blob: 565cf9481209d9a2b8c74c620bdb0432547d25a4 [file] [log] [blame]
/*
* MIPS emulation helpers for qemu.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include "exec.h"
#include "host-utils.h"
#include "helper.h"
/*****************************************************************************/
/* Exceptions processing helpers */
void helper_raise_exception_err (uint32_t exception, int error_code)
{
#if 1
if (exception < 0x100)
qemu_log("%s: %d %d\n", __func__, exception, error_code);
#endif
env->exception_index = exception;
env->error_code = error_code;
cpu_loop_exit();
}
void helper_raise_exception (uint32_t exception)
{
helper_raise_exception_err(exception, 0);
}
void helper_interrupt_restart (void)
{
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
!(env->CP0_Status & (1 << CP0St_ERL)) &&
!(env->hflags & MIPS_HFLAG_DM) &&
(env->CP0_Status & (1 << CP0St_IE)) &&
(env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
helper_raise_exception(EXCP_EXT_INTERRUPT);
}
}
#if !defined(CONFIG_USER_ONLY)
static void do_restore_state (void *pc_ptr)
{
TranslationBlock *tb;
unsigned long pc = (unsigned long) pc_ptr;
tb = tb_find_pc (pc);
if (tb) {
cpu_restore_state (tb, env, pc);
}
}
#endif
#if defined(CONFIG_USER_ONLY)
#define HELPER_LD(name, insn, type) \
static inline type do_##name(target_ulong addr, int mem_idx) \
{ \
return (type) insn##_raw(addr); \
}
#else
#define HELPER_LD(name, insn, type) \
static inline type do_##name(target_ulong addr, int mem_idx) \
{ \
switch (mem_idx) \
{ \
case 0: return (type) insn##_kernel(addr); break; \
case 1: return (type) insn##_super(addr); break; \
default: \
case 2: return (type) insn##_user(addr); break; \
} \
}
#endif
HELPER_LD(lbu, ldub, uint8_t)
HELPER_LD(lw, ldl, int32_t)
#ifdef TARGET_MIPS64
HELPER_LD(ld, ldq, int64_t)
#endif
#undef HELPER_LD
#if defined(CONFIG_USER_ONLY)
#define HELPER_ST(name, insn, type) \
static inline void do_##name(target_ulong addr, type val, int mem_idx) \
{ \
insn##_raw(addr, val); \
}
#else
#define HELPER_ST(name, insn, type) \
static inline void do_##name(target_ulong addr, type val, int mem_idx) \
{ \
switch (mem_idx) \
{ \
case 0: insn##_kernel(addr, val); break; \
case 1: insn##_super(addr, val); break; \
default: \
case 2: insn##_user(addr, val); break; \
} \
}
#endif
HELPER_ST(sb, stb, uint8_t)
HELPER_ST(sw, stl, uint32_t)
#ifdef TARGET_MIPS64
HELPER_ST(sd, stq, uint64_t)
#endif
#undef HELPER_ST
target_ulong helper_clo (target_ulong arg1)
{
return clo32(arg1);
}
target_ulong helper_clz (target_ulong arg1)
{
return clz32(arg1);
}
#if defined(TARGET_MIPS64)
target_ulong helper_dclo (target_ulong arg1)
{
return clo64(arg1);
}
target_ulong helper_dclz (target_ulong arg1)
{
return clz64(arg1);
}
#endif /* TARGET_MIPS64 */
/* 64 bits arithmetic for 32 bits hosts */
static inline uint64_t get_HILO (void)
{
return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
}
static inline void set_HILO (uint64_t HILO)
{
env->active_tc.LO[0] = (int32_t)HILO;
env->active_tc.HI[0] = (int32_t)(HILO >> 32);
}
static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO)
{
env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
}
static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO)
{
arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
env->active_tc.HI[0] = (int32_t)(HILO >> 32);
}
/* Multiplication variants of the vr54xx. */
target_ulong helper_muls (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
target_ulong helper_macc (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_macchi (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_maccu (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
target_ulong helper_msac (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_msachi (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_msacu (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
return arg1;
}
target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
return arg1;
}
target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
#ifdef TARGET_MIPS64
void helper_dmult (target_ulong arg1, target_ulong arg2)
{
muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
}
void helper_dmultu (target_ulong arg1, target_ulong arg2)
{
mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
}
#endif
#ifndef CONFIG_USER_ONLY
static inline target_phys_addr_t do_translate_address(target_ulong address, int rw)
{
target_phys_addr_t lladdr;
lladdr = cpu_mips_translate_address(env, address, rw);
if (lladdr == -1LL) {
cpu_loop_exit();
} else {
return lladdr;
}
}
#define HELPER_LD_ATOMIC(name, insn) \
target_ulong helper_##name(target_ulong arg, int mem_idx) \
{ \
env->lladdr = do_translate_address(arg, 0); \
env->llval = do_##insn(arg, mem_idx); \
return env->llval; \
}
HELPER_LD_ATOMIC(ll, lw)
#ifdef TARGET_MIPS64
HELPER_LD_ATOMIC(lld, ld)
#endif
#undef HELPER_LD_ATOMIC
#define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
{ \
target_long tmp; \
\
if (arg2 & almask) { \
env->CP0_BadVAddr = arg2; \
helper_raise_exception(EXCP_AdES); \
} \
if (do_translate_address(arg2, 1) == env->lladdr) { \
tmp = do_##ld_insn(arg2, mem_idx); \
if (tmp == env->llval) { \
do_##st_insn(arg2, arg1, mem_idx); \
return 1; \
} \
} \
return 0; \
}
HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
#ifdef TARGET_MIPS64
HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
#endif
#undef HELPER_ST_ATOMIC
#endif
#ifdef TARGET_WORDS_BIGENDIAN
#define GET_LMASK(v) ((v) & 3)
#define GET_OFFSET(addr, offset) (addr + (offset))
#else
#define GET_LMASK(v) (((v) & 3) ^ 3)
#define GET_OFFSET(addr, offset) (addr - (offset))
#endif
target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx)
{
target_ulong tmp;
tmp = do_lbu(arg2, mem_idx);
arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
if (GET_LMASK(arg2) <= 2) {
tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
}
if (GET_LMASK(arg2) <= 1) {
tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
}
if (GET_LMASK(arg2) == 0) {
tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
arg1 = (arg1 & 0xFFFFFF00) | tmp;
}
return (int32_t)arg1;
}
target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx)
{
target_ulong tmp;
tmp = do_lbu(arg2, mem_idx);
