* |
| * Continue tcp_input |
| */ |
| tcp_input((struct mbuf *)NULL, sizeof(struct ip), so); |
| /* continue; */ |
| } else |
| ret = sowrite(so); |
| /* |
| * XXXXX If we wrote something (a lot), there |
| * could be a need for a window update. |
| * In the worst case, the remote will send |
| * a window probe to get things going again |
| */ |
| } |
| |
| /* |
| * Probe a still-connecting, non-blocking socket |
| * to check if it's still alive |
| */ |
| #ifdef PROBE_CONN |
| if (so->so_state & SS_ISFCONNECTING) { |
| ret = socket_recv(so->s, (char *)&ret, 0); |
| |
| if (ret < 0) { |
| /* XXX */ |
| if (errno == EAGAIN || errno == EWOULDBLOCK || |
| errno == EINPROGRESS || errno == ENOTCONN) |
| continue; /* Still connecting, continue */ |
| |
| /* else failed */ |
| so->so_state = SS_NOFDREF; |
| |
| /* tcp_input will take care of it */ |
| } else { |
| ret = socket_send(so->s, &ret, 0); |
| if (ret < 0) { |
| /* XXX */ |
| if (errno == EAGAIN || errno == EWOULDBLOCK || |
| errno == EINPROGRESS || errno == ENOTCONN) |
| continue; |
| /* else failed */ |
| so->so_state = SS_NOFDREF; |
| } else |
| so->so_state &= ~SS_ISFCONNECTING; |
| |
| } |
| tcp_input((struct mbuf *)NULL, sizeof(struct ip),so); |
| } /* SS_ISFCONNECTING */ |
| #endif |
| } |
| |
| /* |
| * Now UDP sockets. |
| * Incoming packets are sent straight away, they're not buffered. |
| * Incoming UDP data isn't buffered either. |
| */ |
| for (so = udb.so_next; so != &udb; so = so_next) { |
| so_next = so->so_next; |
| |
| if ((so->so_state & SS_PROXIFIED) != 0) |
| continue; |
| |
| if (so->s != -1 && FD_ISSET(so->s, readfds)) { |
| sorecvfrom(so); |
| } |
| } |
| } |
| |
| /* |
| * Now the proxified sockets |
| */ |
| proxy_manager_poll(readfds, writefds, xfds); |
| |
| /* |
| * See if we can start outputting |
| */ |
| if (if_queued && link_up) |
| if_start(); |
| |
| /* clear global file descriptor sets. |
| * these reside on the stack in vl.c |
| * so they're unusable if we're not in |
| * slirp_select_fill or slirp_select_poll. |
| */ |
| global_readfds = NULL; |
| global_writefds = NULL; |
| global_xfds = NULL; |
| } |
| |
| #define ETH_ALEN 6 |
| #define ETH_HLEN 14 |
| |
| #define ETH_P_IP 0x0800 /* Internet Protocol packet */ |
| #define ETH_P_ARP 0x0806 /* Address Resolution packet */ |
| |
| #define ARPOP_REQUEST 1 /* ARP request */ |
| #define ARPOP_REPLY 2 /* ARP reply */ |
| |
| struct ethhdr |
| { |
| unsigned char h_dest[ETH_ALEN]; /* destination eth addr */ |
| unsigned char h_source[ETH_ALEN]; /* source ether addr */ |
| unsigned short h_proto; /* packet type ID field */ |
| }; |
| |
| struct arphdr |
| { |
| unsigned short ar_hrd; /* format of hardware address */ |
| unsigned short ar_pro; /* format of protocol address */ |
| unsigned char ar_hln; /* length of hardware address */ |
| unsigned char ar_pln; /* length of protocol address */ |
| unsigned short ar_op; /* ARP opcode (command) */ |
| |
| /* |
| * Ethernet looks like this : This bit is variable sized however... |
| */ |
| unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */ |
| unsigned char ar_sip[4]; /* sender IP address */ |
| unsigned char ar_tha[ETH_ALEN]; /* target hardware address */ |
