blob: 4b486b1da4028a7359f119487000fa3938af7938 [file] [log] [blame]
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkStrokerPriv.h"
#include "SkGeometry.h"
#include "SkPath.h"
#define kMaxQuadSubdivide 5
#define kMaxCubicSubdivide 4
static inline bool degenerate_vector(const SkVector& v) {
return !SkPoint::CanNormalize(v.fX, v.fY);
}
static inline bool normals_too_curvy(const SkVector& norm0, SkVector& norm1) {
/* root2/2 is a 45-degree angle
make this constant bigger for more subdivisions (but not >= 1)
*/
static const SkScalar kFlatEnoughNormalDotProd =
SK_ScalarSqrt2/2 + SK_Scalar1/10;
SkASSERT(kFlatEnoughNormalDotProd > 0 &&
kFlatEnoughNormalDotProd < SK_Scalar1);
return SkPoint::DotProduct(norm0, norm1) <= kFlatEnoughNormalDotProd;
}
static inline bool normals_too_pinchy(const SkVector& norm0, SkVector& norm1) {
static const SkScalar kTooPinchyNormalDotProd = -SK_Scalar1 * 999 / 1000;
return SkPoint::DotProduct(norm0, norm1) <= kTooPinchyNormalDotProd;
}
static bool set_normal_unitnormal(const SkPoint& before, const SkPoint& after,
SkScalar radius,
SkVector* normal, SkVector* unitNormal) {
if (!unitNormal->setNormalize(after.fX - before.fX, after.fY - before.fY)) {
return false;
}
unitNormal->rotateCCW();
unitNormal->scale(radius, normal);
return true;
}
static bool set_normal_unitnormal(const SkVector& vec,
SkScalar radius,
SkVector* normal, SkVector* unitNormal) {
if (!unitNormal->setNormalize(vec.fX, vec.fY)) {
return false;
}
unitNormal->rotateCCW();
unitNormal->scale(radius, normal);
return true;
}
///////////////////////////////////////////////////////////////////////////////
class SkPathStroker {
public:
SkPathStroker(SkScalar radius, SkScalar miterLimit, SkPaint::Cap cap,
SkPaint::Join join);
void moveTo(const SkPoint&);
void lineTo(const SkPoint&);
void quadTo(const SkPoint&, const SkPoint&);
void cubicTo(const SkPoint&, const SkPoint&, const SkPoint&);
void close(bool isLine) { this->finishContour(true, isLine); }
void done(SkPath* dst, bool isLine) {
this->finishContour(false, isLine);
fOuter.addPath(fExtra);
dst->swap(fOuter);
}
private:
SkScalar fRadius;
SkScalar fInvMiterLimit;
SkVector fFirstNormal, fPrevNormal, fFirstUnitNormal, fPrevUnitNormal;
SkPoint fFirstPt, fPrevPt; // on original path
SkPoint fFirstOuterPt;
int fSegmentCount;
bool fPrevIsLine;
SkStrokerPriv::CapProc fCapper;
SkStrokerPriv::JoinProc fJoiner;
SkPath fInner, fOuter; // outer is our working answer, inner is temp
SkPath fExtra; // added as extra complete contours
void finishContour(bool close, bool isLine);
void preJoinTo(const SkPoint&, SkVector* normal, SkVector* unitNormal,
bool isLine);
void postJoinTo(const SkPoint&, const SkVector& normal,
const SkVector& unitNormal);
void line_to(const SkPoint& currPt, const SkVector& normal);
void quad_to(const SkPoint pts[3],
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalBC, SkVector* unitNormalBC,
int subDivide);
void cubic_to(const SkPoint pts[4],
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalCD, SkVector* unitNormalCD,
int subDivide);
};
///////////////////////////////////////////////////////////////////////////////
void SkPathStroker::preJoinTo(const SkPoint& currPt, SkVector* normal,
SkVector* unitNormal, bool currIsLine) {
SkASSERT(fSegmentCount >= 0);
SkScalar prevX = fPrevPt.fX;
SkScalar prevY = fPrevPt.fY;
SkAssertResult(set_normal_unitnormal(fPrevPt, currPt, fRadius, normal,
unitNormal));
if (fSegmentCount == 0) {
