| |
| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkPath.h" |
| #include "SkReader32.h" |
| #include "SkWriter32.h" |
| #include "SkMath.h" |
| |
| //////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Path.bounds is defined to be the bounds of all the control points. |
| * If we called bounds.join(r) we would skip r if r was empty, which breaks |
| * our promise. Hence we have a custom joiner that doesn't look at emptiness |
| */ |
| static void joinNoEmptyChecks(SkRect* dst, const SkRect& src) { |
| dst->fLeft = SkMinScalar(dst->fLeft, src.fLeft); |
| dst->fTop = SkMinScalar(dst->fTop, src.fTop); |
| dst->fRight = SkMaxScalar(dst->fRight, src.fRight); |
| dst->fBottom = SkMaxScalar(dst->fBottom, src.fBottom); |
| } |
| |
| static bool is_degenerate(const SkPath& path) { |
| SkPath::Iter iter(path, false); |
| SkPoint pts[4]; |
| return SkPath::kDone_Verb == iter.next(pts); |
| } |
| |
| /* This guy's constructor/destructor bracket a path editing operation. It is |
| used when we know the bounds of the amount we are going to add to the path |
| (usually a new contour, but not required). |
| |
| It captures some state about the path up front (i.e. if it already has a |
| cached bounds), and the if it can, it updates the cache bounds explicitly, |
| avoiding the need to revisit all of the points in getBounds(). |
| |
| It also notes if the path was originally degenerate, and if so, sets |
| isConvex to true. Thus it can only be used if the contour being added is |
| convex. |
| */ |
| class SkAutoPathBoundsUpdate { |
| public: |
| SkAutoPathBoundsUpdate(SkPath* path, const SkRect& r) : fRect(r) { |
| this->init(path); |
| } |
| |
| SkAutoPathBoundsUpdate(SkPath* path, SkScalar left, SkScalar top, |
| SkScalar right, SkScalar bottom) { |
| fRect.set(left, top, right, bottom); |
| this->init(path); |
| } |
| |
| ~SkAutoPathBoundsUpdate() { |
| fPath->setIsConvex(fDegenerate); |
| if (fEmpty) { |
| fPath->fBounds = fRect; |
| fPath->fBoundsIsDirty = false; |
| } else if (!fDirty) { |
| joinNoEmptyChecks(&fPath->fBounds, fRect); |
| fPath->fBoundsIsDirty = false; |
| } |
| } |
| |
| private: |
| SkPath* fPath; |
| SkRect fRect; |
| bool fDirty; |
| bool fDegenerate; |
| bool fEmpty; |
| |
| // returns true if we should proceed |
| void init(SkPath* path) { |
| fPath = path; |
| fDirty = SkToBool(path->fBoundsIsDirty); |
| fDegenerate = is_degenerate(*path); |
| fEmpty = path->isEmpty(); |
| // Cannot use fRect for our bounds unless we know it is sorted |
| fRect.sort(); |
| } |
| }; |
| |
| static void compute_pt_bounds(SkRect* bounds, const SkTDArray<SkPoint>& pts) { |
| if (pts.count() <= 1) { // we ignore just 1 point (moveto) |
| bounds->set(0, 0, 0, 0); |
| } else { |
| bounds->set(pts.begin(), pts.count()); |
| // SkDebugf("------- compute bounds %p %d", &pts, pts.count()); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////// |
| |
| /* |
| Stores the verbs and points as they are given to us, with exceptions: |
| - we only record "Close" if it was immediately preceeded by Move | Line | Quad | Cubic |
| - we insert a Move(0,0) if Line | Quad | Cubic is our first command |
| |
| The iterator does more cleanup, especially if forceClose == true |
| 1. If we encounter degenerate segments, remove them |
| 2. if we encounter Close, return a cons'd up Line() first (if the curr-pt != start-pt) |
| 3. if we encounter Move without a preceeding Close, and forceClose is true, goto #2 |
| 4. if we encounter Line | Quad | Cubic after Close, cons up a Move |
| */ |
| |
| //////////////////////////////////////////////////////////////////////////// |
| |
| // flag to require a moveTo if we begin with something else, like lineTo etc. |
| #define INITIAL_LASTMOVETOINDEX_VALUE ~0 |
| |
| SkPath::SkPath() |
| : fFillType(kWinding_FillType) |
| , fBoundsIsDirty(true) { |
| fConvexity = kUnknown_Convexity; |
| fSegmentMask = 0; |
| fLastMoveToIndex = INITIAL_LASTMOVETOINDEX_VALUE; |
| #ifdef SK_BUILD_FOR_ANDROID |
| fGenerationID = 0; |
| fSourcePath = NULL; |
| #endif |
| } |
| |
| SkPath::SkPath(const SkPath& src) { |
| SkDEBUGCODE(src.validate();) |
| *this = src; |
| #ifdef SK_BUILD_FOR_ANDROID |
| // the assignment operator above increments the ID so correct for that here |
| fGenerationID = src.fGenerationID; |
| fSourcePath = NULL; |
| #endif |
| } |
| |
| SkPath::~SkPath() { |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| SkPath& SkPath::operator=(const SkPath& src) { |
| SkDEBUGCODE(src.validate();) |
| |
| if (this != &src) { |
| fBounds = src.fBounds; |
| fPts = src.fPts; |
| fVerbs = src.fVerbs; |
| fFillType = src.fFillType; |
| fBoundsIsDirty = src.fBoundsIsDirty; |
| fConvexity = src.fConvexity; |
| fSegmentMask = src.fSegmentMask; |
| fLastMoveToIndex = src.fLastMoveToIndex; |
| GEN_ID_INC; |
| } |
| SkDEBUGCODE(this->validate();) |
| return *this; |
| } |
| |
| bool operator==(const SkPath& a, const SkPath& b) { |
| // note: don't need to look at isConvex or bounds, since just comparing the |
| // raw data is sufficient. |
| |
| // We explicitly check fSegmentMask as a quick-reject. We could skip it, |
| // since it is only a cache of info in the fVerbs, but its a fast way to |
| // notice a difference |
| |
| return &a == &b || |
| (a.fFillType == b.fFillType && a.fSegmentMask == b.fSegmentMask && |
| a.fVerbs == b.fVerbs && a.fPts == b.fPts); |
| } |
| |
| void SkPath::swap(SkPath& other) { |
| SkASSERT(&other != NULL); |
| |
| if (this != &other) { |
| SkTSwap<SkRect>(fBounds, other.fBounds); |
| fPts.swap(other.fPts); |
| fVerbs.swap(other.fVerbs); |
| SkTSwap<uint8_t>(fFillType, other.fFillType); |
| SkTSwap<uint8_t>(fBoundsIsDirty, other.fBoundsIsDirty); |
| SkTSwap<uint8_t>(fConvexity, other.fConvexity); |
| SkTSwap<uint8_t>(fSegmentMask, other.fSegmentMask); |
| SkTSwap<int>(fLastMoveToIndex, other.fLastMoveToIndex); |
| GEN_ID_INC; |
| } |
| } |
| |
| #ifdef SK_BUILD_FOR_ANDROID |
| uint32_t SkPath::getGenerationID() const { |
| return fGenerationID; |
| } |
| |
| const SkPath* SkPath::getSourcePath() const { |
| return fSourcePath; |
| } |
| |
| void SkPath::setSourcePath(const SkPath* path) { |
| fSourcePath = path; |
| } |
| #endif |
| |
| void SkPath::reset() { |
| SkDEBUGCODE(this->validate();) |
| |
| fPts.reset(); |
| fVerbs.reset(); |
| GEN_ID_INC; |
| fBoundsIsDirty = true; |
| fConvexity = kUnknown_Convexity; |
| fSegmentMask = 0; |