| unsigned char ar_tip[4]; /* target IP address */ |
| }; |
| |
| static void arp_input(const uint8_t *pkt, int pkt_len) |
| { |
| struct ethhdr *eh = (struct ethhdr *)pkt; |
| struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN); |
| uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)]; |
| struct ethhdr *reh = (struct ethhdr *)arp_reply; |
| struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN); |
| int ar_op; |
| struct ex_list *ex_ptr; |
| |
| ar_op = ntohs(ah->ar_op); |
| switch(ar_op) { |
| uint32_t ar_tip_ip; |
| |
| case ARPOP_REQUEST: |
| ar_tip_ip = ip_read32h(ah->ar_tip); |
| if ((ar_tip_ip & 0xffffff00) == special_addr_ip) { |
| uint32_t ar_tip_low = ar_tip_ip & 0xff; |
| if ( CTL_IS_DNS(ar_tip_low) || ar_tip_low == CTL_ALIAS) |
| goto arp_ok; |
| for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { |
| if (ex_ptr->ex_addr == ar_tip_low) |
| goto arp_ok; |
| } |
| return; |
| arp_ok: |
| /* XXX: make an ARP request to have the client address */ |
| memcpy(client_ethaddr, eh->h_source, ETH_ALEN); |
| |
| /* ARP request for alias/dns mac address */ |
| memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN); |
| memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1); |
| reh->h_source[5] = ar_tip_low; |
| reh->h_proto = htons(ETH_P_ARP); |
| |
| rah->ar_hrd = htons(1); |
| rah->ar_pro = htons(ETH_P_IP); |
| rah->ar_hln = ETH_ALEN; |
| rah->ar_pln = 4; |
| rah->ar_op = htons(ARPOP_REPLY); |
| memcpy(rah->ar_sha, reh->h_source, ETH_ALEN); |
| memcpy(rah->ar_sip, ah->ar_tip, 4); |
| memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); |
| memcpy(rah->ar_tip, ah->ar_sip, 4); |
| slirp_output(arp_reply, sizeof(arp_reply)); |
| } |
| break; |
| case ARPOP_REPLY: |
| /* reply to request of client mac address ? */ |
| if (!memcmp(client_ethaddr, zero_ethaddr, ETH_ALEN) && |
| ip_equal( ip_read(ah->ar_sip), client_ip )) { |
| memcpy(client_ethaddr, ah->ar_sha, ETH_ALEN); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void slirp_input(const uint8_t *pkt, int pkt_len) |
| { |
| struct mbuf *m; |
| int proto; |
| |
| if (pkt_len < ETH_HLEN) |
| return; |
| |
| proto = ntohs(*(uint16_t *)(pkt + 12)); |
| switch(proto) { |
| case ETH_P_ARP: |
| arp_input(pkt, pkt_len); |
| break; |
| case ETH_P_IP: |
| m = m_get(); |
| if (!m) |
| return; |
| /* Note: we add to align the IP header */ |
| if (M_FREEROOM(m) < pkt_len + 2) { |
| m_inc(m, pkt_len + 2); |
| } |
| m->m_len = pkt_len + 2; |
| memcpy(m->m_data + 2, pkt, pkt_len); |
| |
| m->m_data += 2 + ETH_HLEN; |
| m->m_len -= 2 + ETH_HLEN; |
| |
| ip_input(m); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* output the IP packet to the ethernet device */ |
| void if_encap(const uint8_t *ip_data, int ip_data_len) |
| { |
| uint8_t buf[1600]; |
| struct ethhdr *eh = (struct ethhdr *)buf; |
| |
| if (ip_data_len + ETH_HLEN > sizeof(buf)) |
| return; |
| |
| if (!memcmp(client_ethaddr, zero_ethaddr, ETH_ALEN)) { |
| uint8_t arp_req[ETH_HLEN + sizeof(struct arphdr)]; |
| struct ethhdr *reh = (struct ethhdr *)arp_req; |
| struct arphdr *rah = (struct arphdr *)(arp_req + ETH_HLEN); |
| const struct ip *iph = (const struct ip *)ip_data; |
