| |
| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #ifndef SkRect_DEFINED |
| #define SkRect_DEFINED |
| |
| #include "SkPoint.h" |
| #include "SkSize.h" |
| |
| /** \struct SkIRect |
| |
| SkIRect holds four 32 bit integer coordinates for a rectangle |
| */ |
| struct SK_API SkIRect { |
| int32_t fLeft, fTop, fRight, fBottom; |
| |
| static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() { |
| SkIRect r; |
| r.setEmpty(); |
| return r; |
| } |
| |
| static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) { |
| SkIRect r; |
| r.set(0, 0, w, h); |
| return r; |
| } |
| |
| static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) { |
| SkIRect r; |
| r.set(0, 0, size.width(), size.height()); |
| return r; |
| } |
| |
| static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) { |
| SkIRect rect; |
| rect.set(l, t, r, b); |
| return rect; |
| } |
| |
| static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) { |
| SkIRect r; |
| r.set(x, y, x + w, y + h); |
| return r; |
| } |
| |
| int left() const { return fLeft; } |
| int top() const { return fTop; } |
| int right() const { return fRight; } |
| int bottom() const { return fBottom; } |
| |
| /** return the left edge of the rect */ |
| int x() const { return fLeft; } |
| /** return the top edge of the rect */ |
| int y() const { return fTop; } |
| /** |
| * Returns the rectangle's width. This does not check for a valid rect |
| * (i.e. left <= right) so the result may be negative. |
| */ |
| int width() const { return fRight - fLeft; } |
| |
| /** |
| * Returns the rectangle's height. This does not check for a valid rect |
| * (i.e. top <= bottom) so the result may be negative. |
| */ |
| int height() const { return fBottom - fTop; } |
| |
| /** |
| * Since the center of an integer rect may fall on a factional value, this |
| * method is defined to return (right + left) >> 1. |
| * |
| * This is a specific "truncation" of the average, which is different than |
| * (right + left) / 2 when the sum is negative. |
| */ |
| int centerX() const { return (fRight + fLeft) >> 1; } |
| |
| /** |
| * Since the center of an integer rect may fall on a factional value, this |
| * method is defined to return (bottom + top) >> 1 |
| * |
| * This is a specific "truncation" of the average, which is different than |
| * (bottom + top) / 2 when the sum is negative. |
| */ |
| int centerY() const { return (fBottom + fTop) >> 1; } |
| |
| /** |
| * Return true if the rectangle's width or height are <= 0 |
| */ |
| bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } |
| |
| friend bool operator==(const SkIRect& a, const SkIRect& b) { |
| return !memcmp(&a, &b, sizeof(a)); |
| } |
| |
| friend bool operator!=(const SkIRect& a, const SkIRect& b) { |
| return !(a == b); |
| } |
| |
| bool is16Bit() const { |
| return SkIsS16(fLeft) && SkIsS16(fTop) && |
| SkIsS16(fRight) && SkIsS16(fBottom); |
| } |
| |
| /** Set the rectangle to (0,0,0,0) |
| */ |
| void setEmpty() { memset(this, 0, sizeof(*this)); } |
| |
| void set(int32_t left, int32_t top, int32_t right, int32_t bottom) { |
| fLeft = left; |
| fTop = top; |
| fRight = right; |
| fBottom = bottom; |
| } |
| // alias for set(l, t, r, b) |
| void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) { |
| this->set(left, top, right, bottom); |
| } |
| |
| void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) { |
| fLeft = x; |
| fTop = y; |
| fRight = x + width; |
| fBottom = y + height; |
| } |
| |
| /** |
| * Make the largest representable rectangle |
| */ |
| void setLargest() { |
| fLeft = fTop = SK_MinS32; |
| fRight = fBottom = SK_MaxS32; |
| } |
| |
| /** |
| * Make the largest representable rectangle, but inverted (e.g. fLeft will |
| * be max 32bit and right will be min 32bit). |
| */ |
| void setLargestInverted() { |
| fLeft = fTop = SK_MaxS32; |
| fRight = fBottom = SK_MinS32; |
| } |
| |
| /** Offset set the rectangle by adding dx to its left and right, |
| and adding dy to its top and bottom. |
| */ |
| void offset(int32_t dx, int32_t dy) { |
| fLeft += dx; |
| fTop += dy; |
| fRight += dx; |
| fBottom += dy; |
| } |
| |
| void offset(const SkIPoint& delta) { |
| this->offset(delta.fX, delta.fY); |
| } |
| |
| /** |