arg1 = (arg1 & 0xFFFFFF00) | tmp;
if (GET_LMASK(arg2) >= 1) {
tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
}
if (GET_LMASK(arg2) >= 2) {
tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
}
if (GET_LMASK(arg2) == 3) {
tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
}
return (int32_t)arg1;
}
void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx)
{
do_sb(arg2, (uint8_t)(arg1 >> 24), mem_idx);
if (GET_LMASK(arg2) <= 2)
do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK(arg2) <= 1)
do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK(arg2) == 0)
do_sb(GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
}
void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx)
{
do_sb(arg2, (uint8_t)arg1, mem_idx);
if (GET_LMASK(arg2) >= 1)
do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK(arg2) >= 2)
do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK(arg2) == 3)
do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
}
#if defined(TARGET_MIPS64)
/* "half" load and stores. We must do the memory access inline,
or fault handling won't work. */
#ifdef TARGET_WORDS_BIGENDIAN
#define GET_LMASK64(v) ((v) & 7)
#else
#define GET_LMASK64(v) (((v) & 7) ^ 7)
#endif
target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx)
{
uint64_t tmp;
tmp = do_lbu(arg2, mem_idx);
arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
if (GET_LMASK64(arg2) <= 6) {
tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
}
if (GET_LMASK64(arg2) <= 5) {
tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
}
if (GET_LMASK64(arg2) <= 4) {
tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
}
if (GET_LMASK64(arg2) <= 3) {
tmp = do_lbu(GET_OFFSET(arg2, 4), mem_idx);
arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
}
if (GET_LMASK64(arg2) <= 2) {
tmp = do_lbu(GET_OFFSET(arg2, 5), mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
}
if (GET_LMASK64(arg2) <= 1) {
tmp = do_lbu(GET_OFFSET(arg2, 6), mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
}
if (GET_LMASK64(arg2) == 0) {
tmp = do_lbu(GET_OFFSET(arg2, 7), mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
}
return arg1;
}
target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx)
{
uint64_t tmp;
tmp = do_lbu(arg2, mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
if (GET_LMASK64(arg2) >= 1) {
tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
}
if (GET_LMASK64(arg2) >= 2) {
tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
}
if (GET_LMASK64(arg2) >= 3) {
tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
}
if (GET_LMASK64(arg2) >= 4) {
tmp = do_lbu(GET_OFFSET(arg2, -4), mem_idx);
arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
}
if (GET_LMASK64(arg2) >= 5) {
tmp = do_lbu(GET_OFFSET(arg2, -5), mem_idx);
arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
}
if (GET_LMASK64(arg2) >= 6) {
tmp = do_lbu(GET_OFFSET(arg2, -6), mem_idx);
arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
}
if (GET_LMASK64(arg2) == 7) {
tmp = do_lbu(GET_OFFSET(arg2, -7), mem_idx);
arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
}
return arg1;
}
void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx)
{
do_sb(arg2, (uint8_t)(arg1 >> 56), mem_idx);
if (GET_LMASK64(arg2) <= 6)
do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
if (GET_LMASK64(arg2) <= 5)
do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
if (GET_LMASK64(arg2) <= 4)
do_sb(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
if (GET_LMASK64(arg2) <= 3)
do_sb(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
if (GET_LMASK64(arg2) <= 2)
do_sb(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK64(arg2) <= 1)
do_sb(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK64(arg2) <= 0)
do_sb(GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
}
void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx)
{
do_sb(arg2, (uint8_t)arg1, mem_idx);
if (GET_LMASK64(arg2) >= 1)
do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK64(arg2) >= 2)
do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK64(arg2) >= 3)
do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
if (GET_LMASK64(arg2) >= 4)
do_sb(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
if (GET_LMASK64(arg2) >= 5)
do_sb(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
if (GET_LMASK64(arg2) >= 6)
do_sb(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
if (GET_LMASK64(arg2) == 7)
do_sb(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
}
#endif /* TARGET_MIPS64 */
#ifndef CONFIG_USER_ONLY
/* CP0 helpers */
target_ulong helper_mfc0_mvpcontrol (void)
{
return env->mvp->CP0_MVPControl;
}
target_ulong helper_mfc0_mvpconf0 (void)
{
return env->mvp->CP0_MVPConf0;
}
target_ulong helper_mfc0_mvpconf1 (void)
{
return env->mvp->CP0_MVPConf1;
}
target_ulong helper_mfc0_random (void)
{
return (int32_t)cpu_mips_get_random(env);
}
target_ulong helper_mfc0_tcstatus (void)
{
return env->active_tc.CP0_TCStatus;
}
target_ulong helper_mftc0_tcstatus(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.CP0_TCStatus;
else
return env->tcs[other_tc].CP0_TCStatus;
}
target_ulong helper_mfc0_tcbind (void)
{
return env->active_tc.CP0_TCBind;
}
target_ulong helper_mftc0_tcbind(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.CP0_TCBind;
else
return env->tcs[other_tc].CP0_TCBind;
}
target_ulong helper_mfc0_tcrestart (void)
{
return env->active_tc.PC;
}
target_ulong helper_mftc0_tcrestart(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.PC;
else
return env->tcs[other_tc].PC;
}
target_ulong helper_mfc0_tchalt (void)
{
return env->active_tc.CP0_TCHalt;
}
target_ulong helper_mftc0_tchalt(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.CP0_TCHalt;
else
return env->tcs[other_tc].CP0_TCHalt;
}
target_ulong helper_mfc0_tccontext (void)
{
return env->active_tc.CP0_TCContext;
}
target_ulong helper_mftc0_tccontext(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.CP0_TCContext;
else
return env->tcs[other_tc].CP0_TCContext;
}
target_ulong helper_mfc0_tcschedule (void)
{
return env->active_tc.CP0_TCSchedule;
}
target_ulong helper_mftc0_tcschedule(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.CP0_TCSchedule;
else
return env->tcs[other_tc].CP0_TCSchedule;