| fLastMoveToIndex = INITIAL_LASTMOVETOINDEX_VALUE; |
| } |
| |
| void SkPath::rewind() { |
| SkDEBUGCODE(this->validate();) |
| |
| fPts.rewind(); |
| fVerbs.rewind(); |
| GEN_ID_INC; |
| fConvexity = kUnknown_Convexity; |
| fBoundsIsDirty = true; |
| fSegmentMask = 0; |
| fLastMoveToIndex = INITIAL_LASTMOVETOINDEX_VALUE; |
| } |
| |
| bool SkPath::isEmpty() const { |
| SkDEBUGCODE(this->validate();) |
| return 0 == fVerbs.count(); |
| } |
| |
| /* |
| Determines if path is a rect by keeping track of changes in direction |
| and looking for a loop either clockwise or counterclockwise. |
| |
| The direction is computed such that: |
| 0: vertical up |
| 1: horizontal right |
| 2: vertical down |
| 3: horizontal left |
| |
| A rectangle cycles up/right/down/left or up/left/down/right. |
| |
| The test fails if: |
| The path is closed, and followed by a line. |
| A second move creates a new endpoint. |
| A diagonal line is parsed. |
| There's more than four changes of direction. |
| There's a discontinuity on the line (e.g., a move in the middle) |
| The line reverses direction. |
| The rectangle doesn't complete a cycle. |
| The path contains a quadratic or cubic. |
| The path contains fewer than four points. |
| The final point isn't equal to the first point. |
| |
| It's OK if the path has: |
| Several colinear line segments composing a rectangle side. |
| Single points on the rectangle side. |
| |
| The direction takes advantage of the corners found since opposite sides |
| must travel in opposite directions. |
| |
| FIXME: Allow colinear quads and cubics to be treated like lines. |
| FIXME: If the API passes fill-only, return true if the filled stroke |
| is a rectangle, though the caller failed to close the path. |
| */ |
| bool SkPath::isRect(SkRect* rect) const { |
| SkDEBUGCODE(this->validate();) |
| |
| int corners = 0; |
| SkPoint first, last; |
| first.set(0, 0); |
| last.set(0, 0); |
| int firstDirection = 0; |
| int lastDirection = 0; |
| int nextDirection = 0; |
| bool closedOrMoved = false; |
| bool autoClose = false; |
| const uint8_t* verbs = fVerbs.begin(); |
| const uint8_t* verbStop = fVerbs.end(); |
| const SkPoint* pts = fPts.begin(); |
| while (verbs != verbStop) { |
| switch (*verbs++) { |
| case kClose_Verb: |
| pts = fPts.begin(); |
| autoClose = true; |
| case kLine_Verb: { |
| SkScalar left = last.fX; |
| SkScalar top = last.fY; |
| SkScalar right = pts->fX; |
| SkScalar bottom = pts->fY; |
| ++pts; |
| if (left != right && top != bottom) { |
| return false; // diagonal |
| } |
| if (left == right && top == bottom) { |
| break; // single point on side OK |
| } |
| nextDirection = (left != right) << 0 | |
| (left < right || top < bottom) << 1; |
| if (0 == corners) { |
| firstDirection = nextDirection; |
| first = last; |
| last = pts[-1]; |
| corners = 1; |
| closedOrMoved = false; |
| break; |
| } |
| if (closedOrMoved) { |
| return false; // closed followed by a line |
| } |
| closedOrMoved = autoClose; |
| if (lastDirection != nextDirection) { |
| if (++corners > 4) { |
| return false; // too many direction changes |
| } |
| } |
| last = pts[-1]; |
| if (lastDirection == nextDirection) { |
| break; // colinear segment |
| } |
| // Possible values for corners are 2, 3, and 4. |
| // When corners == 3, nextDirection opposes firstDirection. |
| // Otherwise, nextDirection at corner 2 opposes corner 4. |
| int turn = firstDirection ^ (corners - 1); |
| int directionCycle = 3 == corners ? 0 : nextDirection ^ turn; |
| if ((directionCycle ^ turn) != nextDirection) { |
| return false; // direction didn't follow cycle |
| } |
| break; |
| } |
| case kQuad_Verb: |
| case kCubic_Verb: |
| return false; // quadratic, cubic not allowed |
| case kMove_Verb: |
| last = *pts++; |
| closedOrMoved = true; |
| break; |
| } |
| lastDirection = nextDirection; |
| } |
| // Success if 4 corners and first point equals last |
| bool result = 4 == corners && first == last; |
| if (result && rect) { |
| *rect = getBounds(); |
| } |
| return result; |
| } |
| |
| int SkPath::getPoints(SkPoint copy[], int max) const { |
| SkDEBUGCODE(this->validate();) |
| |
| SkASSERT(max >= 0); |
| int count = fPts.count(); |
| if (copy && max > 0 && count > 0) { |
| memcpy(copy, fPts.begin(), sizeof(SkPoint) * SkMin32(max, count)); |
| } |
| return count; |
| } |
| |
| SkPoint SkPath::getPoint(int index) const { |
| if ((unsigned)index < (unsigned)fPts.count()) { |
| return fPts[index]; |
| } |
| return SkPoint::Make(0, 0); |
| } |
| |
| bool SkPath::getLastPt(SkPoint* lastPt) const { |
| SkDEBUGCODE(this->validate();) |
| |
| int count = fPts.count(); |
| if (count > 0) { |
| if (lastPt) { |
| *lastPt = fPts[count - 1]; |
| } |
| return true; |
| } |
| if (lastPt) { |
| lastPt->set(0, 0); |
| } |
| return false; |
| } |
| |
| void SkPath::setLastPt(SkScalar x, SkScalar y) { |
| SkDEBUGCODE(this->validate();) |
| |
| int count = fPts.count(); |
| if (count == 0) { |
| this->moveTo(x, y); |
| } else { |
| fPts[count - 1].set(x, y); |
| GEN_ID_INC; |
| } |
| } |
| |
| void SkPath::computeBounds() const { |
| SkDEBUGCODE(this->validate();) |
| SkASSERT(fBoundsIsDirty); |
| |
| fBoundsIsDirty = false; |
| compute_pt_bounds(&fBounds, fPts); |
| } |
| |
| void SkPath::setConvexity(Convexity c) { |
| if (fConvexity != c) { |
| fConvexity = c; |
| GEN_ID_INC; |
| } |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // Construction methods |
| |
| #define DIRTY_AFTER_EDIT \ |
| do { \ |
| fBoundsIsDirty = true; \ |
| fConvexity = kUnknown_Convexity; \ |
| } while (0) |
| |
| #define DIRTY_AFTER_EDIT_NO_CONVEXITY_CHANGE \ |
| do { \ |
| fBoundsIsDirty = true; \ |
| } while (0) |
| |
| void SkPath::incReserve(U16CPU inc) { |
| SkDEBUGCODE(this->validate();) |
| |
| fVerbs.setReserve(fVerbs.count() + inc); |
| fPts.setReserve(fPts.count() + inc); |
| |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| void SkPath::moveTo(SkScalar x, SkScalar y) { |
| SkDEBUGCODE(this->validate();) |
| |
| int vc = fVerbs.count(); |
| SkPoint* pt; |
| |
| // remember our index |
| fLastMoveToIndex = fPts.count(); |
| |
| pt = fPts.append(); |
| *fVerbs.append() = kMove_Verb; |
| pt->set(x, y); |
| |
| GEN_ID_INC; |
| DIRTY_AFTER_EDIT_NO_CONVEXITY_CHANGE; |
| } |
| |
| void SkPath::rMoveTo(SkScalar x, SkScalar y) { |
| SkPoint pt; |
| this->getLastPt(&pt); |
| this->moveTo(pt.fX + x, pt.fY + y); |
| } |
| |