| * Offset this rect such its new x() and y() will equal newX and newY. |
| */ |
| void offsetTo(int32_t newX, int32_t newY) { |
| fRight += newX - fLeft; |
| fBottom += newY - fTop; |
| fLeft = newX; |
| fTop = newY; |
| } |
| |
| /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards, |
| making the rectangle narrower. If dx is negative, then the sides are moved outwards, |
| making the rectangle wider. The same holds true for dy and the top and bottom. |
| */ |
| void inset(int32_t dx, int32_t dy) { |
| fLeft += dx; |
| fTop += dy; |
| fRight -= dx; |
| fBottom -= dy; |
| } |
| |
| /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are |
| moved outwards, making the rectangle wider. If dx is negative, then the |
| sides are moved inwards, making the rectangle narrower. The same holds |
| true for dy and the top and bottom. |
| */ |
| void outset(int32_t dx, int32_t dy) { this->inset(-dx, -dy); } |
| |
| bool quickReject(int l, int t, int r, int b) const { |
| return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b; |
| } |
| |
| /** Returns true if (x,y) is inside the rectangle and the rectangle is not |
| empty. The left and top are considered to be inside, while the right |
| and bottom are not. Thus for the rectangle (0, 0, 5, 10), the |
| points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not. |
| */ |
| bool contains(int32_t x, int32_t y) const { |
| return (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) && |
| (unsigned)(y - fTop) < (unsigned)(fBottom - fTop); |
| } |
| |
| /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle. |
| If either rectangle is empty, contains() returns false. |
| */ |
| bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const { |
| return left < right && top < bottom && !this->isEmpty() && // check for empties |
| fLeft <= left && fTop <= top && |
| fRight >= right && fBottom >= bottom; |
| } |
| |
| /** Returns true if the specified rectangle r is inside or equal to this rectangle. |
| */ |
| bool contains(const SkIRect& r) const { |
| return !r.isEmpty() && !this->isEmpty() && // check for empties |
| fLeft <= r.fLeft && fTop <= r.fTop && |
| fRight >= r.fRight && fBottom >= r.fBottom; |
| } |
| |
| /** Return true if this rectangle contains the specified rectangle. |
| For speed, this method does not check if either this or the specified |
| rectangles are empty, and if either is, its return value is undefined. |
| In the debugging build however, we assert that both this and the |
| specified rectangles are non-empty. |
| */ |
| bool containsNoEmptyCheck(int32_t left, int32_t top, |
| int32_t right, int32_t bottom) const { |
| SkASSERT(fLeft < fRight && fTop < fBottom); |
| SkASSERT(left < right && top < bottom); |
| |
| return fLeft <= left && fTop <= top && |
| fRight >= right && fBottom >= bottom; |
| } |
| |
| bool containsNoEmptyCheck(const SkIRect& r) const { |
| return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom); |
| } |
| |
| /** If r intersects this rectangle, return true and set this rectangle to that |
| intersection, otherwise return false and do not change this rectangle. |
| If either rectangle is empty, do nothing and return false. |
| */ |
| bool intersect(const SkIRect& r) { |
| SkASSERT(&r); |
| return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom); |
| } |
| |
| /** If rectangles a and b intersect, return true and set this rectangle to |
| that intersection, otherwise return false and do not change this |
| rectangle. If either rectangle is empty, do nothing and return false. |
| */ |
| bool intersect(const SkIRect& a, const SkIRect& b) { |
| SkASSERT(&a && &b); |
| |
| if (!a.isEmpty() && !b.isEmpty() && |
| a.fLeft < b.fRight && b.fLeft < a.fRight && |
| a.fTop < b.fBottom && b.fTop < a.fBottom) { |
| fLeft = SkMax32(a.fLeft, b.fLeft); |
| fTop = SkMax32(a.fTop, b.fTop); |
| fRight = SkMin32(a.fRight, b.fRight); |
| fBottom = SkMin32(a.fBottom, b.fBottom); |
| return true; |
| } |
| return false; |
| } |
| |
| /** If rectangles a and b intersect, return true and set this rectangle to |
| that intersection, otherwise return false and do not change this |
| rectangle. For speed, no check to see if a or b are empty is performed. |