| |
| /* If the client addr is not known, there is no point in |
| sending the packet to it. Normally the sender should have |
| done an ARP request to get its MAC address. Here we do it |
| in place of sending the packet and we hope that the sender |
| will retry sending its packet. */ |
| memset(reh->h_dest, 0xff, ETH_ALEN); |
| memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 1); |
| reh->h_source[5] = CTL_ALIAS; |
| reh->h_proto = htons(ETH_P_ARP); |
| rah->ar_hrd = htons(1); |
| rah->ar_pro = htons(ETH_P_IP); |
| rah->ar_hln = ETH_ALEN; |
| rah->ar_pln = 4; |
| rah->ar_op = htons(ARPOP_REQUEST); |
| /* source hw addr */ |
| memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 1); |
| rah->ar_sha[5] = CTL_ALIAS; |
| /* source IP */ |
| ip_write32h(alias_addr_ip, rah->ar_sip); |
| /* target hw addr (none) */ |
| memset(rah->ar_tha, 0, ETH_ALEN); |
| /* target IP */ |
| ip_write( iph->ip_dst, rah->ar_tip ); |
| client_ip = iph->ip_dst; |
| slirp_output(arp_req, sizeof(arp_req)); |
| } else { |
| memcpy(eh->h_dest, client_ethaddr, ETH_ALEN); |
| memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 1); |
| /* XXX: not correct */ |
| eh->h_source[5] = CTL_ALIAS; |
| eh->h_proto = htons(ETH_P_IP); |
| memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len); |
| slirp_output(buf, ip_data_len + ETH_HLEN); |
| } |
| } |
| |
| |
| /*---------------------------------------------------*/ |
| /* User mode network stack restrictions */ |
| struct fw_allow_entry { |
| struct fw_allow_entry* next; |
| unsigned long dst_addr; /* host byte order */ |
| /* Allowed port range. dst_lport should be the same as dst_hport for a |
| * single port. */ |
| unsigned short dst_lport; /* host byte order */ |
| unsigned short dst_hport; /* host byte order */ |
| }; |
| |
| static int drop_udp = 0; |
| static int drop_tcp = 0; |
| static struct fw_allow_entry* allow_tcp_entries = NULL; |
| static struct fw_allow_entry* allow_udp_entries = NULL; |
| static FILE* drop_log_fd = NULL; |
| static FILE* dns_log_fd = NULL; |
| static int max_dns_conns = -1; /* unlimited max DNS connections by default */ |
| static int slirp_net_forward_inited = 0; |
| |
| void slirp_drop_udp() { |
| drop_udp = 1; |
| } |
| |
| void slirp_drop_tcp() { |
| drop_tcp = 1; |
| } |
| |
| /* TCP traffic forwarding to a sink - If enabled, all TCP traffic to any |
| * ip/port that is not explicitly forwared using '-net-forward', and which would |
| * otherwise be dropped if '-drop-tcp' has been specified, is redirected to the |
| * specified ip:port |
| */ |
| int forward_dropped_tcp2sink = 0; |
| static unsigned long tcp_sink_ip; |
| int tcp_sink_port; |
| |
| void slirp_forward_dropped_tcp2sink(unsigned long sink_ip, int sink_port) { |
| tcp_sink_ip = sink_ip; |
| tcp_sink_port = sink_port; |
| forward_dropped_tcp2sink = 1; |
| } |
| |
| int slirp_should_forward_dropped_tcp2sink() { |
| return forward_dropped_tcp2sink; |
| } |
| |
| unsigned long slirp_get_tcp_sink_ip() { |
| return tcp_sink_ip; |
| } |
| int slirp_get_tcp_sink_port() { |
| return tcp_sink_port; |
| } |
| |
| /* Fill in the firewall rules. dst_lport and dst_hport are in host byte order */ |