fFirstNormal = *normal;
fFirstUnitNormal = *unitNormal;
fFirstOuterPt.set(prevX + normal->fX, prevY + normal->fY);
fOuter.moveTo(fFirstOuterPt.fX, fFirstOuterPt.fY);
fInner.moveTo(prevX - normal->fX, prevY - normal->fY);
} else { // we have a previous segment
fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt, *unitNormal,
fRadius, fInvMiterLimit, fPrevIsLine, currIsLine);
}
fPrevIsLine = currIsLine;
}
void SkPathStroker::postJoinTo(const SkPoint& currPt, const SkVector& normal,
const SkVector& unitNormal) {
fPrevPt = currPt;
fPrevUnitNormal = unitNormal;
fPrevNormal = normal;
fSegmentCount += 1;
}
void SkPathStroker::finishContour(bool close, bool currIsLine) {
if (fSegmentCount > 0) {
SkPoint pt;
if (close) {
fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt,
fFirstUnitNormal, fRadius, fInvMiterLimit,
fPrevIsLine, currIsLine);
fOuter.close();
// now add fInner as its own contour
fInner.getLastPt(&pt);
fOuter.moveTo(pt.fX, pt.fY);
fOuter.reversePathTo(fInner);
fOuter.close();
} else { // add caps to start and end
// cap the end
fInner.getLastPt(&pt);
fCapper(&fOuter, fPrevPt, fPrevNormal, pt,
currIsLine ? &fInner : NULL);
fOuter.reversePathTo(fInner);
// cap the start
fCapper(&fOuter, fFirstPt, -fFirstNormal, fFirstOuterPt,
fPrevIsLine ? &fInner : NULL);
fOuter.close();
}
}
fInner.reset();
fSegmentCount = -1;
}
///////////////////////////////////////////////////////////////////////////////
SkPathStroker::SkPathStroker(SkScalar radius, SkScalar miterLimit,
SkPaint::Cap cap, SkPaint::Join join)
: fRadius(radius) {
/* This is only used when join is miter_join, but we initialize it here
so that it is always defined, to fis valgrind warnings.
*/
fInvMiterLimit = 0;
if (join == SkPaint::kMiter_Join) {
if (miterLimit <= SK_Scalar1) {
join = SkPaint::kBevel_Join;
} else {
fInvMiterLimit = SkScalarInvert(miterLimit);
}
}
fCapper = SkStrokerPriv::CapFactory(cap);
fJoiner = SkStrokerPriv::JoinFactory(join);
fSegmentCount = -1;
fPrevIsLine = false;
}
void SkPathStroker::moveTo(const SkPoint& pt) {
if (fSegmentCount > 0) {
this->finishContour(false, false);
}
fSegmentCount = 0;
fFirstPt = fPrevPt = pt;
}
void SkPathStroker::line_to(const SkPoint& currPt, const SkVector& normal) {
fOuter.lineTo(currPt.fX + normal.fX, currPt.fY + normal.fY);
fInner.lineTo(currPt.fX - normal.fX, currPt.fY - normal.fY);
}
void SkPathStroker::lineTo(const SkPoint& currPt) {
if (SkPath::IsLineDegenerate(fPrevPt, currPt)) {
return;
}
SkVector normal, unitNormal;
this->preJoinTo(currPt, &normal, &unitNormal, true);
this->line_to(currPt, normal);
this->postJoinTo(currPt, normal, unitNormal);
}
void SkPathStroker::quad_to(const SkPoint pts[3],
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalBC, SkVector* unitNormalBC,
int subDivide) {
if (!set_normal_unitnormal(pts[1], pts[2], fRadius,
normalBC, unitNormalBC)) {
// pts[1] nearly equals pts[2], so just draw a line to pts[2]
this->line_to(pts[2], normalAB);
*normalBC = normalAB;
*unitNormalBC = unitNormalAB;
return;
}
if (--subDivide >= 0 && normals_too_curvy(unitNormalAB, *unitNormalBC)) {
SkPoint tmp[5];
SkVector norm, unit;
SkChopQuadAtHalf(pts, tmp);
this->quad_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit, subDivide);
this->quad_to(&tmp[2], norm, unit, normalBC, unitNormalBC, subDivide);
} else {
SkVector normalB, unitB;
SkAssertResult(set_normal_unitnormal(pts[0], pts[2], fRadius,
&normalB, &unitB));