| If either is, then the return result is undefined. In the debug build, |
| we assert that both rectangles are non-empty. |
| */ |
| bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) { |
| SkASSERT(&a && &b); |
| SkASSERT(!a.isEmpty() && !b.isEmpty()); |
| |
| if (a.fLeft < b.fRight && b.fLeft < a.fRight && |
| a.fTop < b.fBottom && b.fTop < a.fBottom) { |
| fLeft = SkMax32(a.fLeft, b.fLeft); |
| fTop = SkMax32(a.fTop, b.fTop); |
| fRight = SkMin32(a.fRight, b.fRight); |
| fBottom = SkMin32(a.fBottom, b.fBottom); |
| return true; |
| } |
| return false; |
| } |
| |
| /** If the rectangle specified by left,top,right,bottom intersects this rectangle, |
| return true and set this rectangle to that intersection, |
| otherwise return false and do not change this rectangle. |
| If either rectangle is empty, do nothing and return false. |
| */ |
| bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) { |
| if (left < right && top < bottom && !this->isEmpty() && |
| fLeft < right && left < fRight && fTop < bottom && top < fBottom) { |
| if (fLeft < left) fLeft = left; |
| if (fTop < top) fTop = top; |
| if (fRight > right) fRight = right; |
| if (fBottom > bottom) fBottom = bottom; |
| return true; |
| } |
| return false; |
| } |
| |
| /** Returns true if a and b are not empty, and they intersect |
| */ |
| static bool Intersects(const SkIRect& a, const SkIRect& b) { |
| return !a.isEmpty() && !b.isEmpty() && // check for empties |
| a.fLeft < b.fRight && b.fLeft < a.fRight && |
| a.fTop < b.fBottom && b.fTop < a.fBottom; |
| } |
| |
| /** |
| * Returns true if a and b intersect. debug-asserts that neither are empty. |
| */ |
| static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) { |
| SkASSERT(!a.isEmpty()); |
| SkASSERT(!b.isEmpty()); |
| return a.fLeft < b.fRight && b.fLeft < a.fRight && |
| a.fTop < b.fBottom && b.fTop < a.fBottom; |
| } |
| |
| /** Update this rectangle to enclose itself and the specified rectangle. |
| If this rectangle is empty, just set it to the specified rectangle. If the specified |
| rectangle is empty, do nothing. |
| */ |
| void join(int32_t left, int32_t top, int32_t right, int32_t bottom); |
| |
| /** Update this rectangle to enclose itself and the specified rectangle. |
| If this rectangle is empty, just set it to the specified rectangle. If the specified |
| rectangle is empty, do nothing. |
| */ |
| void join(const SkIRect& r) { |
| this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); |
| } |
| |
| /** Swap top/bottom or left/right if there are flipped. |
| This can be called if the edges are computed separately, |
| and may have crossed over each other. |
| When this returns, left <= right && top <= bottom |
| */ |
| void sort(); |
| |
| static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() { |
| static const SkIRect gEmpty = { 0, 0, 0, 0 }; |
| return gEmpty; |
| } |
| }; |
| |
| /** \struct SkRect |
| */ |
| struct SK_API SkRect { |
| SkScalar fLeft, fTop, fRight, fBottom; |
| |
| static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() { |
| SkRect r; |
| r.setEmpty(); |
| return r; |
| } |
| |
| static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) { |
| SkRect r; |
| r.set(0, 0, w, h); |
| return r; |
| } |
| |
| static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) { |
| SkRect r; |
| r.set(0, 0, size.width(), size.height()); |
| return r; |
| } |
| |
| static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) { |
| SkRect rect; |
| rect.set(l, t, r, b); |
| return rect; |
| } |
| |
| static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) { |
| SkRect r; |
| r.set(x, y, x + w, y + h); |
| return r; |
| } |
| |
| // DEPRECATED: call Make(r) |
| static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) { |
| SkRect r; |
| r.set(SkIntToScalar(irect.fLeft), |
| SkIntToScalar(irect.fTop), |
| SkIntToScalar(irect.fRight), |
| SkIntToScalar(irect.fBottom)); |
| return r; |
| } |
| |
| static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) { |
| SkRect r; |
| r.set(SkIntToScalar(irect.fLeft), |
| SkIntToScalar(irect.fTop), |
| SkIntToScalar(irect.fRight), |
| SkIntToScalar(irect.fBottom)); |
| return r; |
| } |
| |
| /** |
| * Return true if the rectangle's width or height are <= 0 |