| void SkPath::injectMoveToIfNeeded() { |
| if (fLastMoveToIndex < 0) { |
| SkScalar x, y; |
| if (fVerbs.count() == 0) { |
| x = y = 0; |
| } else { |
| const SkPoint& pt = fPts[~fLastMoveToIndex]; |
| x = pt.fX; |
| y = pt.fY; |
| } |
| this->moveTo(x, y); |
| } |
| } |
| |
| void SkPath::lineTo(SkScalar x, SkScalar y) { |
| SkDEBUGCODE(this->validate();) |
| |
| this->injectMoveToIfNeeded(); |
| |
| fPts.append()->set(x, y); |
| *fVerbs.append() = kLine_Verb; |
| fSegmentMask |= kLine_SegmentMask; |
| |
| GEN_ID_INC; |
| DIRTY_AFTER_EDIT; |
| } |
| |
| void SkPath::rLineTo(SkScalar x, SkScalar y) { |
| SkPoint pt; |
| this->getLastPt(&pt); |
| this->lineTo(pt.fX + x, pt.fY + y); |
| } |
| |
| void SkPath::quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
| SkDEBUGCODE(this->validate();) |
| |
| this->injectMoveToIfNeeded(); |
| |
| SkPoint* pts = fPts.append(2); |
| pts[0].set(x1, y1); |
| pts[1].set(x2, y2); |
| *fVerbs.append() = kQuad_Verb; |
| fSegmentMask |= kQuad_SegmentMask; |
| |
| GEN_ID_INC; |
| DIRTY_AFTER_EDIT; |
| } |
| |
| void SkPath::rQuadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { |
| SkPoint pt; |
| this->getLastPt(&pt); |
| this->quadTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2); |
| } |
| |
| void SkPath::cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
| SkScalar x3, SkScalar y3) { |
| SkDEBUGCODE(this->validate();) |
| |
| this->injectMoveToIfNeeded(); |
| |
| SkPoint* pts = fPts.append(3); |
| pts[0].set(x1, y1); |
| pts[1].set(x2, y2); |
| pts[2].set(x3, y3); |
| *fVerbs.append() = kCubic_Verb; |
| fSegmentMask |= kCubic_SegmentMask; |
| |
| GEN_ID_INC; |
| DIRTY_AFTER_EDIT; |
| } |
| |
| void SkPath::rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
| SkScalar x3, SkScalar y3) { |
| SkPoint pt; |
| this->getLastPt(&pt); |
| this->cubicTo(pt.fX + x1, pt.fY + y1, pt.fX + x2, pt.fY + y2, |
| pt.fX + x3, pt.fY + y3); |
| } |
| |
| void SkPath::close() { |
| SkDEBUGCODE(this->validate();) |
| |
| int count = fVerbs.count(); |
| if (count > 0) { |
| switch (fVerbs[count - 1]) { |
| case kLine_Verb: |
| case kQuad_Verb: |
| case kCubic_Verb: |
| case kMove_Verb: |
| *fVerbs.append() = kClose_Verb; |
| GEN_ID_INC; |
| break; |
| default: |
| // don't add a close if it's the first verb or a repeat |
| break; |
| } |
| } |
| |
| // signal that we need a moveTo to follow us (unless we're done) |
| #if 0 |
| if (fLastMoveToIndex >= 0) { |
| fLastMoveToIndex = ~fLastMoveToIndex; |
| } |
| #else |
| fLastMoveToIndex ^= ~fLastMoveToIndex >> (8 * sizeof(fLastMoveToIndex) - 1); |
| #endif |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkPath::addRect(const SkRect& rect, Direction dir) { |
| this->addRect(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, dir); |
| } |
| |
| void SkPath::addRect(SkScalar left, SkScalar top, SkScalar right, |
| SkScalar bottom, Direction dir) { |
| SkAutoPathBoundsUpdate apbu(this, left, top, right, bottom); |
| |
| this->incReserve(5); |
| |
| this->moveTo(left, top); |
| if (dir == kCCW_Direction) { |
| this->lineTo(left, bottom); |
| this->lineTo(right, bottom); |
| this->lineTo(right, top); |
| } else { |
| this->lineTo(right, top); |
| this->lineTo(right, bottom); |
| this->lineTo(left, bottom); |
| } |
| this->close(); |
| } |
| |
| #define CUBIC_ARC_FACTOR ((SK_ScalarSqrt2 - SK_Scalar1) * 4 / 3) |
| |
| void SkPath::addRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry, |
| Direction dir) { |
| SkScalar w = rect.width(); |
| SkScalar halfW = SkScalarHalf(w); |
| SkScalar h = rect.height(); |
| SkScalar halfH = SkScalarHalf(h); |
| |
| if (halfW <= 0 || halfH <= 0) { |
| return; |
| } |
| |
| bool skip_hori = rx >= halfW; |
| bool skip_vert = ry >= halfH; |
| |
| if (skip_hori && skip_vert) { |
| this->addOval(rect, dir); |
| return; |
| } |
| |
| SkAutoPathBoundsUpdate apbu(this, rect); |
| |
| if (skip_hori) { |
| rx = halfW; |
| } else if (skip_vert) { |
| ry = halfH; |
| } |
| |
| SkScalar sx = SkScalarMul(rx, CUBIC_ARC_FACTOR); |
| SkScalar sy = SkScalarMul(ry, CUBIC_ARC_FACTOR); |
| |
| this->incReserve(17); |
| this->moveTo(rect.fRight - rx, rect.fTop); |
| if (dir == kCCW_Direction) { |
| if (!skip_hori) { |
| this->lineTo(rect.fLeft + rx, rect.fTop); // top |
| } |
| this->cubicTo(rect.fLeft + rx - sx, rect.fTop, |
| rect.fLeft, rect.fTop + ry - sy, |
| rect.fLeft, rect.fTop + ry); // top-left |
| if (!skip_vert) { |
| this->lineTo(rect.fLeft, rect.fBottom - ry); // left |
| } |
| this->cubicTo(rect.fLeft, rect.fBottom - ry + sy, |
| rect.fLeft + rx - sx, rect.fBottom, |
| rect.fLeft + rx, rect.fBottom); // bot-left |
| if (!skip_hori) { |
| this->lineTo(rect.fRight - rx, rect.fBottom); // bottom |
| } |
| this->cubicTo(rect.fRight - rx + sx, rect.fBottom, |
| rect.fRight, rect.fBottom - ry + sy, |
| rect.fRight, rect.fBottom - ry); // bot-right |
| if (!skip_vert) { |
| this->lineTo(rect.fRight, rect.fTop + ry); |
| } |
| this->cubicTo(rect.fRight, rect.fTop + ry - sy, |
| rect.fRight - rx + sx, rect.fTop, |
| rect.fRight - rx, rect.fTop); // top-right |
| } else { |
| this->cubicTo(rect.fRight - rx + sx, rect.fTop, |
| rect.fRight, rect.fTop + ry - sy, |
| rect.fRight, rect.fTop + ry); // top-right |
| if (!skip_vert) { |
| this->lineTo(rect.fRight, rect.fBottom - ry); |
| } |
| this->cubicTo(rect.fRight, rect.fBottom - ry + sy, |
| rect.fRight - rx + sx, rect.fBottom, |
| rect.fRight - rx, rect.fBottom); // bot-right |
| if (!skip_hori) { |
| this->lineTo(rect.fLeft + rx, rect.fBottom); // bottom |
| } |
| this->cubicTo(rect.fLeft + rx - sx, rect.fBottom, |
| rect.fLeft, rect.fBottom - ry + sy, |
| rect.fLeft, rect.fBottom - ry); // bot-left |
| if (!skip_vert) { |
| this->lineTo(rect.fLeft, rect.fTop + ry); // left |
| } |
| this->cubicTo(rect.fLeft, rect.fTop + ry - sy, |
| rect.fLeft + rx - sx, rect.fTop, |
| rect.fLeft + rx, rect.fTop); // top-left |
| if (!skip_hori) { |
| this->lineTo(rect.fRight - rx, rect.fTop); // top |
| } |
| } |
| this->close(); |
| } |
| |
| static void add_corner_arc(SkPath* path, const SkRect& rect, |
| SkScalar rx, SkScalar ry, int startAngle, |
| SkPath::Direction dir, bool forceMoveTo) { |
| rx = SkMinScalar(SkScalarHalf(rect.width()), rx); |
| ry = SkMinScalar(SkScalarHalf(rect.height()), ry); |
| |
| SkRect r; |
| r.set(-rx, -ry, rx, ry); |
| |
| switch (startAngle) { |
| case 0: |
| r.offset(rect.fRight - r.fRight, rect.fBottom - r.fBottom); |