fOuter.quadTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY,
pts[2].fX + normalBC->fX, pts[2].fY + normalBC->fY);
fInner.quadTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY,
pts[2].fX - normalBC->fX, pts[2].fY - normalBC->fY);
}
}
void SkPathStroker::cubic_to(const SkPoint pts[4],
const SkVector& normalAB, const SkVector& unitNormalAB,
SkVector* normalCD, SkVector* unitNormalCD,
int subDivide) {
SkVector ab = pts[1] - pts[0];
SkVector cd = pts[3] - pts[2];
SkVector normalBC, unitNormalBC;
bool degenerateAB = degenerate_vector(ab);
bool degenerateCD = degenerate_vector(cd);
if (degenerateAB && degenerateCD) {
DRAW_LINE:
this->line_to(pts[3], normalAB);
*normalCD = normalAB;
*unitNormalCD = unitNormalAB;
return;
}
if (degenerateAB) {
ab = pts[2] - pts[0];
degenerateAB = degenerate_vector(ab);
}
if (degenerateCD) {
cd = pts[3] - pts[1];
degenerateCD = degenerate_vector(cd);
}
if (degenerateAB || degenerateCD) {
goto DRAW_LINE;
}
SkAssertResult(set_normal_unitnormal(cd, fRadius, normalCD, unitNormalCD));
bool degenerateBC = !set_normal_unitnormal(pts[1], pts[2], fRadius,
&normalBC, &unitNormalBC);
if (degenerateBC || normals_too_curvy(unitNormalAB, unitNormalBC) ||
normals_too_curvy(unitNormalBC, *unitNormalCD)) {
// subdivide if we can
if (--subDivide < 0) {
goto DRAW_LINE;
}
SkPoint tmp[7];
SkVector norm, unit, dummy, unitDummy;
SkChopCubicAtHalf(pts, tmp);
this->cubic_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit,
subDivide);
// we use dummys since we already have a valid (and more accurate)
// normals for CD
this->cubic_to(&tmp[3], norm, unit, &dummy, &unitDummy, subDivide);
} else {
SkVector normalB, normalC;
// need normals to inset/outset the off-curve pts B and C
if (0) { // this is normal to the line between our adjacent pts
normalB = pts[2] - pts[0];
normalB.rotateCCW();
SkAssertResult(normalB.setLength(fRadius));
normalC = pts[3] - pts[1];
normalC.rotateCCW();
SkAssertResult(normalC.setLength(fRadius));
} else { // miter-join
SkVector unitBC = pts[2] - pts[1];
unitBC.normalize();
unitBC.rotateCCW();
normalB = unitNormalAB + unitBC;
normalC = *unitNormalCD + unitBC;
SkScalar dot = SkPoint::DotProduct(unitNormalAB, unitBC);
SkAssertResult(normalB.setLength(SkScalarDiv(fRadius,
SkScalarSqrt((SK_Scalar1 + dot)/2))));
dot = SkPoint::DotProduct(*unitNormalCD, unitBC);
SkAssertResult(normalC.setLength(SkScalarDiv(fRadius,
SkScalarSqrt((SK_Scalar1 + dot)/2))));
}
fOuter.cubicTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY,
pts[2].fX + normalC.fX, pts[2].fY + normalC.fY,
pts[3].fX + normalCD->fX, pts[3].fY + normalCD->fY);
fInner.cubicTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY,
pts[2].fX - normalC.fX, pts[2].fY - normalC.fY,
pts[3].fX - normalCD->fX, pts[3].fY - normalCD->fY);
}
}
void SkPathStroker::quadTo(const SkPoint& pt1, const SkPoint& pt2) {
bool degenerateAB = SkPath::IsLineDegenerate(fPrevPt, pt1);
bool degenerateBC = SkPath::IsLineDegenerate(pt1, pt2);
if (degenerateAB | degenerateBC) {
if (degenerateAB ^ degenerateBC) {
this->lineTo(pt2);
}
return;
}
SkVector normalAB, unitAB, normalBC, unitBC;
this->preJoinTo(pt1, &normalAB, &unitAB, false);
{
SkPoint pts[3], tmp[5];
pts[0] = fPrevPt;
pts[1] = pt1;
pts[2] = pt2;
if (SkChopQuadAtMaxCurvature(pts, tmp) == 2) {
unitBC.setNormalize(pts[2].fX - pts[1].fX, pts[2].fY - pts[1].fY);
unitBC.rotateCCW();
if (normals_too_pinchy(unitAB, unitBC)) {
normalBC = unitBC;
normalBC.scale(fRadius);