| void slirp_add_allow(unsigned long dst_addr, |
| int dst_lport, int dst_hport, |
| u_int8_t proto) { |
| |
| struct fw_allow_entry** ate; |
| switch (proto) { |
| case IPPROTO_TCP: |
| ate = &allow_tcp_entries; |
| break; |
| case IPPROTO_UDP: |
| ate = &allow_udp_entries; |
| break; |
| default: |
| return; // unknown protocol for the FW |
| } |
| |
| while(*ate != NULL) |
| ate = &(*ate)->next; |
| |
| *ate = malloc(sizeof(**ate)); |
| if (*ate == NULL) { |
| DEBUG_MISC((dfd, |
| "Unable to create new firewall record, malloc failed\n")); |
| exit(-1); |
| } |
| |
| (*ate)->next = NULL; |
| (*ate)->dst_addr = dst_addr; |
| (*ate)->dst_lport = dst_lport; |
| (*ate)->dst_hport = dst_hport; |
| } |
| |
| void slirp_drop_log_fd(FILE* fd) { |
| drop_log_fd = fd; |
| } |
| |
| void slirp_dns_log_fd(FILE* fd) { |
| dns_log_fd = fd; |
| } |
| |
| FILE* get_slirp_drop_log_fd(void) { |
| return drop_log_fd; |
| } |
| |
| FILE* get_slirp_dns_log_fd(void) { |
| return dns_log_fd; |
| } |
| |
| /* Address and ports are in host byte order */ |
| int slirp_should_drop(unsigned long dst_addr, |
| int dst_port, |
| u_int8_t proto) { |
| |
| struct fw_allow_entry* ate; |
| |
| switch (proto) { |
| case IPPROTO_TCP: |
| if (drop_tcp != 0) |
| ate = allow_tcp_entries; |
| else |
| return 0; |
| break; |
| case IPPROTO_UDP: |
| if (drop_udp != 0) |
| ate = allow_udp_entries; |
| else |
| return 0; |
| break; |
| default: |
| return 1; // unknown protocol for the FW |
| } |
| |
| while(ate) { |
| if ((ate->dst_lport <= dst_port) && (dst_port <= ate->dst_hport)) { |
| // allow any destination if 0 |
| if (ate->dst_addr == 0 || ate->dst_addr == dst_addr) |
| return 0; |
| } |
| ate = ate->next; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * log DNS requests in a separate log |
| */ |
| int |
| slirp_log_dns(struct mbuf* m, int dropped) { |
| char dns_query[256]; // max allowable dns name size |
| int c = 0; |
| int i= 0; |
| int index = 0; |
| int offset = 40 + 1; // udp/ip headers length + 1; |
| int trim_bytes = 4; |
| |
| if (!dns_log_fd) |
| return -1; |
| |
| /* We assume one DNS name per query: 300 = 255 (max dns name length) |
| * + 40 (udp/ip hdr) + 1 byte DNS peamble + 4 bytes DNS suffix |
| */ |
| if (m->m_len < offset || m->m_len > 300) { |
| DEBUG_MISC((dfd,"Malformed DNS qeury, length %d \n", (int)m->m_len)); |
| return -1; |
| } |
| for (i = offset; i < m->m_len - trim_bytes && index < sizeof(dns_query); i++, index++) { |
| c = m->m_data[i]; |
| if (c < ' ' || c > '~') |
| c = '.'; |
| |
| dns_query[index] = (char)c; |
| } |
| dns_query[index] = '\0'; |
| if (!dropped) { |
| fprintf(dns_log_fd, "Sent DNS query for, %s\n" , dns_query); |
| } else { |
| fprintf(dns_log_fd, "Dropped DNS query for, %s\n" , dns_query); |
| } |
| fflush(dns_log_fd); |
| return 1; |
| } |
| |
| /* |
| * log DNS requests in a separate log |
| */ |
| int |
| slirp_dump_dns(struct mbuf* m) { |
| |
| if (!dns_log_fd) |
| return 0; |
| // first we write the length of the record then the record (IP packet) |
| if (!fwrite(&(m->m_len), sizeof(int), 1, dns_log_fd) || |
| !fwrite(m->m_data, m->m_len, 1, dns_log_fd)) { |
| return 0; |
| } |
| |
| fflush(dns_log_fd); |