}
target_ulong helper_mfc0_tcschefback (void)
{
return env->active_tc.CP0_TCScheFBack;
}
target_ulong helper_mftc0_tcschefback(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.CP0_TCScheFBack;
else
return env->tcs[other_tc].CP0_TCScheFBack;
}
target_ulong helper_mfc0_count (void)
{
return (int32_t)cpu_mips_get_count(env);
}
target_ulong helper_mftc0_entryhi(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tcstatus;
if (other_tc == env->current_tc)
tcstatus = env->active_tc.CP0_TCStatus;
else
tcstatus = env->tcs[other_tc].CP0_TCStatus;
return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
}
target_ulong helper_mftc0_status(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
target_ulong t0;
int32_t tcstatus;
if (other_tc == env->current_tc)
tcstatus = env->active_tc.CP0_TCStatus;
else
tcstatus = env->tcs[other_tc].CP0_TCStatus;
t0 = env->CP0_Status & ~0xf1000018;
t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
return t0;
}
target_ulong helper_mfc0_lladdr (void)
{
return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
}
target_ulong helper_mfc0_watchlo (uint32_t sel)
{
return (int32_t)env->CP0_WatchLo[sel];
}
target_ulong helper_mfc0_watchhi (uint32_t sel)
{
return env->CP0_WatchHi[sel];
}
target_ulong helper_mfc0_debug (void)
{
target_ulong t0 = env->CP0_Debug;
if (env->hflags & MIPS_HFLAG_DM)
t0 |= 1 << CP0DB_DM;
return t0;
}
target_ulong helper_mftc0_debug(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tcstatus;
if (other_tc == env->current_tc)
tcstatus = env->active_tc.CP0_Debug_tcstatus;
else
tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
/* XXX: Might be wrong, check with EJTAG spec. */
return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
(tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
}
#if defined(TARGET_MIPS64)
target_ulong helper_dmfc0_tcrestart (void)
{
return env->active_tc.PC;
}
target_ulong helper_dmfc0_tchalt (void)
{
return env->active_tc.CP0_TCHalt;
}
target_ulong helper_dmfc0_tccontext (void)
{
return env->active_tc.CP0_TCContext;
}
target_ulong helper_dmfc0_tcschedule (void)
{
return env->active_tc.CP0_TCSchedule;
}
target_ulong helper_dmfc0_tcschefback (void)
{
return env->active_tc.CP0_TCScheFBack;
}
target_ulong helper_dmfc0_lladdr (void)
{
return env->lladdr >> env->CP0_LLAddr_shift;
}
target_ulong helper_dmfc0_watchlo (uint32_t sel)
{
return env->CP0_WatchLo[sel];
}
#endif /* TARGET_MIPS64 */
void helper_mtc0_index (target_ulong arg1)
{
int num = 1;
unsigned int tmp = env->tlb->nb_tlb;
do {
tmp >>= 1;
num <<= 1;
} while (tmp);
env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
}
void helper_mtc0_mvpcontrol (target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
(1 << CP0MVPCo_EVP);
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (1 << CP0MVPCo_STLB);
newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
// TODO: Enable/disable shared TLB, enable/disable VPEs.
env->mvp->CP0_MVPControl = newval;
}
void helper_mtc0_vpecontrol (target_ulong arg1)
{
uint32_t mask;
uint32_t newval;
mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
(1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
/* Yield scheduler intercept not implemented. */
/* Gating storage scheduler intercept not implemented. */
// TODO: Enable/disable TCs.
env->CP0_VPEControl = newval;
}
void helper_mtc0_vpeconf0 (target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
mask |= (0xff << CP0VPEC0_XTC);
mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
}
newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
// TODO: TC exclusive handling due to ERL/EXL.
env->CP0_VPEConf0 = newval;
}
void helper_mtc0_vpeconf1 (target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
(0xff << CP0VPEC1_NCP1);
newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
/* UDI not implemented. */
/* CP2 not implemented. */
// TODO: Handle FPU (CP1) binding.
env->CP0_VPEConf1 = newval;
}
void helper_mtc0_yqmask (target_ulong arg1)
{
/* Yield qualifier inputs not implemented. */
env->CP0_YQMask = 0x00000000;
}
void helper_mtc0_vpeopt (target_ulong arg1)
{
env->CP0_VPEOpt = arg1 & 0x0000ffff;
}
void helper_mtc0_entrylo0 (target_ulong arg1)
{
/* Large physaddr (PABITS) not implemented */
/* 1k pages not implemented */
env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
}
void helper_mtc0_tcstatus (target_ulong arg1)
{
uint32_t mask = env->CP0_TCStatus_rw_bitmask;
uint32_t newval;
newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
// TODO: Sync with CP0_Status.
env->active_tc.CP0_TCStatus = newval;
}
void helper_mttc0_tcstatus (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
// TODO: Sync with CP0_Status.
if (other_tc == env->current_tc)
env->active_tc.CP0_TCStatus = arg1;
else
env->tcs[other_tc].CP0_TCStatus = arg1;
}
void helper_mtc0_tcbind (target_ulong arg1)
{
uint32_t mask = (1 << CP0TCBd_TBE);
uint32_t newval;
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (1 << CP0TCBd_CurVPE);
newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
env->active_tc.CP0_TCBind = newval;
}
void helper_mttc0_tcbind (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t mask = (1 << CP0TCBd_TBE);
uint32_t newval;
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (1 << CP0TCBd_CurVPE);
if (other_tc == env->current_tc) {
newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
env->active_tc.CP0_TCBind = newval;
} else {
newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
env->tcs[other_tc].CP0_TCBind = newval;
}
}
void helper_mtc0_tcrestart (target_ulong arg1)
{
env->active_tc.PC = arg1;
env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
env->lladdr = 0ULL;
/* MIPS16 not implemented. */
}
void helper_mttc0_tcrestart (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc) {
env->active_tc.PC = arg1;
env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
env->lladdr = 0ULL;
/* MIPS16 not implemented. */
} else {
env->tcs[other_tc].PC = arg1;
env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
env->lladdr = 0ULL;
/* MIPS16 not implemented. */
}
}
void helper_mtc0_tchalt (target_ulong arg1)
{
env->active_tc.CP0_TCHalt = arg1 & 0x1;
// TODO: Halt TC / Restart (if allocated+active) TC.
