| |
| /* |
| * Copyright 2008 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkStrokerPriv.h" |
| #include "SkGeometry.h" |
| #include "SkPath.h" |
| |
| #define kMaxQuadSubdivide 5 |
| #define kMaxCubicSubdivide 4 |
| |
| static inline bool degenerate_vector(const SkVector& v) { |
| return !SkPoint::CanNormalize(v.fX, v.fY); |
| } |
| |
| static inline bool normals_too_curvy(const SkVector& norm0, SkVector& norm1) { |
| /* root2/2 is a 45-degree angle |
| make this constant bigger for more subdivisions (but not >= 1) |
| */ |
| static const SkScalar kFlatEnoughNormalDotProd = |
| SK_ScalarSqrt2/2 + SK_Scalar1/10; |
| |
| SkASSERT(kFlatEnoughNormalDotProd > 0 && |
| kFlatEnoughNormalDotProd < SK_Scalar1); |
| |
| return SkPoint::DotProduct(norm0, norm1) <= kFlatEnoughNormalDotProd; |
| } |
| |
| static inline bool normals_too_pinchy(const SkVector& norm0, SkVector& norm1) { |
| static const SkScalar kTooPinchyNormalDotProd = -SK_Scalar1 * 999 / 1000; |
| |
| return SkPoint::DotProduct(norm0, norm1) <= kTooPinchyNormalDotProd; |
| } |
| |
| static bool set_normal_unitnormal(const SkPoint& before, const SkPoint& after, |
| SkScalar radius, |
| SkVector* normal, SkVector* unitNormal) { |
| if (!unitNormal->setNormalize(after.fX - before.fX, after.fY - before.fY)) { |
| return false; |
| } |
| unitNormal->rotateCCW(); |
| unitNormal->scale(radius, normal); |
| return true; |
| } |
| |
| static bool set_normal_unitnormal(const SkVector& vec, |
| SkScalar radius, |
| SkVector* normal, SkVector* unitNormal) { |
| if (!unitNormal->setNormalize(vec.fX, vec.fY)) { |
| return false; |
| } |
| unitNormal->rotateCCW(); |
| unitNormal->scale(radius, normal); |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class SkPathStroker { |
| public: |
| SkPathStroker(SkScalar radius, SkScalar miterLimit, SkPaint::Cap cap, |
| SkPaint::Join join); |
| |
| void moveTo(const SkPoint&); |
| void lineTo(const SkPoint&); |
| void quadTo(const SkPoint&, const SkPoint&); |
| void cubicTo(const SkPoint&, const SkPoint&, const SkPoint&); |
| void close(bool isLine) { this->finishContour(true, isLine); } |
| |
| void done(SkPath* dst, bool isLine) { |
| this->finishContour(false, isLine); |
| fOuter.addPath(fExtra); |
| dst->swap(fOuter); |
| } |
| |
| private: |
| SkScalar fRadius; |
| SkScalar fInvMiterLimit; |
| |
| SkVector fFirstNormal, fPrevNormal, fFirstUnitNormal, fPrevUnitNormal; |
| SkPoint fFirstPt, fPrevPt; // on original path |
| SkPoint fFirstOuterPt; |
| int fSegmentCount; |
| bool fPrevIsLine; |
| |
| SkStrokerPriv::CapProc fCapper; |
| SkStrokerPriv::JoinProc fJoiner; |
| |
| SkPath fInner, fOuter; // outer is our working answer, inner is temp |
| SkPath fExtra; // added as extra complete contours |
| |
| void finishContour(bool close, bool isLine); |
| void preJoinTo(const SkPoint&, SkVector* normal, SkVector* unitNormal, |
| bool isLine); |
| void postJoinTo(const SkPoint&, const SkVector& normal, |
| const SkVector& unitNormal); |
| |
| void line_to(const SkPoint& currPt, const SkVector& normal); |
| void quad_to(const SkPoint pts[3], |
| const SkVector& normalAB, const SkVector& unitNormalAB, |
| SkVector* normalBC, SkVector* unitNormalBC, |
| int subDivide); |
| void cubic_to(const SkPoint pts[4], |