| return 1; |
| } |
| |
| /* Log dropped/accepted packet info */ |
| int slirp_drop_log(const char* format, ...) { |
| va_list args; |
| |
| if (!drop_log_fd) |
| return 0; |
| |
| va_start(args, format); |
| vfprintf(drop_log_fd, format, args); |
| va_end(args); |
| |
| fflush(drop_log_fd); |
| |
| return 1; |
| } |
| |
| |
| /* Set max DNS requests allowed to be issued from the VM */ |
| void slirp_set_max_dns_conns(int num_conns) { |
| max_dns_conns = num_conns; |
| } |
| |
| int slirp_get_max_dns_conns() { |
| return max_dns_conns; |
| } |
| |
| /* generic guest network redirection functionality for ipv4 */ |
| struct net_forward_entry { |
| QTAILQ_ENTRY(net_forward_entry) next; |
| /* ip addresses are also in host byte order */ |
| unsigned long dest_ip; /* the destination address they try to contact */ |
| unsigned long dest_mask; /* the mask to apply to the address for matching */ |
| /* Range of ports they were trying to contact. In case of a single port, |
| * dest_lport should be the same as dest_hport */ |
| int dest_lport; /* Host byte order */ |
| int dest_hport; /* Host byte order */ |
| |
| unsigned long redirect_ip; |
| int redirect_port; /* Host byte order */ |
| }; |
| |
| static QTAILQ_HEAD(net_forwardq, net_forward_entry) net_forwards; |
| |
| static void slirp_net_forward_init(void) |
| { |
| if (!slirp_net_forward_inited) { |
| QTAILQ_INIT(&net_forwards); |
| slirp_net_forward_inited = 1; |
| } |
| } |
| |
| /* all addresses and ports ae in host byte order */ |
| void slirp_add_net_forward(unsigned long dest_ip, unsigned long dest_mask, |
| int dest_lport, int dest_hport, |
| unsigned long redirect_ip, int redirect_port) |
| { |
| slirp_net_forward_init(); |
| |
| struct net_forward_entry *entry = malloc(sizeof(*entry)); |
| if (entry == NULL) { |
| DEBUG_MISC((dfd, "Unable to create new forwarding entry, malloc failed\n")); |
| exit(-1); |
| } |
| |
| entry->dest_ip = dest_ip; |
| entry->dest_mask = dest_mask; |
| entry->dest_lport = dest_lport; |
| entry->dest_hport = dest_hport; |
| entry->redirect_ip = redirect_ip; |
| entry->redirect_port = redirect_port; |
| |
| QTAILQ_INSERT_TAIL(&net_forwards, entry, next); |
| } |
| |
| /* remote_port and redir_port arguments |
| * are in network byte order (tcp_subr.c) */ |
| int slirp_should_net_forward(unsigned long remote_ip, int remote_port, |
| unsigned long *redirect_ip, int *redirect_port) |
| { |
| struct net_forward_entry *entry; |
| |
| for (entry = net_forwards.tqh_first; |
| entry != NULL; entry = entry->next.tqe_next) { |
| |
| if ((entry->dest_lport <= remote_port) |
| && (remote_port <= entry->dest_hport)) { |
| if ((entry->dest_ip & entry->dest_mask) |
| == (remote_ip & entry->dest_mask)) { |
| *redirect_ip = entry->redirect_ip; |
| *redirect_port = entry->redirect_port; |
| return 1; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /*---------------------------------------------------*/ |
| |
| |
| |
| |
| static void _slirp_redir_loop(void (*func)(void *opaque, int is_udp, |
| const SockAddress *laddr, |
| const SockAddress *faddr), |
| void *opaque, int is_udp) |
| { |
| struct socket *head = (is_udp ? &udb : &tcb); |
| struct socket *so; |
| |