| break; |
| case 90: |
| r.offset(rect.fLeft - r.fLeft, rect.fBottom - r.fBottom); |
| break; |
| case 180: r.offset(rect.fLeft - r.fLeft, rect.fTop - r.fTop); break; |
| case 270: r.offset(rect.fRight - r.fRight, rect.fTop - r.fTop); break; |
| default: SkDEBUGFAIL("unexpected startAngle in add_corner_arc"); |
| } |
| |
| SkScalar start = SkIntToScalar(startAngle); |
| SkScalar sweep = SkIntToScalar(90); |
| if (SkPath::kCCW_Direction == dir) { |
| start += sweep; |
| sweep = -sweep; |
| } |
| |
| path->arcTo(r, start, sweep, forceMoveTo); |
| } |
| |
| void SkPath::addRoundRect(const SkRect& rect, const SkScalar rad[], |
| Direction dir) { |
| // abort before we invoke SkAutoPathBoundsUpdate() |
| if (rect.isEmpty()) { |
| return; |
| } |
| |
| SkAutoPathBoundsUpdate apbu(this, rect); |
| |
| if (kCW_Direction == dir) { |
| add_corner_arc(this, rect, rad[0], rad[1], 180, dir, true); |
| add_corner_arc(this, rect, rad[2], rad[3], 270, dir, false); |
| add_corner_arc(this, rect, rad[4], rad[5], 0, dir, false); |
| add_corner_arc(this, rect, rad[6], rad[7], 90, dir, false); |
| } else { |
| add_corner_arc(this, rect, rad[0], rad[1], 180, dir, true); |
| add_corner_arc(this, rect, rad[6], rad[7], 90, dir, false); |
| add_corner_arc(this, rect, rad[4], rad[5], 0, dir, false); |
| add_corner_arc(this, rect, rad[2], rad[3], 270, dir, false); |
| } |
| this->close(); |
| } |
| |
| void SkPath::addOval(const SkRect& oval, Direction dir) { |
| SkAutoPathBoundsUpdate apbu(this, oval); |
| |
| SkScalar cx = oval.centerX(); |
| SkScalar cy = oval.centerY(); |
| SkScalar rx = SkScalarHalf(oval.width()); |
| SkScalar ry = SkScalarHalf(oval.height()); |
| #if 0 // these seem faster than using quads (1/2 the number of edges) |
| SkScalar sx = SkScalarMul(rx, CUBIC_ARC_FACTOR); |
| SkScalar sy = SkScalarMul(ry, CUBIC_ARC_FACTOR); |
| |
| this->incReserve(13); |
| this->moveTo(cx + rx, cy); |
| if (dir == kCCW_Direction) { |
| this->cubicTo(cx + rx, cy - sy, cx + sx, cy - ry, cx, cy - ry); |
| this->cubicTo(cx - sx, cy - ry, cx - rx, cy - sy, cx - rx, cy); |
| this->cubicTo(cx - rx, cy + sy, cx - sx, cy + ry, cx, cy + ry); |
| this->cubicTo(cx + sx, cy + ry, cx + rx, cy + sy, cx + rx, cy); |
| } else { |
| this->cubicTo(cx + rx, cy + sy, cx + sx, cy + ry, cx, cy + ry); |
| this->cubicTo(cx - sx, cy + ry, cx - rx, cy + sy, cx - rx, cy); |
| this->cubicTo(cx - rx, cy - sy, cx - sx, cy - ry, cx, cy - ry); |
| this->cubicTo(cx + sx, cy - ry, cx + rx, cy - sy, cx + rx, cy); |
| } |
| #else |
| SkScalar sx = SkScalarMul(rx, SK_ScalarTanPIOver8); |
| SkScalar sy = SkScalarMul(ry, SK_ScalarTanPIOver8); |
| SkScalar mx = SkScalarMul(rx, SK_ScalarRoot2Over2); |
| SkScalar my = SkScalarMul(ry, SK_ScalarRoot2Over2); |
| |
| /* |
| To handle imprecision in computing the center and radii, we revert to |
| the provided bounds when we can (i.e. use oval.fLeft instead of cx-rx) |
| to ensure that we don't exceed the oval's bounds *ever*, since we want |
| to use oval for our fast-bounds, rather than have to recompute it. |
| */ |
| const SkScalar L = oval.fLeft; // cx - rx |
| const SkScalar T = oval.fTop; // cy - ry |
| const SkScalar R = oval.fRight; // cx + rx |
| const SkScalar B = oval.fBottom; // cy + ry |
| |
| this->incReserve(17); // 8 quads + close |
| this->moveTo(R, cy); |
| if (dir == kCCW_Direction) { |
| this->quadTo( R, cy - sy, cx + mx, cy - my); |
| this->quadTo(cx + sx, T, cx , T); |
| this->quadTo(cx - sx, T, cx - mx, cy - my); |
| this->quadTo( L, cy - sy, L, cy ); |
| this->quadTo( L, cy + sy, cx - mx, cy + my); |
| this->quadTo(cx - sx, B, cx , B); |
| this->quadTo(cx + sx, B, cx + mx, cy + my); |
| this->quadTo( R, cy + sy, R, cy ); |
| } else { |
| this->quadTo( R, cy + sy, cx + mx, cy + my); |
| this->quadTo(cx + sx, B, cx , B); |
| this->quadTo(cx - sx, B, cx - mx, cy + my); |
| this->quadTo( L, cy + sy, L, cy ); |
| this->quadTo( L, cy - sy, cx - mx, cy - my); |
| this->quadTo(cx - sx, T, cx , T); |
| this->quadTo(cx + sx, T, cx + mx, cy - my); |
| this->quadTo( R, cy - sy, R, cy ); |
| } |
| #endif |
| this->close(); |
| } |
| |
| void SkPath::addCircle(SkScalar x, SkScalar y, SkScalar r, Direction dir) { |
| if (r > 0) { |
| SkRect rect; |
| rect.set(x - r, y - r, x + r, y + r); |
| this->addOval(rect, dir); |
| } |
| } |
| |
| #include "SkGeometry.h" |
| |
| static int build_arc_points(const SkRect& oval, SkScalar startAngle, |
| SkScalar sweepAngle, |
| SkPoint pts[kSkBuildQuadArcStorage]) { |
| SkVector start, stop; |
| |
| start.fY = SkScalarSinCos(SkDegreesToRadians(startAngle), &start.fX); |
| stop.fY = SkScalarSinCos(SkDegreesToRadians(startAngle + sweepAngle), |
| &stop.fX); |
| |
| /* If the sweep angle is nearly (but less than) 360, then due to precision |
| loss in radians-conversion and/or sin/cos, we may end up with coincident |
| vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead |
| of drawing a nearly complete circle (good). |
| e.g. canvas.drawArc(0, 359.99, ...) |
| -vs- canvas.drawArc(0, 359.9, ...) |
| We try to detect this edge case, and tweak the stop vector |
| */ |
| if (start == stop) { |
| SkScalar sw = SkScalarAbs(sweepAngle); |
| if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) { |
| SkScalar stopRad = SkDegreesToRadians(startAngle + sweepAngle); |
| // make a guess at a tiny angle (in radians) to tweak by |
| SkScalar deltaRad = SkScalarCopySign(SK_Scalar1/512, sweepAngle); |
| // not sure how much will be enough, so we use a loop |
| do { |
| stopRad -= deltaRad; |
| stop.fY = SkScalarSinCos(stopRad, &stop.fX); |
| } while (start == stop); |
| } |
| } |
| |
| SkMatrix matrix; |
| |
| matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height())); |
| matrix.postTranslate(oval.centerX(), oval.centerY()); |
| |
| return SkBuildQuadArc(start, stop, |
| sweepAngle > 0 ? kCW_SkRotationDirection : kCCW_SkRotationDirection, |
| &matrix, pts); |
| } |
| |
| void SkPath::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, |
| bool forceMoveTo) { |
| if (oval.width() < 0 || oval.height() < 0) { |
| return; |
| } |
| |
| SkPoint pts[kSkBuildQuadArcStorage]; |
| int count = build_arc_points(oval, startAngle, sweepAngle, pts); |
| SkASSERT((count & 1) == 1); |
| |
| if (fVerbs.count() == 0) { |
| forceMoveTo = true; |
| } |
| this->incReserve(count); |
| forceMoveTo ? this->moveTo(pts[0]) : this->lineTo(pts[0]); |
