| /* |
| * Copyright (C) 2006 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef SkScalar_DEFINED |
| #define SkScalar_DEFINED |
| |
| #include "SkFixed.h" |
| |
| /** \file SkScalar.h |
| |
| Types and macros for the data type SkScalar. This is the fractional numeric type |
| that, depending on the compile-time flag SK_SCALAR_IS_FLOAT, may be implemented |
| either as an IEEE float, or as a 16.16 SkFixed. The macros in this file are written |
| to allow the calling code to manipulate SkScalar values without knowing which representation |
| is in effect. |
| */ |
| |
| #ifdef SK_SCALAR_IS_FLOAT |
| #include "SkFloatingPoint.h" |
| |
| /** SkScalar is our type for fractional values and coordinates. Depending on |
| compile configurations, it is either represented as an IEEE float, or |
| as a 16.16 fixed point integer. |
| */ |
| typedef float SkScalar; |
| extern const uint32_t gIEEENotANumber; |
| extern const uint32_t gIEEEInfinity; |
| |
| /** SK_Scalar1 is defined to be 1.0 represented as an SkScalar |
| */ |
| #define SK_Scalar1 (1.0f) |
| /** SK_Scalar1 is defined to be 1/2 represented as an SkScalar |
| */ |
| #define SK_ScalarHalf (0.5f) |
| /** SK_ScalarInfinity is defined to be infinity as an SkScalar |
| */ |
| #define SK_ScalarInfinity (*(const float*)&gIEEEInfinity) |
| /** SK_ScalarMax is defined to be the largest value representable as an SkScalar |
| */ |
| #define SK_ScalarMax (3.4028235e+38f) |
| /** SK_ScalarMin is defined to be the smallest value representable as an SkScalar |
| */ |
| #define SK_ScalarMin (1.1754944e-38f) |
| /** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar |
| */ |
| #define SK_ScalarNaN (*(const float*)(const void*)&gIEEENotANumber) |
| /** SkScalarIsNaN(n) returns true if argument is not a number |
| */ |
| static inline bool SkScalarIsNaN(float x) { return x != x; } |
| /** SkIntToScalar(n) returns its integer argument as an SkScalar |
| */ |
| #define SkIntToScalar(n) ((float)(n)) |
| /** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar |
| */ |
| #define SkFixedToScalar(x) SkFixedToFloat(x) |
| /** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed |
| */ |
| #define SkScalarToFixed(x) SkFloatToFixed(x) |
| |
| #define SkScalarToFloat(n) (n) |
| #define SkFloatToScalar(n) (n) |
| |
| #define SkScalarToDouble(n) (double)(n) |
| #define SkDoubleToScalar(n) (float)(n) |
| |
| /** SkScalarFraction(x) returns the signed fractional part of the argument |
| */ |
| #define SkScalarFraction(x) sk_float_mod(x, 1.0f) |
| /** Rounds the SkScalar to the nearest integer value |
| */ |
| #define SkScalarRound(x) sk_float_round2int(x) |
| /** Returns the smallest integer that is >= the specified SkScalar |
| */ |
| #define SkScalarCeil(x) sk_float_ceil2int(x) |
| /** Returns the largest integer that is <= the specified SkScalar |
| */ |
| #define SkScalarFloor(x) sk_float_floor2int(x) |
| /** Returns the absolute value of the specified SkScalar |
| */ |
| #define SkScalarAbs(x) sk_float_abs(x) |
| /** Returns the value pinned between 0 and max inclusive |
| */ |
| inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) { |
| return x < 0 ? 0 : x > max ? max : x; |
| } |
| /** Returns the value pinned between min and max inclusive |
| */ |
| inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) { |
| return x < min ? min : x > max ? max : x; |
| } |
| /** Returns the specified SkScalar squared (x*x) |
| */ |
| inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } |
| /** Returns the product of two SkScalars |
| */ |
| #define SkScalarMul(a, b) ((float)(a) * (b)) |
| /** Returns the product of two SkScalars plus a third SkScalar |
| */ |
| #define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c)) |
| /** Returns the product of a SkScalar and an int rounded to the nearest integer value |
| */ |
| #define SkScalarMulRound(a, b) SkScalarRound((float)(a) * (b)) |
| /** Returns the product of a SkScalar and an int promoted to the next larger int |
| */ |
| #define SkScalarMulCeil(a, b) SkScalarCeil((float)(a) * (b)) |
| /** Returns the product of a SkScalar and an int truncated to the next smaller int |
| */ |
| #define SkScalarMulFloor(a, b) SkScalarFloor((float)(a) * (b)) |
| /** Returns the quotient of two SkScalars (a/b) |
| */ |
| #define SkScalarDiv(a, b) ((float)(a) / (b)) |
| /** Returns the mod of two SkScalars (a mod b) |
| */ |
| #define SkScalarMod(x,y) sk_float_mod(x,y) |
| /** Returns the product of the first two arguments, divided by the third argument |
| */ |
| #define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c)) |
| /** Returns the multiplicative inverse of the SkScalar (1/x) |
| */ |
| #define SkScalarInvert(x) (SK_Scalar1 / (x)) |