| for (so = head->so_next; so != head; so = so->so_next) { |
| SockAddress local, foreign; |
| |
| sock_address_init_inet(&local, so->so_laddr_ip, so->so_laddr_port); |
| sock_address_init_inet(&foreign, so->so_faddr_ip, so->so_faddr_port); |
| func(opaque, is_udp, |
| &local, &foreign); |
| } |
| } |
| |
| void slirp_redir_loop(void (*func)(void *opaque, int is_udp, |
| const SockAddress *laddr, |
| const SockAddress *faddr), |
| void *opaque) |
| { |
| _slirp_redir_loop(func, opaque, 0); |
| _slirp_redir_loop(func, opaque, 1); |
| } |
| |
| /* Unlistens a redirection |
| * |
| * Return value: number of redirs removed */ |
| int slirp_redir_rm(int is_udp, int host_port) |
| { |
| struct socket *so; |
| struct socket *head = (is_udp ? &udb : &tcb); |
| int n = 0; |
| |
| loop_again: |
| for (so = head->so_next; so != head; so = so->so_next) { |
| if (so->so_faddr_port == host_port) { |
| close(so->s); |
| sofree(so); |
| n++; |
| goto loop_again; |
| } |
| } |
| |
| return n; |
| } |
| |
| int slirp_redir(int is_udp, int host_port, |
| uint32_t guest_ip, int guest_port) |
| { |
| if (is_udp) { |
| if (!udp_listen(host_port, |
| guest_ip, |
| guest_port, 0)) |
| return -1; |
| } else { |
| if (!solisten(host_port, guest_ip, guest_port, 0)) |
| return -1; |
| } |
| return 0; |
| } |
| |
| int slirp_unredir(int is_udp, int host_port) |
| { |
| if (is_udp) |
| return udp_unlisten( host_port ); |
| else |
| return sounlisten( host_port ); |
| } |
| |
| int slirp_add_exec(int do_pty, const void *args, int addr_low_byte, |
| int guest_port) |
| { |
| return add_exec(&exec_list, do_pty, (char *)args, |
| addr_low_byte, htons(guest_port)); |
| } |
| |
| ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags) |
| { |
| if (so->s == -1 && so->extra) { |
| qemu_chr_write(so->extra, buf, len); |
| return len; |
| } |
| |
| return send(so->s, buf, len, flags); |
| } |
| |
| static struct socket *slirp_find_ctl_socket(int addr_low_byte, int guest_port) |
| { |
| struct socket *so; |
| |
| for (so = tcb.so_next; so != &tcb; so = so->so_next) { |
| if ((so->so_faddr_ip & 0xffffff00) == |
| special_addr_ip |
| && ((so->so_faddr_port & 0xff) == |
| addr_low_byte) |
| && so->so_faddr_port == guest_port) |
| return so; |
| } |
| |
| return NULL; |
| } |
| |
| size_t slirp_socket_can_recv(int addr_low_byte, int guest_port) |
| { |
| struct iovec iov[2]; |
| struct socket *so; |
| |
| if (!link_up) |
| return 0; |
| |
| so = slirp_find_ctl_socket(addr_low_byte, guest_port); |
| |
| if (!so || so->so_state & SS_NOFDREF) |
| return 0; |
| |
| if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen/2)) |
| return 0; |
| |
| return sopreprbuf(so, iov, NULL); |
| } |
| |
| void slirp_socket_recv(int addr_low_byte, int guest_port, const uint8_t *buf, |
| int size) |
| { |
| int ret; |
| struct socket *so = slirp_find_ctl_socket(addr_low_byte, guest_port); |
| |
| if (!so) |
| return; |
| |
| ret = soreadbuf(so, (const char *)buf, size); |
| |
| if (ret > 0) |
| tcp_output(sototcpcb(so)); |
| } |
| |
| static void slirp_tcp_save(QEMUFile *f, struct tcpcb *tp) |
| { |
| int i; |
| |
| qemu_put_sbe16(f, tp->t_state); |
| for (i = 0; i < TCPT_NTIMERS; i++) |