| const SkVector& normalAB, const SkVector& unitNormalAB, |
| SkVector* normalCD, SkVector* unitNormalCD, |
| int subDivide); |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkPathStroker::preJoinTo(const SkPoint& currPt, SkVector* normal, |
| SkVector* unitNormal, bool currIsLine) { |
| SkASSERT(fSegmentCount >= 0); |
| |
| SkScalar prevX = fPrevPt.fX; |
| SkScalar prevY = fPrevPt.fY; |
| |
| SkAssertResult(set_normal_unitnormal(fPrevPt, currPt, fRadius, normal, |
| unitNormal)); |
| |
| if (fSegmentCount == 0) { |
| fFirstNormal = *normal; |
| fFirstUnitNormal = *unitNormal; |
| fFirstOuterPt.set(prevX + normal->fX, prevY + normal->fY); |
| |
| fOuter.moveTo(fFirstOuterPt.fX, fFirstOuterPt.fY); |
| fInner.moveTo(prevX - normal->fX, prevY - normal->fY); |
| } else { // we have a previous segment |
| fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt, *unitNormal, |
| fRadius, fInvMiterLimit, fPrevIsLine, currIsLine); |
| } |
| fPrevIsLine = currIsLine; |
| } |
| |
| void SkPathStroker::postJoinTo(const SkPoint& currPt, const SkVector& normal, |
| const SkVector& unitNormal) { |
| fPrevPt = currPt; |
| fPrevUnitNormal = unitNormal; |
| fPrevNormal = normal; |
| fSegmentCount += 1; |
| } |
| |
| void SkPathStroker::finishContour(bool close, bool currIsLine) { |
| if (fSegmentCount > 0) { |
| SkPoint pt; |
| |
| if (close) { |
| fJoiner(&fOuter, &fInner, fPrevUnitNormal, fPrevPt, |
| fFirstUnitNormal, fRadius, fInvMiterLimit, |
| fPrevIsLine, currIsLine); |
| fOuter.close(); |
| // now add fInner as its own contour |
| fInner.getLastPt(&pt); |
| fOuter.moveTo(pt.fX, pt.fY); |
| fOuter.reversePathTo(fInner); |
| fOuter.close(); |
| } else { // add caps to start and end |
| // cap the end |
| fInner.getLastPt(&pt); |
| fCapper(&fOuter, fPrevPt, fPrevNormal, pt, |
| currIsLine ? &fInner : NULL); |
| fOuter.reversePathTo(fInner); |
| // cap the start |
| fCapper(&fOuter, fFirstPt, -fFirstNormal, fFirstOuterPt, |
| fPrevIsLine ? &fInner : NULL); |
| fOuter.close(); |
| } |
| } |
| fInner.reset(); |
| fSegmentCount = -1; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkPathStroker::SkPathStroker(SkScalar radius, SkScalar miterLimit, |
| SkPaint::Cap cap, SkPaint::Join join) |
| : fRadius(radius) { |
| |
| /* This is only used when join is miter_join, but we initialize it here |
| so that it is always defined, to fis valgrind warnings. |
| */ |
| fInvMiterLimit = 0; |
| |
| if (join == SkPaint::kMiter_Join) { |
| if (miterLimit <= SK_Scalar1) { |
| join = SkPaint::kBevel_Join; |
| } else { |
| fInvMiterLimit = SkScalarInvert(miterLimit); |
| } |
| } |
| fCapper = SkStrokerPriv::CapFactory(cap); |
| fJoiner = SkStrokerPriv::JoinFactory(join); |
| fSegmentCount = -1; |
| fPrevIsLine = false; |
| } |
| |
| void SkPathStroker::moveTo(const SkPoint& pt) { |
| if (fSegmentCount > 0) { |
| this->finishContour(false, false); |
| } |
| fSegmentCount = 0; |
| fFirstPt = fPrevPt = pt; |
| } |
| |
| void SkPathStroker::line_to(const SkPoint& currPt, const SkVector& normal) { |
| fOuter.lineTo(currPt.fX + normal.fX, currPt.fY + normal.fY); |
| fInner.lineTo(currPt.fX - normal.fX, currPt.fY - normal.fY); |
| } |
| |
| void SkPathStroker::lineTo(const SkPoint& currPt) { |
| if (SkPath::IsLineDegenerate(fPrevPt, currPt)) { |