}
void helper_mttc0_tchalt (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
// TODO: Halt TC / Restart (if allocated+active) TC.
if (other_tc == env->current_tc)
env->active_tc.CP0_TCHalt = arg1;
else
env->tcs[other_tc].CP0_TCHalt = arg1;
}
void helper_mtc0_tccontext (target_ulong arg1)
{
env->active_tc.CP0_TCContext = arg1;
}
void helper_mttc0_tccontext (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
env->active_tc.CP0_TCContext = arg1;
else
env->tcs[other_tc].CP0_TCContext = arg1;
}
void helper_mtc0_tcschedule (target_ulong arg1)
{
env->active_tc.CP0_TCSchedule = arg1;
}
void helper_mttc0_tcschedule (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
env->active_tc.CP0_TCSchedule = arg1;
else
env->tcs[other_tc].CP0_TCSchedule = arg1;
}
void helper_mtc0_tcschefback (target_ulong arg1)
{
env->active_tc.CP0_TCScheFBack = arg1;
}
void helper_mttc0_tcschefback (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
env->active_tc.CP0_TCScheFBack = arg1;
else
env->tcs[other_tc].CP0_TCScheFBack = arg1;
}
void helper_mtc0_entrylo1 (target_ulong arg1)
{
/* Large physaddr (PABITS) not implemented */
/* 1k pages not implemented */
env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
}
void helper_mtc0_context (target_ulong arg1)
{
env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
}
void helper_mtc0_pagemask (target_ulong arg1)
{
/* 1k pages not implemented */
env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
}
void helper_mtc0_pagegrain (target_ulong arg1)
{
/* SmartMIPS not implemented */
/* Large physaddr (PABITS) not implemented */
/* 1k pages not implemented */
env->CP0_PageGrain = 0;
}
void helper_mtc0_wired (target_ulong arg1)
{
env->CP0_Wired = arg1 % env->tlb->nb_tlb;
}
void helper_mtc0_srsconf0 (target_ulong arg1)
{
env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
}
void helper_mtc0_srsconf1 (target_ulong arg1)
{
env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
}
void helper_mtc0_srsconf2 (target_ulong arg1)
{
env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
}
void helper_mtc0_srsconf3 (target_ulong arg1)
{
env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
}
void helper_mtc0_srsconf4 (target_ulong arg1)
{
env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
}
void helper_mtc0_hwrena (target_ulong arg1)
{
env->CP0_HWREna = arg1 & 0x0000000F;
}
void helper_mtc0_count (target_ulong arg1)
{
cpu_mips_store_count(env, arg1);
}
void helper_mtc0_entryhi (target_ulong arg1)
{
target_ulong old, val;
/* 1k pages not implemented */
val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
#if defined(TARGET_MIPS64)
val &= env->SEGMask;
#endif
old = env->CP0_EntryHi;
env->CP0_EntryHi = val;
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
}
/* If the ASID changes, flush qemu's TLB. */
if ((old & 0xFF) != (val & 0xFF))
cpu_mips_tlb_flush(env, 1);
}
void helper_mttc0_entryhi(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tcstatus;
env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (arg1 & ~0xff);
if (other_tc == env->current_tc) {
tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (arg1 & 0xff);
env->active_tc.CP0_TCStatus = tcstatus;
} else {
tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (arg1 & 0xff);
env->tcs[other_tc].CP0_TCStatus = tcstatus;
}
}
void helper_mtc0_compare (target_ulong arg1)
{
cpu_mips_store_compare(env, arg1);
}
void helper_mtc0_status (target_ulong arg1)
{
uint32_t val, old;
uint32_t mask = env->CP0_Status_rw_bitmask;
val = arg1 & mask;
old = env->CP0_Status;
env->CP0_Status = (env->CP0_Status & ~mask) | val;
compute_hflags(env);
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
old, old & env->CP0_Cause & CP0Ca_IP_mask,
val, val & env->CP0_Cause & CP0Ca_IP_mask,
env->CP0_Cause);
switch (env->hflags & MIPS_HFLAG_KSU) {
case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
case MIPS_HFLAG_KM: qemu_log("\n"); break;
default: cpu_abort(env, "Invalid MMU mode!\n"); break;
}
}
cpu_mips_update_irq(env);
}
void helper_mttc0_status(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
env->CP0_Status = arg1 & ~0xf1000018;
tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (arg1 & (0xf << CP0St_CU0));
tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((arg1 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((arg1 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
if (other_tc == env->current_tc)
env->active_tc.CP0_TCStatus = tcstatus;
else
env->tcs[other_tc].CP0_TCStatus = tcstatus;
}
void helper_mtc0_intctl (target_ulong arg1)
{
/* vectored interrupts not implemented, no performance counters. */
env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (arg1 & 0x000002e0);
}
void helper_mtc0_srsctl (target_ulong arg1)
{
uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
}
void helper_mtc0_cause (target_ulong arg1)
{
uint32_t mask = 0x00C00300;
uint32_t old = env->CP0_Cause;
if (env->insn_flags & ISA_MIPS32R2)
mask |= 1 << CP0Ca_DC;
env->CP0_Cause = (env->CP0_Cause & ~mask) | (arg1 & mask);
if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
if (env->CP0_Cause & (1 << CP0Ca_DC))
cpu_mips_stop_count(env);
else
cpu_mips_start_count(env);
}
/* Handle the software interrupt as an hardware one, as they
are very similar */
if (arg1 & CP0Ca_IP_mask) {
cpu_mips_update_irq(env);
}
}
void helper_mtc0_ebase (target_ulong arg1)
{
/* vectored interrupts not implemented */
/* Multi-CPU not implemented */
env->CP0_EBase = 0x80000000 | (arg1 & 0x3FFFF000);
}
void helper_mtc0_config0 (target_ulong arg1)
{
env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
}
void helper_mtc0_config2 (target_ulong arg1)
{
/* tertiary/secondary caches not implemented */
env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
}