| qemu_put_sbe16(f, tp->t_timer[i]); |
| qemu_put_sbe16(f, tp->t_rxtshift); |
| qemu_put_sbe16(f, tp->t_rxtcur); |
| qemu_put_sbe16(f, tp->t_dupacks); |
| qemu_put_be16(f, tp->t_maxseg); |
| qemu_put_sbyte(f, tp->t_force); |
| qemu_put_be16(f, tp->t_flags); |
| qemu_put_be32(f, tp->snd_una); |
| qemu_put_be32(f, tp->snd_nxt); |
| qemu_put_be32(f, tp->snd_up); |
| qemu_put_be32(f, tp->snd_wl1); |
| qemu_put_be32(f, tp->snd_wl2); |
| qemu_put_be32(f, tp->iss); |
| qemu_put_be32(f, tp->snd_wnd); |
| qemu_put_be32(f, tp->rcv_wnd); |
| qemu_put_be32(f, tp->rcv_nxt); |
| qemu_put_be32(f, tp->rcv_up); |
| qemu_put_be32(f, tp->irs); |
| qemu_put_be32(f, tp->rcv_adv); |
| qemu_put_be32(f, tp->snd_max); |
| qemu_put_be32(f, tp->snd_cwnd); |
| qemu_put_be32(f, tp->snd_ssthresh); |
| qemu_put_sbe16(f, tp->t_idle); |
| qemu_put_sbe16(f, tp->t_rtt); |
| qemu_put_be32(f, tp->t_rtseq); |
| qemu_put_sbe16(f, tp->t_srtt); |
| qemu_put_sbe16(f, tp->t_rttvar); |
| qemu_put_be16(f, tp->t_rttmin); |
| qemu_put_be32(f, tp->max_sndwnd); |
| qemu_put_byte(f, tp->t_oobflags); |
| qemu_put_byte(f, tp->t_iobc); |
| qemu_put_sbe16(f, tp->t_softerror); |
| qemu_put_byte(f, tp->snd_scale); |
| qemu_put_byte(f, tp->rcv_scale); |
| qemu_put_byte(f, tp->request_r_scale); |
| qemu_put_byte(f, tp->requested_s_scale); |
| qemu_put_be32(f, tp->ts_recent); |
| qemu_put_be32(f, tp->ts_recent_age); |
| qemu_put_be32(f, tp->last_ack_sent); |
| } |
| |
| static void slirp_sbuf_save(QEMUFile *f, struct sbuf *sbuf) |
| { |
| uint32_t off; |
| |
| qemu_put_be32(f, sbuf->sb_cc); |
| qemu_put_be32(f, sbuf->sb_datalen); |
| off = (uint32_t)(sbuf->sb_wptr - sbuf->sb_data); |
| qemu_put_sbe32(f, off); |
| off = (uint32_t)(sbuf->sb_rptr - sbuf->sb_data); |
| qemu_put_sbe32(f, off); |
| qemu_put_buffer(f, (unsigned char*)sbuf->sb_data, sbuf->sb_datalen); |
| } |
| |
| static void slirp_socket_save(QEMUFile *f, struct socket *so) |
| { |
| qemu_put_be32(f, so->so_urgc); |
| qemu_put_be32(f, so->so_faddr_ip); |
| qemu_put_be32(f, so->so_laddr_ip); |
| qemu_put_be16(f, so->so_faddr_port); |
| qemu_put_be16(f, so->so_laddr_port); |
| qemu_put_byte(f, so->so_iptos); |
| qemu_put_byte(f, so->so_emu); |
| qemu_put_byte(f, so->so_type); |
| qemu_put_be32(f, so->so_state); |
| slirp_sbuf_save(f, &so->so_rcv); |
| slirp_sbuf_save(f, &so->so_snd); |
| slirp_tcp_save(f, so->so_tcpcb); |
| } |
| |
| static void slirp_state_save(QEMUFile *f, void *opaque) |
| { |
| struct ex_list *ex_ptr; |
| |
| for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) |
| if (ex_ptr->ex_pty == 3) { |
| struct socket *so; |
| so = slirp_find_ctl_socket(ex_ptr->ex_addr, ntohs(ex_ptr->ex_fport)); |
| if (!so) |
| continue; |
| |
| qemu_put_byte(f, 42); |
| slirp_socket_save(f, so); |
| } |
| qemu_put_byte(f, 0); |
| } |
| |
| static void slirp_tcp_load(QEMUFile *f, struct tcpcb *tp) |
| { |
| int i; |
| |
| tp->t_state = qemu_get_sbe16(f); |
| for (i = 0; i < TCPT_NTIMERS; i++) |
| tp->t_timer[i] = qemu_get_sbe16(f); |
| tp->t_rxtshift = qemu_get_sbe16(f); |
| tp->t_rxtcur = qemu_get_sbe16(f); |
| tp->t_dupacks = qemu_get_sbe16(f); |
| tp->t_maxseg = qemu_get_be16(f); |
| tp->t_force = qemu_get_sbyte(f); |