| return; |
| } |
| SkVector normal, unitNormal; |
| |
| this->preJoinTo(currPt, &normal, &unitNormal, true); |
| this->line_to(currPt, normal); |
| this->postJoinTo(currPt, normal, unitNormal); |
| } |
| |
| void SkPathStroker::quad_to(const SkPoint pts[3], |
| const SkVector& normalAB, const SkVector& unitNormalAB, |
| SkVector* normalBC, SkVector* unitNormalBC, |
| int subDivide) { |
| if (!set_normal_unitnormal(pts[1], pts[2], fRadius, |
| normalBC, unitNormalBC)) { |
| // pts[1] nearly equals pts[2], so just draw a line to pts[2] |
| this->line_to(pts[2], normalAB); |
| *normalBC = normalAB; |
| *unitNormalBC = unitNormalAB; |
| return; |
| } |
| |
| if (--subDivide >= 0 && normals_too_curvy(unitNormalAB, *unitNormalBC)) { |
| SkPoint tmp[5]; |
| SkVector norm, unit; |
| |
| SkChopQuadAtHalf(pts, tmp); |
| this->quad_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit, subDivide); |
| this->quad_to(&tmp[2], norm, unit, normalBC, unitNormalBC, subDivide); |
| } else { |
| SkVector normalB, unitB; |
| SkAssertResult(set_normal_unitnormal(pts[0], pts[2], fRadius, |
| &normalB, &unitB)); |
| |
| fOuter.quadTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY, |
| pts[2].fX + normalBC->fX, pts[2].fY + normalBC->fY); |
| fInner.quadTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY, |
| pts[2].fX - normalBC->fX, pts[2].fY - normalBC->fY); |
| } |
| } |
| |
| void SkPathStroker::cubic_to(const SkPoint pts[4], |
| const SkVector& normalAB, const SkVector& unitNormalAB, |
| SkVector* normalCD, SkVector* unitNormalCD, |
| int subDivide) { |
| SkVector ab = pts[1] - pts[0]; |
| SkVector cd = pts[3] - pts[2]; |
| SkVector normalBC, unitNormalBC; |
| |
| bool degenerateAB = degenerate_vector(ab); |
| bool degenerateCD = degenerate_vector(cd); |
| |
| if (degenerateAB && degenerateCD) { |
| DRAW_LINE: |
| this->line_to(pts[3], normalAB); |
| *normalCD = normalAB; |
| *unitNormalCD = unitNormalAB; |
| return; |
| } |
| |
| if (degenerateAB) { |
| ab = pts[2] - pts[0]; |
| degenerateAB = degenerate_vector(ab); |
| } |
| if (degenerateCD) { |
| cd = pts[3] - pts[1]; |
| degenerateCD = degenerate_vector(cd); |
| } |
| if (degenerateAB || degenerateCD) { |
| goto DRAW_LINE; |
| } |
| SkAssertResult(set_normal_unitnormal(cd, fRadius, normalCD, unitNormalCD)); |
| bool degenerateBC = !set_normal_unitnormal(pts[1], pts[2], fRadius, |
| &normalBC, &unitNormalBC); |
| |
| if (degenerateBC || normals_too_curvy(unitNormalAB, unitNormalBC) || |
| normals_too_curvy(unitNormalBC, *unitNormalCD)) { |
| // subdivide if we can |
| if (--subDivide < 0) { |
| goto DRAW_LINE; |
| } |
| SkPoint tmp[7]; |
| SkVector norm, unit, dummy, unitDummy; |
| |
| SkChopCubicAtHalf(pts, tmp); |
| this->cubic_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit, |
| subDivide); |
| // we use dummys since we already have a valid (and more accurate) |
| // normals for CD |
| this->cubic_to(&tmp[3], norm, unit, &dummy, &unitDummy, subDivide); |
| } else { |
| SkVector normalB, normalC; |
| |
| // need normals to inset/outset the off-curve pts B and C |
| |
| if (0) { // this is normal to the line between our adjacent pts |
| normalB = pts[2] - pts[0]; |
| normalB.rotateCCW(); |
| SkAssertResult(normalB.setLength(fRadius)); |