| #define SkScalarFastInvert(x) (SK_Scalar1 / (x)) |
| /** Returns the square root of the SkScalar |
| */ |
| #define SkScalarSqrt(x) sk_float_sqrt(x) |
| /** Returns the average of two SkScalars (a+b)/2 |
| */ |
| #define SkScalarAve(a, b) (((a) + (b)) * 0.5f) |
| /** Returns the geometric mean of two SkScalars |
| */ |
| #define SkScalarMean(a, b) sk_float_sqrt((float)(a) * (b)) |
| /** Returns one half of the specified SkScalar |
| */ |
| #define SkScalarHalf(a) ((a) * 0.5f) |
| |
| #define SK_ScalarSqrt2 1.41421356f |
| #define SK_ScalarPI 3.14159265f |
| #define SK_ScalarTanPIOver8 0.414213562f |
| #define SK_ScalarRoot2Over2 0.707106781f |
| |
| #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) |
| float SkScalarSinCos(SkScalar radians, SkScalar* cosValue); |
| #define SkScalarSin(radians) (float)sk_float_sin(radians) |
| #define SkScalarCos(radians) (float)sk_float_cos(radians) |
| #define SkScalarTan(radians) (float)sk_float_tan(radians) |
| #define SkScalarASin(val) (float)sk_float_asin(val) |
| #define SkScalarACos(val) (float)sk_float_acos(val) |
| #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) |
| #define SkScalarExp(x) (float)sk_float_exp(x) |
| #define SkScalarLog(x) (float)sk_float_log(x) |
| |
| inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; } |
| inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; } |
| |
| #else |
| typedef SkFixed SkScalar; |
| |
| #define SK_Scalar1 SK_Fixed1 |
| #define SK_ScalarHalf SK_FixedHalf |
| #define SK_ScalarInfinity SK_FixedMax |
| #define SK_ScalarMax SK_FixedMax |
| #define SK_ScalarMin SK_FixedMin |
| #define SK_ScalarNaN SK_FixedNaN |
| #define SkScalarIsNaN(x) ((x) == SK_FixedNaN) |
| #define SkIntToScalar(n) SkIntToFixed(n) |
| #define SkFixedToScalar(x) (x) |
| #define SkScalarToFixed(x) (x) |
| #ifdef SK_CAN_USE_FLOAT |
| #define SkScalarToFloat(n) SkFixedToFloat(n) |
| #define SkFloatToScalar(n) SkFloatToFixed(n) |
| |
| #define SkScalarToDouble(n) SkFixedToDouble(n) |
| #define SkDoubleToScalar(n) SkDoubleToFixed(n) |
| #endif |
| #define SkScalarFraction(x) SkFixedFraction(x) |
| #define SkScalarRound(x) SkFixedRound(x) |
| #define SkScalarCeil(x) SkFixedCeil(x) |
| #define SkScalarFloor(x) SkFixedFloor(x) |
| #define SkScalarAbs(x) SkFixedAbs(x) |
| #define SkScalarClampMax(x, max) SkClampMax(x, max) |
| #define SkScalarPin(x, min, max) SkPin32(x, min, max) |
| #define SkScalarSquare(x) SkFixedSquare(x) |
| #define SkScalarMul(a, b) SkFixedMul(a, b) |
| #define SkScalarMulAdd(a, b, c) SkFixedMulAdd(a, b, c) |
| #define SkScalarMulRound(a, b) SkFixedMulCommon(a, b, SK_FixedHalf) |
| #define SkScalarMulCeil(a, b) SkFixedMulCommon(a, b, SK_Fixed1 - 1) |
| #define SkScalarMulFloor(a, b) SkFixedMulCommon(a, b, 0) |
| #define SkScalarDiv(a, b) SkFixedDiv(a, b) |
| #define SkScalarMod(a, b) SkFixedMod(a, b) |
| #define SkScalarMulDiv(a, b, c) SkMulDiv(a, b, c) |
| #define SkScalarInvert(x) SkFixedInvert(x) |
| #define SkScalarFastInvert(x) SkFixedFastInvert(x) |
| #define SkScalarSqrt(x) SkFixedSqrt(x) |
| #define SkScalarAve(a, b) SkFixedAve(a, b) |
| #define SkScalarMean(a, b) SkFixedMean(a, b) |
| #define SkScalarHalf(a) ((a) >> 1) |
| |
| #define SK_ScalarSqrt2 SK_FixedSqrt2 |
| #define SK_ScalarPI SK_FixedPI |
| #define SK_ScalarTanPIOver8 SK_FixedTanPIOver8 |
| #define SK_ScalarRoot2Over2 SK_FixedRoot2Over2 |
| |
| #define SkDegreesToRadians(degrees) SkFractMul(degrees, SK_FractPIOver180) |
| #define SkScalarSinCos(radians, cosPtr) SkFixedSinCos(radians, cosPtr) |
| #define SkScalarSin(radians) SkFixedSin(radians) |
| #define SkScalarCos(radians) SkFixedCos(radians) |
| #define SkScalarTan(val) SkFixedTan(val) |
| #define SkScalarASin(val) SkFixedASin(val) |
| #define SkScalarACos(val) SkFixedACos(val) |
| #define SkScalarATan2(y, x) SkFixedATan2(y,x) |
| #define SkScalarExp(x) SkFixedExp(x) |
| #define SkScalarLog(x) SkFixedLog(x) |
| |
| #define SkMaxScalar(a, b) SkMax32(a, b) |
| #define SkMinScalar(a, b) SkMin32(a, b) |
| #endif |
| |
| #define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12)) |
| |
| /* <= is slower than < for floats, so we use < for our tolerance test |
| */ |
| |
| inline bool SkScalarNearlyZero(SkScalar x, SkScalar tolerance = SK_ScalarNearlyZero) |
| { |
| SkASSERT(tolerance > 0); |
| return SkScalarAbs(x) < tolerance; |
| } |
| |
| /** Linearly interpolate between A and B, based on t. |
| If t is 0, return A |
| If t is 1, return B |
| else interpolate. |
| t must be [0..SK_Scalar1] |
| */ |
| inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) |
| { |
| SkASSERT(t >= 0 && t <= SK_Scalar1); |
| return A + SkScalarMul(B - A, t); |
| } |
| |
| #endif |
| |