| for (int i = 1; i < count; i += 2) { |
| this->quadTo(pts[i], pts[i+1]); |
| } |
| } |
| |
| void SkPath::addArc(const SkRect& oval, SkScalar startAngle, |
| SkScalar sweepAngle) { |
| if (oval.isEmpty() || 0 == sweepAngle) { |
| return; |
| } |
| |
| const SkScalar kFullCircleAngle = SkIntToScalar(360); |
| |
| if (sweepAngle >= kFullCircleAngle || sweepAngle <= -kFullCircleAngle) { |
| this->addOval(oval, sweepAngle > 0 ? kCW_Direction : kCCW_Direction); |
| return; |
| } |
| |
| SkPoint pts[kSkBuildQuadArcStorage]; |
| int count = build_arc_points(oval, startAngle, sweepAngle, pts); |
| |
| this->incReserve(count); |
| this->moveTo(pts[0]); |
| for (int i = 1; i < count; i += 2) { |
| this->quadTo(pts[i], pts[i+1]); |
| } |
| } |
| |
| /* |
| Need to handle the case when the angle is sharp, and our computed end-points |
| for the arc go behind pt1 and/or p2... |
| */ |
| void SkPath::arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, |
| SkScalar radius) { |
| SkVector before, after; |
| |
| // need to know our prev pt so we can construct tangent vectors |
| { |
| SkPoint start; |
| this->getLastPt(&start); |
| // Handle degenerate cases by adding a line to the first point and |
| // bailing out. |
| if ((x1 == start.fX && y1 == start.fY) || |
| (x1 == x2 && y1 == y2) || |
| radius == 0) { |
| this->lineTo(x1, y1); |
| return; |
| } |
| before.setNormalize(x1 - start.fX, y1 - start.fY); |
| after.setNormalize(x2 - x1, y2 - y1); |
| } |
| |
| SkScalar cosh = SkPoint::DotProduct(before, after); |
| SkScalar sinh = SkPoint::CrossProduct(before, after); |
| |
| if (SkScalarNearlyZero(sinh)) { // angle is too tight |
| this->lineTo(x1, y1); |
| return; |
| } |
| |
| SkScalar dist = SkScalarMulDiv(radius, SK_Scalar1 - cosh, sinh); |
| if (dist < 0) { |
| dist = -dist; |
| } |
| |
| SkScalar xx = x1 - SkScalarMul(dist, before.fX); |
| SkScalar yy = y1 - SkScalarMul(dist, before.fY); |
| SkRotationDirection arcDir; |
| |
| // now turn before/after into normals |
| if (sinh > 0) { |
| before.rotateCCW(); |
| after.rotateCCW(); |
| arcDir = kCW_SkRotationDirection; |
| } else { |
| before.rotateCW(); |
| after.rotateCW(); |
| arcDir = kCCW_SkRotationDirection; |
| } |
| |
| SkMatrix matrix; |
| SkPoint pts[kSkBuildQuadArcStorage]; |
| |
| matrix.setScale(radius, radius); |
| matrix.postTranslate(xx - SkScalarMul(radius, before.fX), |
| yy - SkScalarMul(radius, before.fY)); |
| |
| int count = SkBuildQuadArc(before, after, arcDir, &matrix, pts); |
| |
| this->incReserve(count); |
| // [xx,yy] == pts[0] |
| this->lineTo(xx, yy); |
| for (int i = 1; i < count; i += 2) { |
| this->quadTo(pts[i], pts[i+1]); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkPath::addPath(const SkPath& path, SkScalar dx, SkScalar dy) { |
| SkMatrix matrix; |
| |
| matrix.setTranslate(dx, dy); |
| this->addPath(path, matrix); |
| } |
| |
| void SkPath::addPath(const SkPath& path, const SkMatrix& matrix) { |
| this->incReserve(path.fPts.count()); |
| |
| RawIter iter(path); |
| SkPoint pts[4]; |
| Verb verb; |
| |
| SkMatrix::MapPtsProc proc = matrix.getMapPtsProc(); |
| |
| while ((verb = iter.next(pts)) != kDone_Verb) { |
| switch (verb) { |
| case kMove_Verb: |
| proc(matrix, &pts[0], &pts[0], 1); |
| this->moveTo(pts[0]); |
| break; |
| case kLine_Verb: |
| proc(matrix, &pts[1], &pts[1], 1); |
| this->lineTo(pts[1]); |
| break; |
| case kQuad_Verb: |
| proc(matrix, &pts[1], &pts[1], 2); |
| this->quadTo(pts[1], pts[2]); |
| break; |
| case kCubic_Verb: |
| proc(matrix, &pts[1], &pts[1], 3); |
| this->cubicTo(pts[1], pts[2], pts[3]); |
| break; |
| case kClose_Verb: |
| this->close(); |
| break; |
| default: |
| SkDEBUGFAIL("unknown verb"); |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const uint8_t gPtsInVerb[] = { |
| 1, // kMove |
| 1, // kLine |
| 2, // kQuad |
| 3, // kCubic |
| 0, // kClose |
| 0 // kDone |
| }; |
| |
| // ignore the initial moveto, and stop when the 1st contour ends |
| void SkPath::pathTo(const SkPath& path) { |
| int i, vcount = path.fVerbs.count(); |
| if (vcount == 0) { |
| return; |
| } |
| |
| this->incReserve(vcount); |
| |
| const uint8_t* verbs = path.fVerbs.begin(); |
| const SkPoint* pts = path.fPts.begin() + 1; // 1 for the initial moveTo |
| |
| SkASSERT(verbs[0] == kMove_Verb); |
| for (i = 1; i < vcount; i++) { |
| switch (verbs[i]) { |
| case kLine_Verb: |
| this->lineTo(pts[0].fX, pts[0].fY); |
| break; |
| case kQuad_Verb: |
| this->quadTo(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY); |
| break; |
| case kCubic_Verb: |
| this->cubicTo(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, |
| pts[2].fX, pts[2].fY); |
| break; |
| case kClose_Verb: |
| return; |
| } |
| pts += gPtsInVerb[verbs[i]]; |
| } |
| } |
| |
| // ignore the last point of the 1st contour |
| void SkPath::reversePathTo(const SkPath& path) { |
| int i, vcount = path.fVerbs.count(); |
| if (vcount == 0) { |
| return; |
| } |
| |
| this->incReserve(vcount); |
| |
| const uint8_t* verbs = path.fVerbs.begin(); |
| const SkPoint* pts = path.fPts.begin(); |
| |
| SkASSERT(verbs[0] == kMove_Verb); |
| for (i = 1; i < vcount; i++) { |
| int n = gPtsInVerb[verbs[i]]; |
| if (n == 0) { |
| break; |
| } |
| pts += n; |
| } |
| |
| while (--i > 0) { |
| switch (verbs[i]) { |
| case kLine_Verb: |
| this->lineTo(pts[-1].fX, pts[-1].fY); |
| break; |
| case kQuad_Verb: |
| this->quadTo(pts[-1].fX, pts[-1].fY, pts[-2].fX, pts[-2].fY); |
| break; |
| case kCubic_Verb: |
| this->cubicTo(pts[-1].fX, pts[-1].fY, pts[-2].fX, pts[-2].fY, |
| pts[-3].fX, pts[-3].fY); |
| break; |
| default: |
| SkDEBUGFAIL("bad verb"); |
| break; |
| } |
| pts -= gPtsInVerb[verbs[i]]; |
| } |
| } |
| |
| void SkPath::reverseAddPath(const SkPath& src) { |
| this->incReserve(src.fPts.count()); |
| |
| const SkPoint* startPts = src.fPts.begin(); |
| const SkPoint* pts = src.fPts.end(); |
| const uint8_t* startVerbs = src.fVerbs.begin(); |
| const uint8_t* verbs = src.fVerbs.end(); |
| |
| bool needMove = true; |
| bool needClose = false; |
| while (verbs > startVerbs) { |
| uint8_t v = *--verbs; |
| int n = gPtsInVerb[v]; |
| |
| if (needMove) { |
| --pts; |
| this->moveTo(pts->fX, pts->fY); |
| needMove = false; |
| } |
| pts -= n; |
| switch (v) { |
| case kMove_Verb: |
| if (needClose) { |
| this->close(); |
| needClose = false; |
| } |
| needMove = true; |
| pts += 1; // so we see the point in "if (needMove)" above |