| |
| normalC = pts[3] - pts[1]; |
| normalC.rotateCCW(); |
| SkAssertResult(normalC.setLength(fRadius)); |
| } else { // miter-join |
| SkVector unitBC = pts[2] - pts[1]; |
| unitBC.normalize(); |
| unitBC.rotateCCW(); |
| |
| normalB = unitNormalAB + unitBC; |
| normalC = *unitNormalCD + unitBC; |
| |
| SkScalar dot = SkPoint::DotProduct(unitNormalAB, unitBC); |
| SkAssertResult(normalB.setLength(SkScalarDiv(fRadius, |
| SkScalarSqrt((SK_Scalar1 + dot)/2)))); |
| dot = SkPoint::DotProduct(*unitNormalCD, unitBC); |
| SkAssertResult(normalC.setLength(SkScalarDiv(fRadius, |
| SkScalarSqrt((SK_Scalar1 + dot)/2)))); |
| } |
| |
| fOuter.cubicTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY, |
| pts[2].fX + normalC.fX, pts[2].fY + normalC.fY, |
| pts[3].fX + normalCD->fX, pts[3].fY + normalCD->fY); |
| |
| fInner.cubicTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY, |
| pts[2].fX - normalC.fX, pts[2].fY - normalC.fY, |
| pts[3].fX - normalCD->fX, pts[3].fY - normalCD->fY); |
| } |
| } |
| |
| void SkPathStroker::quadTo(const SkPoint& pt1, const SkPoint& pt2) { |
| bool degenerateAB = SkPath::IsLineDegenerate(fPrevPt, pt1); |
| bool degenerateBC = SkPath::IsLineDegenerate(pt1, pt2); |
| |
| if (degenerateAB | degenerateBC) { |
| if (degenerateAB ^ degenerateBC) { |
| this->lineTo(pt2); |
| } |
| return; |
| } |
| |
| SkVector normalAB, unitAB, normalBC, unitBC; |
| |
| this->preJoinTo(pt1, &normalAB, &unitAB, false); |
| |
| { |
| SkPoint pts[3], tmp[5]; |
| pts[0] = fPrevPt; |
| pts[1] = pt1; |
| pts[2] = pt2; |
| |
| if (SkChopQuadAtMaxCurvature(pts, tmp) == 2) { |
| unitBC.setNormalize(pts[2].fX - pts[1].fX, pts[2].fY - pts[1].fY); |
| unitBC.rotateCCW(); |
| if (normals_too_pinchy(unitAB, unitBC)) { |
| normalBC = unitBC; |
| normalBC.scale(fRadius); |
| |
| fOuter.lineTo(tmp[2].fX + normalAB.fX, tmp[2].fY + normalAB.fY); |
| fOuter.lineTo(tmp[2].fX + normalBC.fX, tmp[2].fY + normalBC.fY); |
| fOuter.lineTo(tmp[4].fX + normalBC.fX, tmp[4].fY + normalBC.fY); |
| |
| fInner.lineTo(tmp[2].fX - normalAB.fX, tmp[2].fY - normalAB.fY); |
| fInner.lineTo(tmp[2].fX - normalBC.fX, tmp[2].fY - normalBC.fY); |
| fInner.lineTo(tmp[4].fX - normalBC.fX, tmp[4].fY - normalBC.fY); |
| |
| fExtra.addCircle(tmp[2].fX, tmp[2].fY, fRadius, |
| SkPath::kCW_Direction); |
| } else { |
| this->quad_to(&tmp[0], normalAB, unitAB, &normalBC, &unitBC, |
| kMaxQuadSubdivide); |
| SkVector n = normalBC; |
| SkVector u = unitBC; |
| this->quad_to(&tmp[2], n, u, &normalBC, &unitBC, |
| kMaxQuadSubdivide); |
| } |
| } else { |
| this->quad_to(pts, normalAB, unitAB, &normalBC, &unitBC, |
| kMaxQuadSubdivide); |
| } |
| } |
| |
| this->postJoinTo(pt2, normalBC, unitBC); |
| } |
| |
| void SkPathStroker::cubicTo(const SkPoint& pt1, const SkPoint& pt2, |
| const SkPoint& pt3) { |
| bool degenerateAB = SkPath::IsLineDegenerate(fPrevPt, pt1); |
| bool degenerateBC = SkPath::IsLineDegenerate(pt1, pt2); |
| bool degenerateCD = SkPath::IsLineDegenerate(pt2, pt3); |
| |
| if (degenerateAB + degenerateBC + degenerateCD >= 2) { |
| this->lineTo(pt3); |
| return; |
| } |
| |
| SkVector normalAB, unitAB, normalCD, unitCD; |
| |
| // find the first tangent (which might be pt1 or pt2 |
| { |
| const SkPoint* nextPt = &pt1; |
