| #include "SkBoundaryPatch.h" |
| |
| SkBoundaryPatch::SkBoundaryPatch() : fBoundary(NULL) {} |
| |
| SkBoundaryPatch::~SkBoundaryPatch() { |
| SkSafeUnref(fBoundary); |
| } |
| |
| SkBoundary* SkBoundaryPatch::setBoundary(SkBoundary* b) { |
| SkRefCnt_SafeAssign(fBoundary, b); |
| return b; |
| } |
| |
| static SkPoint SkMakePoint(SkScalar x, SkScalar y) { |
| SkPoint pt; |
| pt.set(x, y); |
| return pt; |
| } |
| |
| static SkPoint SkPointInterp(const SkPoint& a, const SkPoint& b, SkScalar t) { |
| return SkMakePoint(SkScalarInterp(a.fX, b.fX, t), |
| SkScalarInterp(a.fY, b.fY, t)); |
| } |
| |
| SkPoint SkBoundaryPatch::eval(SkScalar unitU, SkScalar unitV) { |
| SkBoundary* b = fBoundary; |
| SkPoint u = SkPointInterp(b->eval(SkBoundary::kLeft, SK_Scalar1 - unitV), |
| b->eval(SkBoundary::kRight, unitV), |
| unitU); |
| SkPoint v = SkPointInterp(b->eval(SkBoundary::kTop, unitU), |
| b->eval(SkBoundary::kBottom, SK_Scalar1 - unitU), |
| unitV); |
| return SkMakePoint(SkScalarAve(u.fX, v.fX), |
| SkScalarAve(u.fY, v.fY)); |
| } |
| |
| bool SkBoundaryPatch::evalPatch(SkPoint verts[], int rows, int cols) { |
| if (rows < 2 || cols < 2) { |
| return false; |
| } |
| |
| const SkScalar invR = SkScalarInvert(SkIntToScalar(rows - 1)); |
| const SkScalar invC = SkScalarInvert(SkIntToScalar(cols - 1)); |
| |
| for (int y = 0; y < cols; y++) { |
| SkScalar yy = y * invC; |
| for (int x = 0; x < rows; x++) { |
| *verts++ = this->eval(x * invR, yy); |
| } |
| } |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////// |
| |
| #include "SkGeometry.h" |
| |
| SkPoint SkLineBoundary::eval(Edge e, SkScalar t) { |
| SkASSERT((unsigned)e < 4); |
| return SkPointInterp(fPts[e], fPts[(e + 1) & 3], t); |
| } |
| |
| SkPoint SkCubicBoundary::eval(Edge e, SkScalar t) { |
| SkASSERT((unsigned)e < 4); |
| |
| // ensure our 4th cubic wraps to the start of the first |
| fPts[12] = fPts[0]; |
| |
| SkPoint loc; |
| SkEvalCubicAt(&fPts[e * 3], t, &loc, NULL, NULL); |
| return loc; |
| } |
| |