| |
| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #ifndef SkMath_DEFINED |
| #define SkMath_DEFINED |
| |
| #include "SkTypes.h" |
| |
| //! Returns the number of leading zero bits (0...32) |
| int SkCLZ_portable(uint32_t); |
| |
| /** Computes the 64bit product of a * b, and then shifts the answer down by |
| shift bits, returning the low 32bits. shift must be [0..63] |
| e.g. to perform a fixedmul, call SkMulShift(a, b, 16) |
| */ |
| int32_t SkMulShift(int32_t a, int32_t b, unsigned shift); |
| |
| /** Computes numer1 * numer2 / denom in full 64 intermediate precision. |
| It is an error for denom to be 0. There is no special handling if |
| the result overflows 32bits. |
| */ |
| int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom); |
| |
| /** Computes (numer1 << shift) / denom in full 64 intermediate precision. |
| It is an error for denom to be 0. There is no special handling if |
| the result overflows 32bits. |
| */ |
| int32_t SkDivBits(int32_t numer, int32_t denom, int shift); |
| |
| /** Return the integer square root of value, with a bias of bitBias |
| */ |
| int32_t SkSqrtBits(int32_t value, int bitBias); |
| |
| /** Return the integer square root of n, treated as a SkFixed (16.16) |
| */ |
| #define SkSqrt32(n) SkSqrtBits(n, 15) |
| |
| /** Return the integer cube root of value, with a bias of bitBias |
| */ |
| int32_t SkCubeRootBits(int32_t value, int bitBias); |
| |
| /** Returns -1 if n < 0, else returns 0 |
| */ |
| #define SkExtractSign(n) ((int32_t)(n) >> 31) |
| |
| /** If sign == -1, returns -n, else sign must be 0, and returns n. |
| Typically used in conjunction with SkExtractSign(). |
| */ |
| static inline int32_t SkApplySign(int32_t n, int32_t sign) { |
| SkASSERT(sign == 0 || sign == -1); |
| return (n ^ sign) - sign; |
| } |
| |
| /** Return x with the sign of y */ |
| static inline int32_t SkCopySign32(int32_t x, int32_t y) { |
| return SkApplySign(x, SkExtractSign(x ^ y)); |
| } |
| |
| /** Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches) |
| */ |
| static inline int SkClampPos(int value) { |
| return value & ~(value >> 31); |
| } |
| |
| /** Given an integer and a positive (max) integer, return the value |
| pinned against 0 and max, inclusive. |
| @param value The value we want returned pinned between [0...max] |
| @param max The positive max value |
| @return 0 if value < 0, max if value > max, else value |
| */ |
| static inline int SkClampMax(int value, int max) { |
| // ensure that max is positive |
| SkASSERT(max >= 0); |
| if (value < 0) { |
| value = 0; |
| } |
| if (value > max) { |
| value = max; |
| } |
| return value; |
| } |
| |
| /** Given a positive value and a positive max, return the value |
| pinned against max. |
| Note: only works as long as max - value doesn't wrap around |
| @return max if value >= max, else value |
| */ |
| static inline unsigned SkClampUMax(unsigned value, unsigned max) { |
| #ifdef SK_CPU_HAS_CONDITIONAL_INSTR |
| if (value > max) { |
| value = max; |
| } |
| return value; |
| #else |
| int diff = max - value; |
| // clear diff if diff is positive |
| diff &= diff >> 31; |
| |
| return value + diff; |
| #endif |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #if defined(__arm__) |
| #define SkCLZ(x) __builtin_clz(x) |
| #endif |
| |
| #ifndef SkCLZ |
| #define SkCLZ(x) SkCLZ_portable(x) |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** Returns the smallest power-of-2 that is >= the specified value. If value |
| is already a power of 2, then it is returned unchanged. It is undefined |
| if value is <= 0. |
| */ |
| static inline int SkNextPow2(int value) { |
| SkASSERT(value > 0); |
| return 1 << (32 - SkCLZ(value - 1)); |
| } |
| |
| /** Returns the log2 of the specified value, were that value to be rounded up |
| to the next power of 2. It is undefined to pass 0. Examples: |
| SkNextLog2(1) -> 0 |
| SkNextLog2(2) -> 1 |
| SkNextLog2(3) -> 2 |
| SkNextLog2(4) -> 2 |
| SkNextLog2(5) -> 3 |
| */ |
| static inline int SkNextLog2(uint32_t value) { |
| SkASSERT(value != 0); |
| return 32 - SkCLZ(value - 1); |
| } |
| |
| /** Returns true if value is a power of 2. Does not explicitly check for |
| value <= 0. |
| */ |
| static inline bool SkIsPow2(int value) { |
| return (value & (value - 1)) == 0; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** SkMulS16(a, b) multiplies a * b, but requires that a and b are both int16_t. |
| With this requirement, we can generate faster instructions on some |
| architectures. |
| */ |
| #if defined(__arm__) \ |
| && !defined(__thumb__) \ |
| && !defined(__ARM_ARCH_4T__) \ |
| && !defined(__ARM_ARCH_5T__) |
| static inline int32_t SkMulS16(S16CPU x, S16CPU y) { |
| SkASSERT((int16_t)x == x); |
| SkASSERT((int16_t)y == y); |
| int32_t product; |
| asm("smulbb %0, %1, %2 \n" |
| : "=r"(product) |
| : "r"(x), "r"(y) |
| ); |
| return product; |
| } |
| #else |
| #ifdef SK_DEBUG |
| static inline int32_t SkMulS16(S16CPU x, S16CPU y) { |
| SkASSERT((int16_t)x == x); |
| SkASSERT((int16_t)y == y); |
| return x * y; |
| } |
| #else |
| #define SkMulS16(x, y) ((x) * (y)) |
| #endif |
| #endif |
| |
| /** Return a*b/255, truncating away any fractional bits. Only valid if both |
| a and b are 0..255 |
| */ |
| static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) { |
| SkASSERT((uint8_t)a == a); |
| SkASSERT((uint8_t)b == b); |
| unsigned prod = SkMulS16(a, b) + 1; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| /** Return a*b/255, rounding any fractional bits. Only valid if both |
| a and b are 0..255 |
| */ |
| static inline U8CPU SkMulDiv255Round(U8CPU a, U8CPU b) { |
| SkASSERT((uint8_t)a == a); |
| SkASSERT((uint8_t)b == b); |
| unsigned prod = SkMulS16(a, b) + 128; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| /** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if |
| both a and b are 0..255. The expected result equals (a * b + 254) / 255. |
| */ |
| static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) { |
| SkASSERT((uint8_t)a == a); |
| SkASSERT((uint8_t)b == b); |
| unsigned prod = SkMulS16(a, b) + 255; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| /** Return a*b/((1 << shift) - 1), rounding any fractional bits. |
| Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8 |
| */ |
| static inline unsigned SkMul16ShiftRound(unsigned a, unsigned b, int shift) { |
| SkASSERT(a <= 32767); |
| SkASSERT(b <= 32767); |
| SkASSERT(shift > 0 && shift <= 8); |
| unsigned prod = SkMulS16(a, b) + (1 << (shift - 1)); |
| return (prod + (prod >> shift)) >> shift; |
| } |
| |
| /** Just the rounding step in SkDiv255Round: round(value / 255) |
| */ |
| static inline unsigned SkDiv255Round(unsigned prod) { |
| prod += 128; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| #endif |
| |