| */ |
| bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } |
| |
| /** |
| * Returns true iff all values in the rect are finite. If any are |
| * infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this |
| * returns false. |
| */ |
| bool isFinite() const { |
| #ifdef SK_SCALAR_IS_FLOAT |
| float accum = 0; |
| accum *= fLeft; |
| accum *= fTop; |
| accum *= fRight; |
| accum *= fBottom; |
| |
| // accum is either NaN or it is finite (zero). |
| SkASSERT(0 == accum || !(accum == accum)); |
| |
| // value==value will be true iff value is not NaN |
| // TODO: is it faster to say !accum or accum==accum? |
| return accum == accum; |
| #else |
| // use bit-or for speed, since we don't care about short-circuting the |
| // tests, and we expect the common case will be that we need to check all. |
| int isNaN = (SK_FixedNaN == fLeft) | (SK_FixedNaN == fTop) | |
| (SK_FixedNaN == fRight) | (SK_FixedNaN == fBottom); |
| return !isNaN; |
| #endif |
| } |
| |
| SkScalar x() const { return fLeft; } |
| SkScalar y() const { return fTop; } |
| SkScalar left() const { return fLeft; } |
| SkScalar top() const { return fTop; } |
| SkScalar right() const { return fRight; } |
| SkScalar bottom() const { return fBottom; } |
| SkScalar width() const { return fRight - fLeft; } |
| SkScalar height() const { return fBottom - fTop; } |
| SkScalar centerX() const { return SkScalarHalf(fLeft + fRight); } |
| SkScalar centerY() const { return SkScalarHalf(fTop + fBottom); } |
| |
| friend bool operator==(const SkRect& a, const SkRect& b) { |
| return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); |
| } |
| |
| friend bool operator!=(const SkRect& a, const SkRect& b) { |
| return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); |
| } |
| |
| /** return the 4 points that enclose the rectangle |
| */ |
| void toQuad(SkPoint quad[4]) const; |
| |
| /** Set this rectangle to the empty rectangle (0,0,0,0) |
| */ |
| void setEmpty() { memset(this, 0, sizeof(*this)); } |
| |
| void set(const SkIRect& src) { |
| fLeft = SkIntToScalar(src.fLeft); |
| fTop = SkIntToScalar(src.fTop); |
| fRight = SkIntToScalar(src.fRight); |
| fBottom = SkIntToScalar(src.fBottom); |
| } |
| |
| void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { |
| fLeft = left; |
| fTop = top; |
| fRight = right; |
| fBottom = bottom; |
| } |
| // alias for set(l, t, r, b) |
| void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { |
| this->set(left, top, right, bottom); |
| } |
| |
| /** Initialize the rect with the 4 specified integers. The routine handles |
| converting them to scalars (by calling SkIntToScalar) |
| */ |
| void iset(int left, int top, int right, int bottom) { |
| fLeft = SkIntToScalar(left); |
| fTop = SkIntToScalar(top); |
| fRight = SkIntToScalar(right); |
| fBottom = SkIntToScalar(bottom); |
| } |
| |
| /** |
| * Set this rectangle to be left/top at 0,0, and have the specified width |
| * and height (automatically converted to SkScalar). |
| */ |
| void isetWH(int width, int height) { |
| fLeft = fTop = 0; |
| fRight = SkIntToScalar(width); |
| fBottom = SkIntToScalar(height); |
| } |
| |
| /** Set this rectangle to be the bounds of the array of points. |
| If the array is empty (count == 0), then set this rectangle |
| to the empty rectangle (0,0,0,0) |
| */ |
| void set(const SkPoint pts[], int count) { |
| // set() had been checking for non-finite values, so keep that behavior |
| // for now. Now that we have setBoundsCheck(), we may decide to make |
| // set() be simpler/faster, and not check for those. |
| (void)this->setBoundsCheck(pts, count); |
| } |
| |
| // alias for set(pts, count) |
| void setBounds(const SkPoint pts[], int count) { |
| (void)this->setBoundsCheck(pts, count); |
| } |
| |
| /** |
| * Compute the bounds of the array of points, and set this rect to that |
| * bounds and return true... unless a non-finite value is encountered, |
| * in which case this rect is set to empty and false is returned. |
| */ |
| bool setBoundsCheck(const SkPoint pts[], int count); |
| |
| void set(const SkPoint& p0, const SkPoint& p1) { |
| fLeft = SkMinScalar(p0.fX, p1.fX); |
| fRight = SkMaxScalar(p0.fX, p1.fX); |
| fTop = SkMinScalar(p0.fY, p1.fY); |