void helper_mtc0_lladdr (target_ulong arg1)
{
target_long mask = env->CP0_LLAddr_rw_bitmask;
arg1 = arg1 << env->CP0_LLAddr_shift;
env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
}
void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel)
{
/* Watch exceptions for instructions, data loads, data stores
not implemented. */
env->CP0_WatchLo[sel] = (arg1 & ~0x7);
}
void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel)
{
env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
}
void helper_mtc0_xcontext (target_ulong arg1)
{
target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
}
void helper_mtc0_framemask (target_ulong arg1)
{
env->CP0_Framemask = arg1; /* XXX */
}
void helper_mtc0_debug (target_ulong arg1)
{
env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
if (arg1 & (1 << CP0DB_DM))
env->hflags |= MIPS_HFLAG_DM;
else
env->hflags &= ~MIPS_HFLAG_DM;
}
void helper_mttc0_debug(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
/* XXX: Might be wrong, check with EJTAG spec. */
if (other_tc == env->current_tc)
env->active_tc.CP0_Debug_tcstatus = val;
else
env->tcs[other_tc].CP0_Debug_tcstatus = val;
env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
(arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
}
void helper_mtc0_performance0 (target_ulong arg1)
{
env->CP0_Performance0 = arg1 & 0x000007ff;
}
void helper_mtc0_taglo (target_ulong arg1)
{
env->CP0_TagLo = arg1 & 0xFFFFFCF6;
}
void helper_mtc0_datalo (target_ulong arg1)
{
env->CP0_DataLo = arg1; /* XXX */
}
void helper_mtc0_taghi (target_ulong arg1)
{
env->CP0_TagHi = arg1; /* XXX */
}
void helper_mtc0_datahi (target_ulong arg1)
{
env->CP0_DataHi = arg1; /* XXX */
}
/* MIPS MT functions */
target_ulong helper_mftgpr(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.gpr[sel];
else
return env->tcs[other_tc].gpr[sel];
}
target_ulong helper_mftlo(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.LO[sel];
else
return env->tcs[other_tc].LO[sel];
}
target_ulong helper_mfthi(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.HI[sel];
else
return env->tcs[other_tc].HI[sel];
}
target_ulong helper_mftacx(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.ACX[sel];
else
return env->tcs[other_tc].ACX[sel];
}
target_ulong helper_mftdsp(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
return env->active_tc.DSPControl;
else
return env->tcs[other_tc].DSPControl;
}
void helper_mttgpr(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
env->active_tc.gpr[sel] = arg1;
else
env->tcs[other_tc].gpr[sel] = arg1;
}
void helper_mttlo(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
env->active_tc.LO[sel] = arg1;
else
env->tcs[other_tc].LO[sel] = arg1;
}
void helper_mtthi(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
env->active_tc.HI[sel] = arg1;
else
env->tcs[other_tc].HI[sel] = arg1;
}
void helper_mttacx(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
env->active_tc.ACX[sel] = arg1;
else
env->tcs[other_tc].ACX[sel] = arg1;
}
void helper_mttdsp(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
if (other_tc == env->current_tc)
env->active_tc.DSPControl = arg1;
else
env->tcs[other_tc].DSPControl = arg1;
}
/* MIPS MT functions */
target_ulong helper_dmt(target_ulong arg1)
{
// TODO
arg1 = 0;
// rt = arg1
return arg1;
}
target_ulong helper_emt(target_ulong arg1)
{
// TODO
arg1 = 0;
// rt = arg1
return arg1;
}
target_ulong helper_dvpe(target_ulong arg1)
{
// TODO
arg1 = 0;
// rt = arg1
return arg1;
}
target_ulong helper_evpe(target_ulong arg1)
{
// TODO
arg1 = 0;
// rt = arg1
return arg1;
}
#endif /* !CONFIG_USER_ONLY */
void helper_fork(target_ulong arg1, target_ulong arg2)
{
// arg1 = rt, arg2 = rs
arg1 = 0;
// TODO: store to TC register
}
target_ulong helper_yield(target_ulong arg1)
{
if (arg1 < 0) {
/* No scheduling policy implemented. */
if (arg1 != -2) {
if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
helper_raise_exception(EXCP_THREAD);
}
}
} else if (arg1 == 0) {
if (0 /* TODO: TC underflow */) {
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
helper_raise_exception(EXCP_THREAD);
} else {
// TODO: Deallocate TC
}
} else if (arg1 > 0) {
/* Yield qualifier inputs not implemented. */
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
helper_raise_exception(EXCP_THREAD);
}
return env->CP0_YQMask;
}
#ifndef CONFIG_USER_ONLY
/* TLB management */
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
{
/* Flush qemu's TLB and discard all shadowed entries. */
tlb_flush (env, flush_global);
env->tlb->tlb_in_use = env->tlb->nb_tlb;
}
static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
{
/* Discard entries from env->tlb[first] onwards. */
while (env->tlb->tlb_in_use > first) {
r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
}
}
static void r4k_fill_tlb (int idx)
{
r4k_tlb_t *tlb;
/* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
tlb = &env->tlb->mmu.r4k.tlb[idx];
tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
tlb->VPN &= env->SEGMask;
#endif
tlb->ASID = env->CP0_EntryHi & 0xFF;
tlb->PageMask = env->CP0_PageMask;
tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
}
void r4k_helper_tlbwi (void)
{
int idx;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
/* Discard cached TLB entries. We could avoid doing this if the
tlbwi is just upgrading access permissions on the current entry;
that might be a further win. */
r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
r4k_invalidate_tlb(env, idx, 0);
r4k_fill_tlb(idx);
}
void r4k_helper_tlbwr (void)
{
int r = cpu_mips_get_random(env);
r4k_invalidate_tlb(env, r, 1);
r4k_fill_tlb(r);
}
void r4k_helper_tlbp (void)
{
r4k_tlb_t *tlb;
target_ulong mask;
target_ulong tag;
target_ulong VPN;
uint8_t ASID;
int i;
ASID = env->CP0_EntryHi & 0xFF;