fOuter.lineTo(tmp[2].fX + normalAB.fX, tmp[2].fY + normalAB.fY);
fOuter.lineTo(tmp[2].fX + normalBC.fX, tmp[2].fY + normalBC.fY);
fOuter.lineTo(tmp[4].fX + normalBC.fX, tmp[4].fY + normalBC.fY);
fInner.lineTo(tmp[2].fX - normalAB.fX, tmp[2].fY - normalAB.fY);
fInner.lineTo(tmp[2].fX - normalBC.fX, tmp[2].fY - normalBC.fY);
fInner.lineTo(tmp[4].fX - normalBC.fX, tmp[4].fY - normalBC.fY);
fExtra.addCircle(tmp[2].fX, tmp[2].fY, fRadius,
SkPath::kCW_Direction);
} else {
this->quad_to(&tmp[0], normalAB, unitAB, &normalBC, &unitBC,
kMaxQuadSubdivide);
SkVector n = normalBC;
SkVector u = unitBC;
this->quad_to(&tmp[2], n, u, &normalBC, &unitBC,
kMaxQuadSubdivide);
}
} else {
this->quad_to(pts, normalAB, unitAB, &normalBC, &unitBC,
kMaxQuadSubdivide);
}
}
this->postJoinTo(pt2, normalBC, unitBC);
}
void SkPathStroker::cubicTo(const SkPoint& pt1, const SkPoint& pt2,
const SkPoint& pt3) {
bool degenerateAB = SkPath::IsLineDegenerate(fPrevPt, pt1);
bool degenerateBC = SkPath::IsLineDegenerate(pt1, pt2);
bool degenerateCD = SkPath::IsLineDegenerate(pt2, pt3);
if (degenerateAB + degenerateBC + degenerateCD >= 2) {
this->lineTo(pt3);
return;
}
SkVector normalAB, unitAB, normalCD, unitCD;
// find the first tangent (which might be pt1 or pt2
{
const SkPoint* nextPt = &pt1;
if (degenerateAB)
nextPt = &pt2;
this->preJoinTo(*nextPt, &normalAB, &unitAB, false);
}
{
SkPoint pts[4], tmp[13];
int i, count;
SkVector n, u;
SkScalar tValues[3];
pts[0] = fPrevPt;
pts[1] = pt1;
pts[2] = pt2;
pts[3] = pt3;
#if 1
count = SkChopCubicAtMaxCurvature(pts, tmp, tValues);
#else
count = 1;
memcpy(tmp, pts, 4 * sizeof(SkPoint));
#endif
n = normalAB;
u = unitAB;
for (i = 0; i < count; i++) {
this->cubic_to(&tmp[i * 3], n, u, &normalCD, &unitCD,
kMaxCubicSubdivide);
if (i == count - 1) {
break;
}
n = normalCD;
u = unitCD;
}
// check for too pinchy
for (i = 1; i < count; i++) {
SkPoint p;
SkVector v, c;
SkEvalCubicAt(pts, tValues[i - 1], &p, &v, &c);
SkScalar dot = SkPoint::DotProduct(c, c);
v.scale(SkScalarInvert(dot));
if (SkScalarNearlyZero(v.fX) && SkScalarNearlyZero(v.fY)) {
fExtra.addCircle(p.fX, p.fY, fRadius, SkPath::kCW_Direction);
}
}
}
this->postJoinTo(pt3, normalCD, unitCD);
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#include "SkPaintDefaults.h"
SkStroke::SkStroke() {
fWidth = SK_Scalar1;
fMiterLimit = SkPaintDefaults_MiterLimit;
fCap = SkPaint::kDefault_Cap;
fJoin = SkPaint::kDefault_Join;
fDoFill = false;
}
SkStroke::SkStroke(const SkPaint& p) {
fWidth = p.getStrokeWidth();
fMiterLimit = p.getStrokeMiter();
fCap = (uint8_t)p.getStrokeCap();
fJoin = (uint8_t)p.getStrokeJoin();
fDoFill = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style);
}
SkStroke::SkStroke(const SkPaint& p, SkScalar width) {
fWidth = width;
fMiterLimit = p.getStrokeMiter();
fCap = (uint8_t)p.getStrokeCap();
fJoin = (uint8_t)p.getStrokeJoin();
fDoFill = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style);
}
void SkStroke::setWidth(SkScalar width) {
SkASSERT(width >= 0);
fWidth = width;
}
void SkStroke::setMiterLimit(SkScalar miterLimit) {
SkASSERT(miterLimit >= 0);
fMiterLimit = miterLimit;
}
void SkStroke::setCap(SkPaint::Cap cap) {
SkASSERT((unsigned)cap < SkPaint::kCapCount);
fCap = SkToU8(cap);
}
void SkStroke::setJoin(SkPaint::Join join) {
SkASSERT((unsigned)join < SkPaint::kJoinCount);
fJoin = SkToU8(join);
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_SCALAR_IS_FIXED