| fBottom = SkMaxScalar(p0.fY, p1.fY); |
| } |
| |
| void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) { |
| fLeft = x; |
| fTop = y; |
| fRight = x + width; |
| fBottom = y + height; |
| } |
| |
| void setWH(SkScalar width, SkScalar height) { |
| fLeft = 0; |
| fTop = 0; |
| fRight = width; |
| fBottom = height; |
| } |
| |
| /** |
| * Make the largest representable rectangle |
| */ |
| void setLargest() { |
| fLeft = fTop = SK_ScalarMin; |
| fRight = fBottom = SK_ScalarMax; |
| } |
| |
| /** |
| * Make the largest representable rectangle, but inverted (e.g. fLeft will |
| * be max and right will be min). |
| */ |
| void setLargestInverted() { |
| fLeft = fTop = SK_ScalarMax; |
| fRight = fBottom = SK_ScalarMin; |
| } |
| |
| /** Offset set the rectangle by adding dx to its left and right, |
| and adding dy to its top and bottom. |
| */ |
| void offset(SkScalar dx, SkScalar dy) { |
| fLeft += dx; |
| fTop += dy; |
| fRight += dx; |
| fBottom += dy; |
| } |
| |
| void offset(const SkPoint& delta) { |
| this->offset(delta.fX, delta.fY); |
| } |
| |
| /** |
| * Offset this rect such its new x() and y() will equal newX and newY. |
| */ |
| void offsetTo(SkScalar newX, SkScalar newY) { |
| fRight += newX - fLeft; |
| fBottom += newY - fTop; |
| fLeft = newX; |
| fTop = newY; |
| } |
| |
| /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are |
| moved inwards, making the rectangle narrower. If dx is negative, then |
| the sides are moved outwards, making the rectangle wider. The same holds |
| true for dy and the top and bottom. |
| */ |
| void inset(SkScalar dx, SkScalar dy) { |
| fLeft += dx; |
| fTop += dy; |
| fRight -= dx; |
| fBottom -= dy; |
| } |
| |
| /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are |
| moved outwards, making the rectangle wider. If dx is negative, then the |
| sides are moved inwards, making the rectangle narrower. The same holds |
| true for dy and the top and bottom. |
| */ |
| void outset(SkScalar dx, SkScalar dy) { this->inset(-dx, -dy); } |
| |
| /** If this rectangle intersects r, return true and set this rectangle to that |
| intersection, otherwise return false and do not change this rectangle. |
| If either rectangle is empty, do nothing and return false. |
| */ |
| bool intersect(const SkRect& r); |
| |
| /** If this rectangle intersects the rectangle specified by left, top, right, bottom, |
| return true and set this rectangle to that intersection, otherwise return false |
| and do not change this rectangle. |
| If either rectangle is empty, do nothing and return false. |
| */ |
| bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); |
| |
| /** |
| * Return true if this rectangle is not empty, and the specified sides of |
| * a rectangle are not empty, and they intersect. |
| */ |
| bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const { |
| return // first check that both are not empty |
| left < right && top < bottom && |
| fLeft < fRight && fTop < fBottom && |
| // now check for intersection |
| fLeft < right && left < fRight && |
| fTop < bottom && top < fBottom; |
| } |
| |
| /** If rectangles a and b intersect, return true and set this rectangle to |
| * that intersection, otherwise return false and do not change this |
| * rectangle. If either rectangle is empty, do nothing and return false. |
| */ |
| bool intersect(const SkRect& a, const SkRect& b); |
| |
| /** |
| * Return true if rectangles a and b are not empty and intersect. |
| */ |
| static bool Intersects(const SkRect& a, const SkRect& b) { |
| return !a.isEmpty() && !b.isEmpty() && |
| a.fLeft < b.fRight && b.fLeft < a.fRight && |
| a.fTop < b.fBottom && b.fTop < a.fBottom; |
| } |
| |
| /** |
| * Update this rectangle to enclose itself and the specified rectangle. |
| * If this rectangle is empty, just set it to the specified rectangle. |
| * If the specified rectangle is empty, do nothing. |
| */ |
| void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); |
| |
| /** Update this rectangle to enclose itself and the specified rectangle. |
| If this rectangle is empty, just set it to the specified rectangle. If the specified |
| rectangle is empty, do nothing. |
| */ |
| void join(const SkRect& r) { |