| if (degenerateAB) |
| nextPt = &pt2; |
| this->preJoinTo(*nextPt, &normalAB, &unitAB, false); |
| } |
| |
| { |
| SkPoint pts[4], tmp[13]; |
| int i, count; |
| SkVector n, u; |
| SkScalar tValues[3]; |
| |
| pts[0] = fPrevPt; |
| pts[1] = pt1; |
| pts[2] = pt2; |
| pts[3] = pt3; |
| |
| #if 1 |
| count = SkChopCubicAtMaxCurvature(pts, tmp, tValues); |
| #else |
| count = 1; |
| memcpy(tmp, pts, 4 * sizeof(SkPoint)); |
| #endif |
| n = normalAB; |
| u = unitAB; |
| for (i = 0; i < count; i++) { |
| this->cubic_to(&tmp[i * 3], n, u, &normalCD, &unitCD, |
| kMaxCubicSubdivide); |
| if (i == count - 1) { |
| break; |
| } |
| n = normalCD; |
| u = unitCD; |
| |
| } |
| |
| // check for too pinchy |
| for (i = 1; i < count; i++) { |
| SkPoint p; |
| SkVector v, c; |
| |
| SkEvalCubicAt(pts, tValues[i - 1], &p, &v, &c); |
| |
| SkScalar dot = SkPoint::DotProduct(c, c); |
| v.scale(SkScalarInvert(dot)); |
| |
| if (SkScalarNearlyZero(v.fX) && SkScalarNearlyZero(v.fY)) { |
| fExtra.addCircle(p.fX, p.fY, fRadius, SkPath::kCW_Direction); |
| } |
| } |
| |
| } |
| |
| this->postJoinTo(pt3, normalCD, unitCD); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "SkPaintDefaults.h" |
| |
| SkStroke::SkStroke() { |
| fWidth = SK_Scalar1; |
| fMiterLimit = SkPaintDefaults_MiterLimit; |
| fCap = SkPaint::kDefault_Cap; |
| fJoin = SkPaint::kDefault_Join; |
| fDoFill = false; |
| } |
| |
| SkStroke::SkStroke(const SkPaint& p) { |
| fWidth = p.getStrokeWidth(); |
| fMiterLimit = p.getStrokeMiter(); |
| fCap = (uint8_t)p.getStrokeCap(); |
| fJoin = (uint8_t)p.getStrokeJoin(); |
| fDoFill = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style); |
| } |
| |
| SkStroke::SkStroke(const SkPaint& p, SkScalar width) { |
| fWidth = width; |
| fMiterLimit = p.getStrokeMiter(); |
| fCap = (uint8_t)p.getStrokeCap(); |
| fJoin = (uint8_t)p.getStrokeJoin(); |
| fDoFill = SkToU8(p.getStyle() == SkPaint::kStrokeAndFill_Style); |
| } |
| |
| void SkStroke::setWidth(SkScalar width) { |
| SkASSERT(width >= 0); |
| fWidth = width; |
| } |
| |
| void SkStroke::setMiterLimit(SkScalar miterLimit) { |
| SkASSERT(miterLimit >= 0); |
| fMiterLimit = miterLimit; |
| } |
| |
| void SkStroke::setCap(SkPaint::Cap cap) { |
| SkASSERT((unsigned)cap < SkPaint::kCapCount); |
| fCap = SkToU8(cap); |
| } |
| |
| void SkStroke::setJoin(SkPaint::Join join) { |
| SkASSERT((unsigned)join < SkPaint::kJoinCount); |
| fJoin = SkToU8(join); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef SK_SCALAR_IS_FIXED |
| /* return non-zero if the path is too big, and should be shrunk to avoid |
| overflows during intermediate calculations. Note that we compute the |
| bounds for this. If we had a custom callback/walker for paths, we could |
| perhaps go faster by using that, and just perform the abs | in that |
| routine |
| */ |
| static int needs_to_shrink(const SkPath& path) { |
| const SkRect& r = path.getBounds(); |
| SkFixed mask = SkAbs32(r.fLeft); |
| mask |= SkAbs32(r.fTop); |
| mask |= SkAbs32(r.fRight); |
| mask |= SkAbs32(r.fBottom); |
| // we need the top 3 bits clear (after abs) to avoid overflow |
| return mask >> 29; |
| } |
| |
| static void identity_proc(SkPoint pts[], int count) {} |
| static void shift_down_2_proc(SkPoint pts[], int count) { |