for (i = 0; i < env->tlb->nb_tlb; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
/* Check ASID, virtual page number & size */
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
/* TLB match */
env->CP0_Index = i;
break;
}
}
if (i == env->tlb->nb_tlb) {
/* No match. Discard any shadow entries, if any of them match. */
for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
/* Check ASID, virtual page number & size */
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
r4k_mips_tlb_flush_extra (env, i);
break;
}
}
env->CP0_Index |= 0x80000000;
}
}
void r4k_helper_tlbr (void)
{
r4k_tlb_t *tlb;
uint8_t ASID;
int idx;
ASID = env->CP0_EntryHi & 0xFF;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
tlb = &env->tlb->mmu.r4k.tlb[idx];
/* If this will change the current ASID, flush qemu's TLB. */
if (ASID != tlb->ASID)
cpu_mips_tlb_flush (env, 1);
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
env->CP0_EntryHi = tlb->VPN | tlb->ASID;
env->CP0_PageMask = tlb->PageMask;
env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
(tlb->C0 << 3) | (tlb->PFN[0] >> 6);
env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
(tlb->C1 << 3) | (tlb->PFN[1] >> 6);
}
void helper_tlbwi(void)
{
env->tlb->helper_tlbwi();
}
void helper_tlbwr(void)
{
env->tlb->helper_tlbwr();
}
void helper_tlbp(void)
{
env->tlb->helper_tlbp();
}
void helper_tlbr(void)
{
env->tlb->helper_tlbr();
}
/* Specials */
target_ulong helper_di (void)
{
target_ulong t0 = env->CP0_Status;
env->CP0_Status = t0 & ~(1 << CP0St_IE);
cpu_mips_update_irq(env);
return t0;
}
target_ulong helper_ei (void)
{
target_ulong t0 = env->CP0_Status;
env->CP0_Status = t0 | (1 << CP0St_IE);
cpu_mips_update_irq(env);
return t0;
}
static void debug_pre_eret (void)
{
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
env->active_tc.PC, env->CP0_EPC);
if (env->CP0_Status & (1 << CP0St_ERL))
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
if (env->hflags & MIPS_HFLAG_DM)
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
qemu_log("\n");
}
}
static void debug_post_eret (void)
{
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
env->active_tc.PC, env->CP0_EPC);
if (env->CP0_Status & (1 << CP0St_ERL))
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
if (env->hflags & MIPS_HFLAG_DM)
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
switch (env->hflags & MIPS_HFLAG_KSU) {
case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
case MIPS_HFLAG_KM: qemu_log("\n"); break;
default: cpu_abort(env, "Invalid MMU mode!\n"); break;
}
}
}
void helper_eret (void)
{
debug_pre_eret();
if (env->CP0_Status & (1 << CP0St_ERL)) {
env->active_tc.PC = env->CP0_ErrorEPC;
env->CP0_Status &= ~(1 << CP0St_ERL);
} else {
env->active_tc.PC = env->CP0_EPC;
env->CP0_Status &= ~(1 << CP0St_EXL);
}
compute_hflags(env);
debug_post_eret();
env->lladdr = 1;
}
void helper_deret (void)
{
debug_pre_eret();
env->active_tc.PC = env->CP0_DEPC;
env->hflags &= MIPS_HFLAG_DM;
compute_hflags(env);
debug_post_eret();
env->lladdr = 1;
}
#endif /* !CONFIG_USER_ONLY */
target_ulong helper_rdhwr_cpunum(void)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 0)))
return env->CP0_EBase & 0x3ff;
else
helper_raise_exception(EXCP_RI);
return 0;
}
target_ulong helper_rdhwr_synci_step(void)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 1)))
return env->SYNCI_Step;
else
helper_raise_exception(EXCP_RI);
return 0;
}
target_ulong helper_rdhwr_cc(void)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 2)))
return env->CP0_Count;
else
helper_raise_exception(EXCP_RI);
return 0;
}
target_ulong helper_rdhwr_ccres(void)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 3)))
return env->CCRes;
else
helper_raise_exception(EXCP_RI);
return 0;
}
void helper_pmon (int function)
{
function /= 2;
switch (function) {
case 2: /* TODO: char inbyte(int waitflag); */
if (env->active_tc.gpr[4] == 0)
env->active_tc.gpr[2] = -1;
/* Fall through */
case 11: /* TODO: char inbyte (void); */
env->active_tc.gpr[2] = -1;
break;
case 3:
case 12:
printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
break;
case 17:
break;
case 158:
{
unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
printf("%s", fmt);
}
break;
}
}
void helper_wait (void)
{
env->halted = 1;
helper_raise_exception(EXCP_HLT);
}
#if !defined(CONFIG_USER_ONLY)
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
#define MMUSUFFIX _mmu
#define ALIGNED_ONLY
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
{
env->CP0_BadVAddr = addr;
do_restore_state (retaddr);
helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
}
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
TranslationBlock *tb;
CPUState *saved_env;
unsigned long pc;
int ret;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc);
}
}
helper_raise_exception_err(env->exception_index, env->error_code);
}
env = saved_env;
}
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
int unused, int size)
{
if (is_exec)
helper_raise_exception(EXCP_IBE);
else
helper_raise_exception(EXCP_DBE);
}
/*
* The following functions are address translation helper functions
* for fast memory access in QEMU.
*/
static unsigned long v2p_mmu(target_ulong addr, int is_user)
{
int index;
target_ulong tlb_addr;
target_phys_addr_t physaddr;
void *retaddr;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
redo:
tlb_addr = env->tlb_table[is_user][index].addr_read;
if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
physaddr = addr + env->tlb_table[is_user][index].addend;
} else {
/* the page is not in the TLB : fill it */
retaddr = GETPC();
tlb_fill(addr, 0, is_user, retaddr);
goto redo;
}
return physaddr;
}
/*
* translation from virtual address of simulated OS
* to the address of simulation host (not the physical
* address of simulated OS.