| break; |
| case kLine_Verb: |
| this->lineTo(pts[0]); |
| break; |
| case kQuad_Verb: |
| this->quadTo(pts[1], pts[0]); |
| break; |
| case kCubic_Verb: |
| this->cubicTo(pts[2], pts[1], pts[0]); |
| break; |
| case kClose_Verb: |
| needClose = true; |
| break; |
| default: |
| SkASSERT(!"unexpected verb"); |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkPath::offset(SkScalar dx, SkScalar dy, SkPath* dst) const { |
| SkMatrix matrix; |
| |
| matrix.setTranslate(dx, dy); |
| this->transform(matrix, dst); |
| } |
| |
| #include "SkGeometry.h" |
| |
| static void subdivide_quad_to(SkPath* path, const SkPoint pts[3], |
| int level = 2) { |
| if (--level >= 0) { |
| SkPoint tmp[5]; |
| |
| SkChopQuadAtHalf(pts, tmp); |
| subdivide_quad_to(path, &tmp[0], level); |
| subdivide_quad_to(path, &tmp[2], level); |
| } else { |
| path->quadTo(pts[1], pts[2]); |
| } |
| } |
| |
| static void subdivide_cubic_to(SkPath* path, const SkPoint pts[4], |
| int level = 2) { |
| if (--level >= 0) { |
| SkPoint tmp[7]; |
| |
| SkChopCubicAtHalf(pts, tmp); |
| subdivide_cubic_to(path, &tmp[0], level); |
| subdivide_cubic_to(path, &tmp[3], level); |
| } else { |
| path->cubicTo(pts[1], pts[2], pts[3]); |
| } |
| } |
| |
| void SkPath::transform(const SkMatrix& matrix, SkPath* dst) const { |
| SkDEBUGCODE(this->validate();) |
| if (dst == NULL) { |
| dst = (SkPath*)this; |
| } |
| |
| if (matrix.hasPerspective()) { |
| SkPath tmp; |
| tmp.fFillType = fFillType; |
| |
| SkPath::Iter iter(*this, false); |
| SkPoint pts[4]; |
| SkPath::Verb verb; |
| |
| while ((verb = iter.next(pts)) != kDone_Verb) { |
| switch (verb) { |
| case kMove_Verb: |
| tmp.moveTo(pts[0]); |
| break; |
| case kLine_Verb: |
| tmp.lineTo(pts[1]); |
| break; |
| case kQuad_Verb: |
| subdivide_quad_to(&tmp, pts); |
| break; |
| case kCubic_Verb: |
| subdivide_cubic_to(&tmp, pts); |
| break; |
| case kClose_Verb: |
| tmp.close(); |
| break; |
| default: |
| SkDEBUGFAIL("unknown verb"); |
| break; |
| } |
| } |
| |
| // swap() will increment the gen id if needed |
| dst->swap(tmp); |
| matrix.mapPoints(dst->fPts.begin(), dst->fPts.count()); |
| } else { |
| // remember that dst might == this, so be sure to check |
| // fBoundsIsDirty before we set it |
| if (!fBoundsIsDirty && matrix.rectStaysRect() && fPts.count() > 1) { |
| // if we're empty, fastbounds should not be mapped |
| matrix.mapRect(&dst->fBounds, fBounds); |
| dst->fBoundsIsDirty = false; |
| } else { |
| dst->fBoundsIsDirty = true; |
| } |
| |
| if (this != dst) { |
| dst->fVerbs = fVerbs; |
| dst->fPts.setCount(fPts.count()); |
| dst->fFillType = fFillType; |
| dst->fSegmentMask = fSegmentMask; |
| dst->fConvexity = fConvexity; |
| } |
| |
| if (!matrix.isIdentity()) { |
| GEN_ID_PTR_INC(dst); |
| } |
| matrix.mapPoints(dst->fPts.begin(), fPts.begin(), fPts.count()); |
| |
| SkDEBUGCODE(dst->validate();) |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| enum SegmentState { |
| kEmptyContour_SegmentState, // The current contour is empty. We may be |
| // starting processing or we may have just |
| // closed a contour. |
| kAfterMove_SegmentState, // We have seen a move, but nothing else. |
| kAfterPrimitive_SegmentState // We have seen a primitive but not yet |
| // closed the path. Also the initial state. |
| }; |
| |
| SkPath::Iter::Iter() { |
| #ifdef SK_DEBUG |
| fPts = NULL; |
| fMoveTo.fX = fMoveTo.fY = fLastPt.fX = fLastPt.fY = 0; |
| fForceClose = fCloseLine = false; |
| fSegmentState = kEmptyContour_SegmentState; |
| #endif |
| // need to init enough to make next() harmlessly return kDone_Verb |
| fVerbs = NULL; |
| fVerbStop = NULL; |
| fNeedClose = false; |
| } |
| |
| SkPath::Iter::Iter(const SkPath& path, bool forceClose) { |
| this->setPath(path, forceClose); |
| } |
| |
| void SkPath::Iter::setPath(const SkPath& path, bool forceClose) { |
| fPts = path.fPts.begin(); |
| fVerbs = path.fVerbs.begin(); |
| fVerbStop = path.fVerbs.end(); |
| fLastPt.fX = fLastPt.fY = 0; |
| fMoveTo.fX = fMoveTo.fY = 0; |
| fForceClose = SkToU8(forceClose); |
| fNeedClose = false; |
| fSegmentState = kEmptyContour_SegmentState; |
| } |
| |
| bool SkPath::Iter::isClosedContour() const { |
| if (fVerbs == NULL || fVerbs == fVerbStop) { |
| return false; |
| } |
| if (fForceClose) { |
| return true; |
| } |
| |
| const uint8_t* verbs = fVerbs; |
| const uint8_t* stop = fVerbStop; |
| |
| if (kMove_Verb == *verbs) { |
| verbs += 1; // skip the initial moveto |
| } |
| |
| while (verbs < stop) { |
| unsigned v = *verbs++; |
| if (kMove_Verb == v) { |
| break; |
| } |
| if (kClose_Verb == v) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| SkPath::Verb SkPath::Iter::autoClose(SkPoint pts[2]) { |
| if (fLastPt != fMoveTo) { |
| // A special case: if both points are NaN, SkPoint::operation== returns |
| // false, but the iterator expects that they are treated as the same. |
| // (consider SkPoint is a 2-dimension float point). |
| if (SkScalarIsNaN(fLastPt.fX) || SkScalarIsNaN(fLastPt.fY) || |
| SkScalarIsNaN(fMoveTo.fX) || SkScalarIsNaN(fMoveTo.fY)) { |
| return kClose_Verb; |
| } |
| |
| if (pts) { |
| pts[0] = fLastPt; |
| pts[1] = fMoveTo; |
| } |
| fLastPt = fMoveTo; |
| fCloseLine = true; |
| return kLine_Verb; |
| } else { |
| pts[0] = fMoveTo; |
| return kClose_Verb; |
| } |
| } |
| |
| bool SkPath::Iter::cons_moveTo(SkPoint pts[1]) { |
| if (fSegmentState == kAfterMove_SegmentState) { |
| // Set the first return pt to the move pt |
| if (pts) { |
| *pts = fMoveTo; |
| } |
| fSegmentState = kAfterPrimitive_SegmentState; |
| } else { |
| SkASSERT(fSegmentState == kAfterPrimitive_SegmentState); |
| // Set the first return pt to the last pt of the previous primitive. |
| if (pts) { |
| *pts = fPts[-1]; |
| } |
| } |
| return false; |
| } |
| |
| void SkPath::Iter::consumeDegenerateSegments() { |
| // We need to step over anything that will not move the current draw point |
| // forward before the next move is seen |
| const uint8_t* lastMoveVerb = 0; |
| const SkPoint* lastMovePt = 0; |
| SkPoint lastPt = fLastPt; |
| while (fVerbs != fVerbStop) { |
| unsigned verb = *fVerbs; |
| switch (verb) { |
| case kMove_Verb: |
| // Keep a record of this most recent move |
| lastMoveVerb = fVerbs; |
| lastMovePt = fPts; |
| lastPt = fPts[0]; |
| fVerbs++; |
| fPts++; |
| break; |
| |
| case kClose_Verb: |
| // A close when we are in a segment is always valid |