| for (int i = 0; i < count; i++) { |
| pts->fX >>= 2; |
| pts->fY >>= 2; |
| pts += 1; |
| } |
| } |
| #define APPLY_PROC(proc, pts, count) proc(pts, count) |
| #else // float does need any of this |
| #define APPLY_PROC(proc, pts, count) |
| #endif |
| |
| void SkStroke::strokePath(const SkPath& src, SkPath* dst) const { |
| SkASSERT(&src != NULL && dst != NULL); |
| |
| SkScalar radius = SkScalarHalf(fWidth); |
| |
| dst->reset(); |
| if (radius <= 0) { |
| return; |
| } |
| |
| #ifdef SK_SCALAR_IS_FIXED |
| void (*proc)(SkPoint pts[], int count) = identity_proc; |
| if (needs_to_shrink(src)) { |
| proc = shift_down_2_proc; |
| radius >>= 2; |
| if (radius == 0) { |
| return; |
| } |
| } |
| #endif |
| |
| SkPathStroker stroker(radius, fMiterLimit, this->getCap(), |
| this->getJoin()); |
| |
| SkPath::Iter iter(src, false); |
| SkPoint pts[4]; |
| SkPath::Verb verb, lastSegment = SkPath::kMove_Verb; |
| |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| APPLY_PROC(proc, &pts[0], 1); |
| stroker.moveTo(pts[0]); |
| break; |
| case SkPath::kLine_Verb: |
| APPLY_PROC(proc, &pts[1], 1); |
| stroker.lineTo(pts[1]); |
| lastSegment = verb; |
| break; |
| case SkPath::kQuad_Verb: |
| APPLY_PROC(proc, &pts[1], 2); |
| stroker.quadTo(pts[1], pts[2]); |
| lastSegment = verb; |
| break; |
| case SkPath::kCubic_Verb: |
| APPLY_PROC(proc, &pts[1], 3); |
| stroker.cubicTo(pts[1], pts[2], pts[3]); |
| lastSegment = verb; |
| break; |
| case SkPath::kClose_Verb: |
| stroker.close(lastSegment == SkPath::kLine_Verb); |
| break; |
| default: |
| break; |
| } |
| } |
| stroker.done(dst, lastSegment == SkPath::kLine_Verb); |
| |
| #ifdef SK_SCALAR_IS_FIXED |
| // undo our previous down_shift |
| if (shift_down_2_proc == proc) { |
| // need a real shift methid on path. antialias paths could use this too |
| SkMatrix matrix; |
| matrix.setScale(SkIntToScalar(4), SkIntToScalar(4)); |
| dst->transform(matrix); |
| } |
| #endif |
| |
| if (fDoFill) { |
| if (src.cheapIsDirection(SkPath::kCCW_Direction)) { |
| dst->reverseAddPath(src); |
| } else { |
| dst->addPath(src); |
| } |
| } else { |
| // Seems like we can assume that a 2-point src would always result in |
| // a convex stroke, but testing has proved otherwise. |
| // TODO: fix the stroker to make this assumption true (without making |
| // it slower that the work that will be done in computeConvexity()) |
| #if 0 |
| // this test results in a non-convex stroke :( |
| static void test(SkCanvas* canvas) { |
| SkPoint pts[] = { 146.333328, 192.333328, 300.333344, 293.333344 }; |
| SkPaint paint; |
| paint.setStrokeWidth(7); |
| paint.setStrokeCap(SkPaint::kRound_Cap); |
| canvas->drawLine(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, paint); |
| } |
| #endif |
| #if 0 |
| if (2 == src.countPoints()) { |
| dst->setIsConvex(true); |
| } |
| #endif |
| } |
| |
| // our answer should preserve the inverseness of the src |
| if (src.isInverseFillType()) { |
| SkASSERT(!dst->isInverseFillType()); |
| dst->toggleInverseFillType(); |
| } |
| } |
| |
| void SkStroke::strokeLine(const SkPoint& p0, const SkPoint& p1, |
| SkPath* dst) const { |
| SkPath tmp; |
| |
| tmp.moveTo(p0); |
| tmp.lineTo(p1); |
| this->strokePath(tmp, dst); |
| } |
| |