*/
target_phys_addr_t v2p(target_ulong ptr, int is_user)
{
CPUState *saved_env;
int index;
target_ulong addr;
target_phys_addr_t physaddr;
saved_env = env;
env = cpu_single_env;
addr = ptr;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
if (__builtin_expect(env->tlb_table[is_user][index].addr_read !=
(addr & TARGET_PAGE_MASK), 0)) {
physaddr = v2p_mmu(addr, is_user);
} else {
physaddr = (target_phys_addr_t)addr + env->tlb_table[is_user][index].addend;
}
env = saved_env;
return physaddr;
}
/* copy a string from the simulated virtual space to a buffer in QEMU */
void vstrcpy(target_ulong ptr, char *buf, int max)
{
char *phys = 0;
unsigned long page = 0;
if (buf == NULL) return;
while (max) {
if ((ptr & TARGET_PAGE_MASK) != page) {
phys = (char *)v2p(ptr, 0);
page = ptr & TARGET_PAGE_MASK;
}
*buf = *phys;
if (*phys == '\0')
return;
ptr ++;
buf ++;
phys ++;
max --;
}
}
#endif /* !CONFIG_USER_ONLY */
/* Complex FPU operations which may need stack space. */
#define FLOAT_ONE32 make_float32(0x3f8 << 20)
#define FLOAT_ONE64 make_float64(0x3ffULL << 52)
#define FLOAT_TWO32 make_float32(1 << 30)
#define FLOAT_TWO64 make_float64(1ULL << 62)
#define FLOAT_QNAN32 0x7fbfffff
#define FLOAT_QNAN64 0x7ff7ffffffffffffULL
#define FLOAT_SNAN32 0x7fffffff
#define FLOAT_SNAN64 0x7fffffffffffffffULL
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down
};
#define RESTORE_ROUNDING_MODE \
set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
#define RESTORE_FLUSH_MODE \
set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
target_ulong helper_cfc1 (uint32_t reg)
{
target_ulong arg1;
switch (reg) {
case 0:
arg1 = (int32_t)env->active_fpu.fcr0;
break;
case 25:
arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
break;
case 26:
arg1 = env->active_fpu.fcr31 & 0x0003f07c;
break;
case 28:
arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
break;
default:
arg1 = (int32_t)env->active_fpu.fcr31;
break;
}
return arg1;
}
void helper_ctc1 (target_ulong arg1, uint32_t reg)
{
switch(reg) {
case 25:
if (arg1 & 0xffffff00)
return;
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
((arg1 & 0x1) << 23);
break;
case 26:
if (arg1 & 0x007c0000)
return;
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
break;
case 28:
if (arg1 & 0x007c0000)
return;
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
((arg1 & 0x4) << 22);
break;
case 31:
if (arg1 & 0x007c0000)
return;
env->active_fpu.fcr31 = arg1;
break;
default:
return;
}
/* set rounding mode */
RESTORE_ROUNDING_MODE;
/* set flush-to-zero mode */
RESTORE_FLUSH_MODE;
set_float_exception_flags(0, &env->active_fpu.fp_status);
if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
helper_raise_exception(EXCP_FPE);
}
static inline char ieee_ex_to_mips(char xcpt)
{
return (xcpt & float_flag_inexact) >> 5 |
(xcpt & float_flag_underflow) >> 3 |
(xcpt & float_flag_overflow) >> 1 |
(xcpt & float_flag_divbyzero) << 1 |
(xcpt & float_flag_invalid) << 4;
}
static inline char mips_ex_to_ieee(char xcpt)
{
return (xcpt & FP_INEXACT) << 5 |
(xcpt & FP_UNDERFLOW) << 3 |
(xcpt & FP_OVERFLOW) << 1 |
(xcpt & FP_DIV0) >> 1 |
(xcpt & FP_INVALID) >> 4;
}
static inline void update_fcr31(void)
{
int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
helper_raise_exception(EXCP_FPE);
else
UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
}
/* Float support.
Single precition routines have a "s" suffix, double precision a
"d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
paired single lower "pl", paired single upper "pu". */
/* unary operations, modifying fp status */
uint64_t helper_float_sqrt_d(uint64_t fdt0)
{
return float64_sqrt(fdt0, &env->active_fpu.fp_status);
}
uint32_t helper_float_sqrt_s(uint32_t fst0)
{
return float32_sqrt(fst0, &env->active_fpu.fp_status);
}
uint64_t helper_float_cvtd_s(uint32_t fst0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint64_t helper_float_cvtd_w(uint32_t wt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint64_t helper_float_cvtd_l(uint64_t dt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint64_t helper_float_cvtl_d(uint64_t fdt0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_cvtl_s(uint32_t fst0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_cvtps_pw(uint64_t dt0)
{
uint32_t fst2;
uint32_t fsth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_cvtpw_ps(uint64_t fdt0)
{
uint32_t wt2;
uint32_t wth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
wt2 = FLOAT_SNAN32;
wth2 = FLOAT_SNAN32;
}
return ((uint64_t)wth2 << 32) | wt2;
}
uint32_t helper_float_cvts_d(uint64_t fdt0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint32_t helper_float_cvts_w(uint32_t wt0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint32_t helper_float_cvts_l(uint64_t dt0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint32_t helper_float_cvts_pl(uint32_t wt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = wt0;
update_fcr31();
return wt2;
}
uint32_t helper_float_cvts_pu(uint32_t wth0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = wth0;
update_fcr31();
return wt2;
}
uint32_t helper_float_cvtw_s(uint32_t fst0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint32_t helper_float_cvtw_d(uint64_t fdt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint64_t helper_float_roundl_d(uint64_t fdt0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_roundl_s(uint32_t fst0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint32_t helper_float_roundw_d(uint64_t fdt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint32_t helper_float_roundw_s(uint32_t fst0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint64_t helper_float_truncl_d(uint64_t fdt0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_truncl_s(uint32_t fst0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint32_t helper_float_truncw_d(uint64_t fdt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint32_t helper_float_truncw_s(uint32_t fst0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint64_t helper_float_ceill_d(uint64_t fdt0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_ceill_s(uint32_t fst0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint32_t helper_float_ceilw_d(uint64_t fdt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint32_t helper_float_ceilw_s(uint32_t fst0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint64_t helper_float_floorl_d(uint64_t fdt0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_floorl_s(uint32_t fst0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint32_t helper_float_floorw_d(uint64_t fdt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint32_t helper_float_floorw_s(uint32_t fst0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
/* unary operations, not modifying fp status */
#define FLOAT_UNOP(name) \
uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
{ \
return float64_ ## name(fdt0); \
} \
uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
{ \
return float32_ ## name(fst0); \
} \
uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
{ \
uint32_t wt0; \
uint32_t wth0; \
\
wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
wth0 = float32_ ## name(fdt0 >> 32); \
return ((uint64_t)wth0 << 32) | wt0; \
}
FLOAT_UNOP(abs)
FLOAT_UNOP(chs)
#undef FLOAT_UNOP
/* MIPS specific unary operations */
uint64_t helper_float_recip_d(uint64_t fdt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint32_t helper_float_recip_s(uint32_t fst0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint64_t helper_float_rsqrt_d(uint64_t fdt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint32_t helper_float_rsqrt_s(uint32_t fst0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint64_t helper_float_recip1_d(uint64_t fdt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint32_t helper_float_recip1_s(uint32_t fst0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint64_t helper_float_recip1_ps(uint64_t fdt0)
{
uint32_t fst2;