| tp->t_flags = qemu_get_be16(f); |
| tp->snd_una = qemu_get_be32(f); |
| tp->snd_nxt = qemu_get_be32(f); |
| tp->snd_up = qemu_get_be32(f); |
| tp->snd_wl1 = qemu_get_be32(f); |
| tp->snd_wl2 = qemu_get_be32(f); |
| tp->iss = qemu_get_be32(f); |
| tp->snd_wnd = qemu_get_be32(f); |
| tp->rcv_wnd = qemu_get_be32(f); |
| tp->rcv_nxt = qemu_get_be32(f); |
| tp->rcv_up = qemu_get_be32(f); |
| tp->irs = qemu_get_be32(f); |
| tp->rcv_adv = qemu_get_be32(f); |
| tp->snd_max = qemu_get_be32(f); |
| tp->snd_cwnd = qemu_get_be32(f); |
| tp->snd_ssthresh = qemu_get_be32(f); |
| tp->t_idle = qemu_get_sbe16(f); |
| tp->t_rtt = qemu_get_sbe16(f); |
| tp->t_rtseq = qemu_get_be32(f); |
| tp->t_srtt = qemu_get_sbe16(f); |
| tp->t_rttvar = qemu_get_sbe16(f); |
| tp->t_rttmin = qemu_get_be16(f); |
| tp->max_sndwnd = qemu_get_be32(f); |
| tp->t_oobflags = qemu_get_byte(f); |
| tp->t_iobc = qemu_get_byte(f); |
| tp->t_softerror = qemu_get_sbe16(f); |
| tp->snd_scale = qemu_get_byte(f); |
| tp->rcv_scale = qemu_get_byte(f); |
| tp->request_r_scale = qemu_get_byte(f); |
| tp->requested_s_scale = qemu_get_byte(f); |
| tp->ts_recent = qemu_get_be32(f); |
| tp->ts_recent_age = qemu_get_be32(f); |
| tp->last_ack_sent = qemu_get_be32(f); |
| tcp_template(tp); |
| } |
| |
| static int slirp_sbuf_load(QEMUFile *f, struct sbuf *sbuf) |
| { |
| uint32_t off, sb_cc, sb_datalen; |
| |
| sb_cc = qemu_get_be32(f); |
| sb_datalen = qemu_get_be32(f); |
| |
| sbreserve(sbuf, sb_datalen); |
| |
| if (sbuf->sb_datalen != sb_datalen) |
| return -ENOMEM; |
| |
| sbuf->sb_cc = sb_cc; |
| |
| off = qemu_get_sbe32(f); |
| sbuf->sb_wptr = sbuf->sb_data + off; |
| off = qemu_get_sbe32(f); |
| sbuf->sb_rptr = sbuf->sb_data + off; |
| qemu_get_buffer(f, (unsigned char*)sbuf->sb_data, sbuf->sb_datalen); |
| |
| return 0; |
| } |
| |
| static int slirp_socket_load(QEMUFile *f, struct socket *so) |
| { |
| if (tcp_attach(so) < 0) |
| return -ENOMEM; |
| |
| so->so_urgc = qemu_get_be32(f); |
| so->so_faddr_ip = qemu_get_be32(f); |
| so->so_laddr_ip = qemu_get_be32(f); |
| so->so_faddr_port = qemu_get_be16(f); |
| so->so_laddr_port = qemu_get_be16(f); |
| so->so_iptos = qemu_get_byte(f); |
| so->so_emu = qemu_get_byte(f); |
| so->so_type = qemu_get_byte(f); |
| so->so_state = qemu_get_be32(f); |
| if (slirp_sbuf_load(f, &so->so_rcv) < 0) |
| return -ENOMEM; |
| if (slirp_sbuf_load(f, &so->so_snd) < 0) |
| return -ENOMEM; |
| slirp_tcp_load(f, so->so_tcpcb); |
| |
| return 0; |
| } |
| |
| static int slirp_state_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| struct ex_list *ex_ptr; |
| int r; |
| |
| while ((r = qemu_get_byte(f))) { |
| int ret; |
| struct socket *so = socreate(); |
| |
| if (!so) |
| return -ENOMEM; |
| |
| ret = slirp_socket_load(f, so); |
| |
| if (ret < 0) |
| return ret; |
| |
| if ((so->so_faddr_ip & 0xffffff00) != special_addr_ip) |
| return -EINVAL; |
| |
| for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) |
| if (ex_ptr->ex_pty == 3 && |
| (so->so_faddr_ip & 0xff) == ex_ptr->ex_addr && |
| so->so_faddr_port == ex_ptr->ex_fport) |
| break; |
| |
| if (!ex_ptr) |
| return -EINVAL; |
| |
| so->extra = (void *)ex_ptr->ex_exec; |
| } |
| |
| return 0; |
| } |