/* return non-zero if the path is too big, and should be shrunk to avoid
overflows during intermediate calculations. Note that we compute the
bounds for this. If we had a custom callback/walker for paths, we could
perhaps go faster by using that, and just perform the abs | in that
routine
*/
static int needs_to_shrink(const SkPath& path) {
const SkRect& r = path.getBounds();
SkFixed mask = SkAbs32(r.fLeft);
mask |= SkAbs32(r.fTop);
mask |= SkAbs32(r.fRight);
mask |= SkAbs32(r.fBottom);
// we need the top 3 bits clear (after abs) to avoid overflow
return mask >> 29;
}
static void identity_proc(SkPoint pts[], int count) {}
static void shift_down_2_proc(SkPoint pts[], int count) {
for (int i = 0; i < count; i++) {
pts->fX >>= 2;
pts->fY >>= 2;
pts += 1;
}
}
#define APPLY_PROC(proc, pts, count) proc(pts, count)
#else // float does need any of this
#define APPLY_PROC(proc, pts, count)
#endif
void SkStroke::strokePath(const SkPath& src, SkPath* dst) const {
SkASSERT(&src != NULL && dst != NULL);
SkScalar radius = SkScalarHalf(fWidth);
dst->reset();
if (radius <= 0) {
return;
}
#ifdef SK_SCALAR_IS_FIXED
void (*proc)(SkPoint pts[], int count) = identity_proc;
if (needs_to_shrink(src)) {
proc = shift_down_2_proc;
radius >>= 2;
if (radius == 0) {
return;
}
}
#endif
SkPathStroker stroker(radius, fMiterLimit, this->getCap(),
this->getJoin());
SkPath::Iter iter(src, false);
SkPoint pts[4];
SkPath::Verb verb, lastSegment = SkPath::kMove_Verb;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
APPLY_PROC(proc, &pts[0], 1);
stroker.moveTo(pts[0]);
break;
case SkPath::kLine_Verb:
APPLY_PROC(proc, &pts[1], 1);
stroker.lineTo(pts[1]);
lastSegment = verb;
break;
case SkPath::kQuad_Verb:
APPLY_PROC(proc, &pts[1], 2);
stroker.quadTo(pts[1], pts[2]);
lastSegment = verb;
break;
case SkPath::kCubic_Verb:
APPLY_PROC(proc, &pts[1], 3);
stroker.cubicTo(pts[1], pts[2], pts[3]);
lastSegment = verb;
break;
case SkPath::kClose_Verb:
stroker.close(lastSegment == SkPath::kLine_Verb);
break;
default:
break;
}
}
stroker.done(dst, lastSegment == SkPath::kLine_Verb);
#ifdef SK_SCALAR_IS_FIXED
// undo our previous down_shift
if (shift_down_2_proc == proc) {
// need a real shift methid on path. antialias paths could use this too
SkMatrix matrix;
matrix.setScale(SkIntToScalar(4), SkIntToScalar(4));
dst->transform(matrix);
}
#endif
if (fDoFill) {
if (src.cheapIsDirection(SkPath::kCCW_Direction)) {
dst->reverseAddPath(src);
} else {
dst->addPath(src);
}
} else {
// Seems like we can assume that a 2-point src would always result in
// a convex stroke, but testing has proved otherwise.
// TODO: fix the stroker to make this assumption true (without making
// it slower that the work that will be done in computeConvexity())
#if 0
// this test results in a non-convex stroke :(
static void test(SkCanvas* canvas) {
SkPoint pts[] = { 146.333328, 192.333328, 300.333344, 293.333344 };
SkPaint paint;
paint.setStrokeWidth(7);
paint.setStrokeCap(SkPaint::kRound_Cap);
canvas->drawLine(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, paint);
}
#endif
#if 0
if (2 == src.countPoints()) {
dst->setIsConvex(true);
}
#endif
}
// our answer should preserve the inverseness of the src
if (src.isInverseFillType()) {
SkASSERT(!dst->isInverseFillType());
dst->toggleInverseFillType();
}
}
void SkStroke::strokeLine(const SkPoint& p0, const SkPoint& p1,
SkPath* dst) const {
SkPath tmp;
tmp.moveTo(p0);
tmp.lineTo(p1);
this->strokePath(tmp, dst);
}