uint32_t fsth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_rsqrt1_d(uint64_t fdt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint32_t helper_float_rsqrt1_s(uint32_t fst0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint64_t helper_float_rsqrt1_ps(uint64_t fdt0)
{
uint32_t fst2;
uint32_t fsth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
#define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
/* binary operations */
#define FLOAT_BINOP(name) \
uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
{ \
uint64_t dt2; \
\
set_float_exception_flags(0, &env->active_fpu.fp_status); \
dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
update_fcr31(); \
if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
dt2 = FLOAT_QNAN64; \
return dt2; \
} \
\
uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
{ \
uint32_t wt2; \
\
set_float_exception_flags(0, &env->active_fpu.fp_status); \
wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
update_fcr31(); \
if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
wt2 = FLOAT_QNAN32; \
return wt2; \
} \
\
uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
{ \
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
uint32_t fsth0 = fdt0 >> 32; \
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
uint32_t fsth1 = fdt1 >> 32; \
uint32_t wt2; \
uint32_t wth2; \
\
set_float_exception_flags(0, &env->active_fpu.fp_status); \
wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
update_fcr31(); \
if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
wt2 = FLOAT_QNAN32; \
wth2 = FLOAT_QNAN32; \
} \
return ((uint64_t)wth2 << 32) | wt2; \
}
FLOAT_BINOP(add)
FLOAT_BINOP(sub)
FLOAT_BINOP(mul)
FLOAT_BINOP(div)
#undef FLOAT_BINOP
/* ternary operations */
#define FLOAT_TERNOP(name1, name2) \
uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
uint64_t fdt2) \
{ \
fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
} \
\
uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
uint32_t fst2) \
{ \
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
} \
\
uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
uint64_t fdt2) \
{ \
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
uint32_t fsth0 = fdt0 >> 32; \
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
uint32_t fsth1 = fdt1 >> 32; \
uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
uint32_t fsth2 = fdt2 >> 32; \
\
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
return ((uint64_t)fsth2 << 32) | fst2; \
}
FLOAT_TERNOP(mul, add)
FLOAT_TERNOP(mul, sub)
#undef FLOAT_TERNOP
/* negated ternary operations */
#define FLOAT_NTERNOP(name1, name2) \
uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
uint64_t fdt2) \
{ \
fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
return float64_chs(fdt2); \
} \
\
uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
uint32_t fst2) \
{ \
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
return float32_chs(fst2); \
} \
\
uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
uint64_t fdt2) \
{ \
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
uint32_t fsth0 = fdt0 >> 32; \
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
uint32_t fsth1 = fdt1 >> 32; \
uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
uint32_t fsth2 = fdt2 >> 32; \
\
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
fst2 = float32_chs(fst2); \
fsth2 = float32_chs(fsth2); \
return ((uint64_t)fsth2 << 32) | fst2; \
}
FLOAT_NTERNOP(mul, add)
FLOAT_NTERNOP(mul, sub)
#undef FLOAT_NTERNOP
/* MIPS specific binary operations */
uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
{
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
update_fcr31();
return fdt2;
}
uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2)
{
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
update_fcr31();
return fst2;
}
uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
{
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
update_fcr31();
return fdt2;
}
uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
{
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
update_fcr31();
return fst2;
}
uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fst2;
uint32_t fsth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fst2;
uint32_t fsth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
/* compare operations */
#define FOP_COND_D(op, cond) \
void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
{ \
int c = cond; \
update_fcr31(); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
} \
void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
{ \
int c; \
fdt0 = float64_abs(fdt0); \
fdt1 = float64_abs(fdt1); \
c = cond; \
update_fcr31(); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
}
static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
{
if (float64_is_signaling_nan(a) ||
float64_is_signaling_nan(b) ||
(sig && (float64_is_any_nan(a) || float64_is_any_nan(b)))) {
float_raise(float_flag_invalid, status);
return 1;
} else if (float64_is_any_nan(a) || float64_is_any_nan(b)) {
return 1;
} else {
return 0;
}
}
/* NOTE: the comma operator will make "cond" to eval to false,
* but float*_is_unordered() is still called. */
FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float*_is_unordered() is still called. */
FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
#define FOP_COND_S(op, cond) \
void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
{ \
int c = cond; \
update_fcr31(); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
} \
void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
{ \
int c; \
fst0 = float32_abs(fst0); \
fst1 = float32_abs(fst1); \
c = cond; \
update_fcr31(); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
}
static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
{
if (float32_is_signaling_nan(a) ||
float32_is_signaling_nan(b) ||
(sig && (float32_is_any_nan(a) || float32_is_any_nan(b)))) {
float_raise(float_flag_invalid, status);
return 1;
} else if (float32_is_any_nan(a) || float32_is_any_nan(b)) {
return 1;
} else {
return 0;
}
}
/* NOTE: the comma operator will make "cond" to eval to false,
* but float*_is_unordered() is still called. */
FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float*_is_unordered() is still called. */
FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
#define FOP_COND_PS(op, condl, condh) \
void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
{ \
uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
uint32_t fsth0 = float32_abs(fdt0 >> 32); \
uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
uint32_t fsth1 = float32_abs(fdt1 >> 32); \
int cl = condl; \
int ch = condh; \
\
update_fcr31(); \
if (cl) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
if (ch) \
SET_FP_COND(cc + 1, env->active_fpu); \
else \
CLEAR_FP_COND(cc + 1, env->active_fpu); \
} \
void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
{ \
uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
uint32_t fsth0 = float32_abs(fdt0 >> 32); \
uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
uint32_t fsth1 = float32_abs(fdt1 >> 32); \
int cl = condl; \
int ch = condh; \
\
update_fcr31(); \
if (cl) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
if (ch) \
SET_FP_COND(cc + 1, env->active_fpu); \
else \
CLEAR_FP_COND(cc + 1, env->active_fpu); \
}
/* NOTE: the comma operator will make "cond" to eval to false,
* but float*_is_unordered() is still called. */
FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
(float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
!float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
!float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
!float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float*_is_unordered() is still called. */
FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
(float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
!float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
!float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
!float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))