| if (fSegmentState == kAfterPrimitive_SegmentState) { |
| return; |
| } |
| // A close at any other time must be ignored |
| fVerbs++; |
| break; |
| |
| case kLine_Verb: |
| if (!IsLineDegenerate(lastPt, fPts[0])) { |
| if (lastMoveVerb) { |
| fVerbs = lastMoveVerb; |
| fPts = lastMovePt; |
| return; |
| } |
| return; |
| } |
| // Ignore this line and continue |
| fVerbs++; |
| fPts++; |
| break; |
| |
| case kQuad_Verb: |
| if (!IsQuadDegenerate(lastPt, fPts[0], fPts[1])) { |
| if (lastMoveVerb) { |
| fVerbs = lastMoveVerb; |
| fPts = lastMovePt; |
| return; |
| } |
| return; |
| } |
| // Ignore this line and continue |
| fVerbs++; |
| fPts += 2; |
| break; |
| |
| case kCubic_Verb: |
| if (!IsCubicDegenerate(lastPt, fPts[0], fPts[1], fPts[2])) { |
| if (lastMoveVerb) { |
| fVerbs = lastMoveVerb; |
| fPts = lastMovePt; |
| return; |
| } |
| return; |
| } |
| // Ignore this line and continue |
| fVerbs++; |
| fPts += 3; |
| break; |
| |
| default: |
| SkDEBUGFAIL("Should never see kDone_Verb"); |
| } |
| } |
| } |
| |
| SkPath::Verb SkPath::Iter::next(SkPoint pts[4]) { |
| this->consumeDegenerateSegments(); |
| |
| if (fVerbs == fVerbStop) { |
| // Close the curve if requested and if there is some curve to close |
| if (fNeedClose && fSegmentState == kAfterPrimitive_SegmentState) { |
| if (kLine_Verb == this->autoClose(pts)) { |
| return kLine_Verb; |
| } |
| fNeedClose = false; |
| return kClose_Verb; |
| } |
| return kDone_Verb; |
| } |
| |
| unsigned verb = *fVerbs++; |
| const SkPoint* srcPts = fPts; |
| |
| switch (verb) { |
| case kMove_Verb: |
| if (fNeedClose) { |
| fVerbs -= 1; |
| verb = this->autoClose(pts); |
| if (verb == kClose_Verb) { |
| fNeedClose = false; |
| } |
| return (Verb)verb; |
| } |
| if (fVerbs == fVerbStop) { // might be a trailing moveto |
| return kDone_Verb; |
| } |
| fMoveTo = *srcPts; |
| if (pts) { |
| pts[0] = *srcPts; |
| } |
| srcPts += 1; |
| fSegmentState = kAfterMove_SegmentState; |
| fLastPt = fMoveTo; |
| fNeedClose = fForceClose; |
| break; |
| case kLine_Verb: |
| if (this->cons_moveTo(pts)) { |
| return kMove_Verb; |
| } |
| if (pts) { |
| pts[1] = srcPts[0]; |
| } |
| fLastPt = srcPts[0]; |
| fCloseLine = false; |
| srcPts += 1; |
| break; |
| case kQuad_Verb: |
| if (this->cons_moveTo(pts)) { |
| return kMove_Verb; |
| } |
| if (pts) { |
| memcpy(&pts[1], srcPts, 2 * sizeof(SkPoint)); |
| } |
| fLastPt = srcPts[1]; |
| srcPts += 2; |
| break; |
| case kCubic_Verb: |
| if (this->cons_moveTo(pts)) { |
| return kMove_Verb; |
| } |
| if (pts) { |
| memcpy(&pts[1], srcPts, 3 * sizeof(SkPoint)); |
| } |
| fLastPt = srcPts[2]; |
| srcPts += 3; |
| break; |
| case kClose_Verb: |
| verb = this->autoClose(pts); |
| if (verb == kLine_Verb) { |
| fVerbs -= 1; |
| } else { |
| fNeedClose = false; |
| fSegmentState = kEmptyContour_SegmentState; |
| } |
| fLastPt = fMoveTo; |
| break; |
| } |
| fPts = srcPts; |
| return (Verb)verb; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkPath::RawIter::RawIter() { |
| #ifdef SK_DEBUG |
| fPts = NULL; |
| fMoveTo.fX = fMoveTo.fY = fLastPt.fX = fLastPt.fY = 0; |
| #endif |
| // need to init enough to make next() harmlessly return kDone_Verb |
| fVerbs = NULL; |
| fVerbStop = NULL; |
| } |
| |
| SkPath::RawIter::RawIter(const SkPath& path) { |
| this->setPath(path); |
| } |
| |
| void SkPath::RawIter::setPath(const SkPath& path) { |
| fPts = path.fPts.begin(); |
| fVerbs = path.fVerbs.begin(); |
| fVerbStop = path.fVerbs.end(); |
| fMoveTo.fX = fMoveTo.fY = 0; |
| fLastPt.fX = fLastPt.fY = 0; |
| } |
| |
| SkPath::Verb SkPath::RawIter::next(SkPoint pts[4]) { |
| if (fVerbs == fVerbStop) { |
| return kDone_Verb; |
| } |
| |
| unsigned verb = *fVerbs++; |
| const SkPoint* srcPts = fPts; |
| |
| switch (verb) { |
| case kMove_Verb: |
| if (pts) { |
| pts[0] = *srcPts; |
| } |
| fMoveTo = srcPts[0]; |
| fLastPt = fMoveTo; |
| srcPts += 1; |
| break; |
| case kLine_Verb: |
| if (pts) { |
| pts[0] = fLastPt; |
| pts[1] = srcPts[0]; |
| } |
| fLastPt = srcPts[0]; |
| srcPts += 1; |
| break; |
| case kQuad_Verb: |
| if (pts) { |
| pts[0] = fLastPt; |
| memcpy(&pts[1], srcPts, 2 * sizeof(SkPoint)); |
| } |
| fLastPt = srcPts[1]; |
| srcPts += 2; |
| break; |
| case kCubic_Verb: |
| if (pts) { |
| pts[0] = fLastPt; |
| memcpy(&pts[1], srcPts, 3 * sizeof(SkPoint)); |
| } |
| fLastPt = srcPts[2]; |
| srcPts += 3; |
| break; |
| case kClose_Verb: |
| fLastPt = fMoveTo; |
| if (pts) { |
| pts[0] = fMoveTo; |
| } |
| break; |
| } |
| fPts = srcPts; |
| return (Verb)verb; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /* |
| Format in flattened buffer: [ptCount, verbCount, pts[], verbs[]] |
| */ |
| |
| void SkPath::flatten(SkWriter32& buffer) const { |
| SkDEBUGCODE(this->validate();) |
| |
| buffer.write32(fPts.count()); |
| buffer.write32(fVerbs.count()); |
| buffer.write32((fFillType << 8) | fSegmentMask); |
| buffer.writeMul4(fPts.begin(), sizeof(SkPoint) * fPts.count()); |
| buffer.writePad(fVerbs.begin(), fVerbs.count()); |
| } |
| |
| void SkPath::unflatten(SkReader32& buffer) { |
| fPts.setCount(buffer.readS32()); |
| fVerbs.setCount(buffer.readS32()); |
| uint32_t packed = buffer.readS32(); |
| fFillType = packed >> 8; |
| fSegmentMask = packed & 0xFF; |
| buffer.read(fPts.begin(), sizeof(SkPoint) * fPts.count()); |
| buffer.read(fVerbs.begin(), fVerbs.count()); |
| |
| GEN_ID_INC; |
| DIRTY_AFTER_EDIT; |
| |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkPath::dump(bool forceClose, const char title[]) const { |
| Iter iter(*this, forceClose); |
| SkPoint pts[4]; |
| Verb verb; |
| |
| SkDebugf("path: forceClose=%s %s\n", forceClose ? "true" : "false", |
| title ? title : ""); |
| |
| while ((verb = iter.next(pts)) != kDone_Verb) { |
| switch (verb) { |
| case kMove_Verb: |
| #ifdef SK_CAN_USE_FLOAT |
| SkDebugf(" path: moveTo [%g %g]\n", |
| SkScalarToFloat(pts[0].fX), SkScalarToFloat(pts[0].fY)); |
| #else |
| SkDebugf(" path: moveTo [%x %x]\n", pts[0].fX, pts[0].fY); |
| #endif |
| break; |
| case kLine_Verb: |
| #ifdef SK_CAN_USE_FLOAT |
| SkDebugf(" path: lineTo [%g %g]\n", |
| SkScalarToFloat(pts[1].fX), SkScalarToFloat(pts[1].fY)); |
| #else |
| SkDebugf(" path: lineTo [%x %x]\n", pts[1].fX, pts[1].fY); |
| #endif |
| break; |
| case kQuad_Verb: |
| #ifdef SK_CAN_USE_FLOAT |
| SkDebugf(" path: quadTo [%g %g] [%g %g]\n", |
| SkScalarToFloat(pts[1].fX), SkScalarToFloat(pts[1].fY), |