| this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); |
| } |
| // alias for join() |
| void growToInclude(const SkRect& r) { this->join(r); } |
| |
| /** |
| * Grow the rect to include the specified (x,y). After this call, the |
| * following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom. |
| * |
| * This is close, but not quite the same contract as contains(), since |
| * contains() treats the left and top different from the right and bottom. |
| * contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note |
| * that contains(x,y) always returns false if the rect is empty. |
| */ |
| void growToInclude(SkScalar x, SkScalar y) { |
| fLeft = SkMinScalar(x, fLeft); |
| fRight = SkMaxScalar(x, fRight); |
| fTop = SkMinScalar(y, fTop); |
| fBottom = SkMaxScalar(y, fBottom); |
| } |
| |
| /** |
| * Returns true if (p.fX,p.fY) is inside the rectangle, and the rectangle |
| * is not empty. |
| * |
| * Contains treats the left and top differently from the right and bottom. |
| * The left and top coordinates of the rectangle are themselves considered |
| * to be inside, while the right and bottom are not. Thus for the rectangle |
| * {0, 0, 5, 10}, (0,0) is contained, but (0,10), (5,0) and (5,10) are not. |
| */ |
| bool contains(const SkPoint& p) const { |
| return !this->isEmpty() && |
| fLeft <= p.fX && p.fX < fRight && fTop <= p.fY && p.fY < fBottom; |
| } |
| |
| /** |
| * Returns true if (x,y) is inside the rectangle, and the rectangle |
| * is not empty. |
| * |
| * Contains treats the left and top differently from the right and bottom. |
| * The left and top coordinates of the rectangle are themselves considered |
| * to be inside, while the right and bottom are not. Thus for the rectangle |
| * {0, 0, 5, 10}, (0,0) is contained, but (0,10), (5,0) and (5,10) are not. |
| */ |
| bool contains(SkScalar x, SkScalar y) const { |
| return !this->isEmpty() && |
| fLeft <= x && x < fRight && fTop <= y && y < fBottom; |
| } |
| |
| /** |
| * Return true if this rectangle contains r, and if both rectangles are |
| * not empty. |
| */ |
| bool contains(const SkRect& r) const { |
| return !r.isEmpty() && !this->isEmpty() && |
| fLeft <= r.fLeft && fTop <= r.fTop && |
| fRight >= r.fRight && fBottom >= r.fBottom; |
| } |
| |
| /** |
| * Set the dst rectangle by rounding this rectangle's coordinates to their |
| * nearest integer values using SkScalarRound. |
| */ |
| void round(SkIRect* dst) const { |
| SkASSERT(dst); |
| dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop), |
| SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom)); |
| } |
| |
| /** |
| * Set the dst rectangle by rounding "out" this rectangle, choosing the |
| * SkScalarFloor of top and left, and the SkScalarCeil of right and bottom. |
| */ |
| void roundOut(SkIRect* dst) const { |
| SkASSERT(dst); |
| dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop), |
| SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom)); |
| } |
| |
| /** |
| * Expand this rectangle by rounding its coordinates "out", choosing the |
| * floor of top and left, and the ceil of right and bottom. If this rect |
| * is already on integer coordinates, then it will be unchanged. |
| */ |
| void roundOut() { |
| this->set(SkScalarFloorToScalar(fLeft), |
| SkScalarFloorToScalar(fTop), |
| SkScalarCeilToScalar(fRight), |
| SkScalarCeilToScalar(fBottom)); |
| } |
| |
| /** |
| * Set the dst rectangle by rounding "in" this rectangle, choosing the |
| * ceil of top and left, and the floor of right and bottom. This does *not* |
| * call sort(), so it is possible that the resulting rect is inverted... |
| * e.g. left >= right or top >= bottom. Call isEmpty() to detect that. |
| */ |
| void roundIn(SkIRect* dst) const { |
| SkASSERT(dst); |
| dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop), |
| SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom)); |
| } |
| |
| |
| /** |
| * Swap top/bottom or left/right if there are flipped (i.e. if width() |
| * or height() would have returned a negative value.) This should be called |
| * if the edges are computed separately, and may have crossed over each |
| * other. When this returns, left <= right && top <= bottom |
| */ |
| void sort(); |
| }; |
| |
| #endif |