| SkScalarToFloat(pts[2].fX), SkScalarToFloat(pts[2].fY)); |
| #else |
| SkDebugf(" path: quadTo [%x %x] [%x %x]\n", |
| pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); |
| #endif |
| break; |
| case kCubic_Verb: |
| #ifdef SK_CAN_USE_FLOAT |
| SkDebugf(" path: cubeTo [%g %g] [%g %g] [%g %g]\n", |
| SkScalarToFloat(pts[1].fX), SkScalarToFloat(pts[1].fY), |
| SkScalarToFloat(pts[2].fX), SkScalarToFloat(pts[2].fY), |
| SkScalarToFloat(pts[3].fX), SkScalarToFloat(pts[3].fY)); |
| #else |
| SkDebugf(" path: cubeTo [%x %x] [%x %x] [%x %x]\n", |
| pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY, |
| pts[3].fX, pts[3].fY); |
| #endif |
| break; |
| case kClose_Verb: |
| SkDebugf(" path: close\n"); |
| break; |
| default: |
| SkDebugf(" path: UNKNOWN VERB %d, aborting dump...\n", verb); |
| verb = kDone_Verb; // stop the loop |
| break; |
| } |
| } |
| SkDebugf("path: done %s\n", title ? title : ""); |
| } |
| |
| void SkPath::dump() const { |
| this->dump(false); |
| } |
| |
| #ifdef SK_DEBUG |
| void SkPath::validate() const { |
| SkASSERT(this != NULL); |
| SkASSERT((fFillType & ~3) == 0); |
| fPts.validate(); |
| fVerbs.validate(); |
| |
| if (!fBoundsIsDirty) { |
| SkRect bounds; |
| compute_pt_bounds(&bounds, fPts); |
| if (fPts.count() <= 1) { |
| // if we're empty, fBounds may be empty but translated, so we can't |
| // necessarily compare to bounds directly |
| // try path.addOval(2, 2, 2, 2) which is empty, but the bounds will |
| // be [2, 2, 2, 2] |
| SkASSERT(bounds.isEmpty()); |
| SkASSERT(fBounds.isEmpty()); |
| } else { |
| if (bounds.isEmpty()) { |
| SkASSERT(fBounds.isEmpty()); |
| } else { |
| if (!fBounds.isEmpty()) { |
| SkASSERT(fBounds.contains(bounds)); |
| } |
| } |
| } |
| } |
| |
| uint32_t mask = 0; |
| for (int i = 0; i < fVerbs.count(); i++) { |
| switch (fVerbs[i]) { |
| case kLine_Verb: |
| mask |= kLine_SegmentMask; |
| break; |
| case kQuad_Verb: |
| mask |= kQuad_SegmentMask; |
| break; |
| case kCubic_Verb: |
| mask |= kCubic_SegmentMask; |
| } |
| } |
| SkASSERT(mask == fSegmentMask); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static int sign(SkScalar x) { return x < 0; } |
| #define kValueNeverReturnedBySign 2 |
| |
| static int CrossProductSign(const SkVector& a, const SkVector& b) { |
| return SkScalarSignAsInt(SkPoint::CrossProduct(a, b)); |
| } |
| |
| // only valid for a single contour |
| struct Convexicator { |
| Convexicator() : fPtCount(0), fConvexity(SkPath::kConvex_Convexity) { |
| fSign = 0; |
| // warnings |
| fCurrPt.set(0, 0); |
| fVec0.set(0, 0); |
| fVec1.set(0, 0); |
| fFirstVec.set(0, 0); |
| |
| fDx = fDy = 0; |
| fSx = fSy = kValueNeverReturnedBySign; |
| } |
| |
| SkPath::Convexity getConvexity() const { return fConvexity; } |
| |
| void addPt(const SkPoint& pt) { |
| if (SkPath::kConcave_Convexity == fConvexity) { |
| return; |
| } |
| |
| if (0 == fPtCount) { |
| fCurrPt = pt; |
| ++fPtCount; |
| } else { |
| SkVector vec = pt - fCurrPt; |
| if (vec.fX || vec.fY) { |
| fCurrPt = pt; |
| if (++fPtCount == 2) { |
| fFirstVec = fVec1 = vec; |
| } else { |
| SkASSERT(fPtCount > 2); |
| this->addVec(vec); |
| } |
| |
| int sx = sign(vec.fX); |
| int sy = sign(vec.fY); |
| fDx += (sx != fSx); |
| fDy += (sy != fSy); |
| fSx = sx; |
| fSy = sy; |
| |
| if (fDx > 3 || fDy > 3) { |
| fConvexity = SkPath::kConcave_Convexity; |
| } |
| } |
| } |
| } |
| |
| void close() { |
| if (fPtCount > 2) { |
| this->addVec(fFirstVec); |
| } |
| } |
| |
| private: |
| void addVec(const SkVector& vec) { |
| SkASSERT(vec.fX || vec.fY); |
| fVec0 = fVec1; |
| fVec1 = vec; |
| int sign = CrossProductSign(fVec0, fVec1); |
| if (0 == fSign) { |
| fSign = sign; |
| } else if (sign) { |
| if (fSign != sign) { |
| fConvexity = SkPath::kConcave_Convexity; |
| } |
| } |
| } |
| |
| SkPoint fCurrPt; |
| SkVector fVec0, fVec1, fFirstVec; |
| int fPtCount; // non-degenerate points |
| int fSign; |
| SkPath::Convexity fConvexity; |
| int fDx, fDy, fSx, fSy; |
| }; |
| |
| SkPath::Convexity SkPath::ComputeConvexity(const SkPath& path) { |
| SkPoint pts[4]; |
| SkPath::Verb verb; |
| SkPath::Iter iter(path, true); |
| |
| int contourCount = 0; |
| int count; |
| Convexicator state; |
| |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| switch (verb) { |
| case kMove_Verb: |
| if (++contourCount > 1) { |
| return kConcave_Convexity; |
| } |
| pts[1] = pts[0]; |
| count = 1; |
| break; |
| case kLine_Verb: count = 1; break; |
| case kQuad_Verb: count = 2; break; |
| case kCubic_Verb: count = 3; break; |
| case kClose_Verb: |
| state.close(); |
| count = 0; |
| break; |
| default: |
| SkDEBUGFAIL("bad verb"); |
| return kConcave_Convexity; |
| } |
| |
| for (int i = 1; i <= count; i++) { |
| state.addPt(pts[i]); |
| } |
| // early exit |
| if (kConcave_Convexity == state.getConvexity()) { |
| return kConcave_Convexity; |
| } |
| } |
| return state.getConvexity(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class ContourIter { |
| public: |
| ContourIter(const SkTDArray<uint8_t>& verbs, const SkTDArray<SkPoint>& pts); |
| |
| bool done() const { return fDone; } |
| // if !done() then these may be called |
| int count() const { return fCurrPtCount; } |
| const SkPoint* pts() const { return fCurrPt; } |
| void next(); |
| |
| private: |
| int fCurrPtCount; |
| const SkPoint* fCurrPt; |
| const uint8_t* fCurrVerb; |
| const uint8_t* fStopVerbs; |
| bool fDone; |
| SkDEBUGCODE(int fContourCounter;) |
| }; |
| |
| ContourIter::ContourIter(const SkTDArray<uint8_t>& verbs, |
| const SkTDArray<SkPoint>& pts) { |
| fStopVerbs = verbs.begin() + verbs.count(); |
| |
| fDone = false; |
| fCurrPt = pts.begin(); |
| fCurrVerb = verbs.begin(); |
| fCurrPtCount = 0; |
| SkDEBUGCODE(fContourCounter = 0;) |
| this->next(); |
| } |
| |
| void ContourIter::next() { |
| if (fCurrVerb >= fStopVerbs) { |
| fDone = true; |
| } |
| if (fDone) { |
| return; |
| } |
| |
| // skip pts of prev contour |
| fCurrPt += fCurrPtCount; |
| |
| SkASSERT(SkPath::kMove_Verb == fCurrVerb[0]); |
| int ptCount = 1; // moveTo |
| const uint8_t* verbs = fCurrVerb; |
| |
| for (++verbs; verbs < fStopVerbs; ++verbs) { |
| switch (*verbs) { |
| case SkPath::kMove_Verb: |
| goto CONTOUR_END; |
| case SkPath::kLine_Verb: |
| ptCount += 1; |
| break; |
| case SkPath::kQuad_Verb: |
| ptCount += 2; |
| break; |
| case SkPath::kCubic_Verb: |
| ptCount += 3; |
| break; |
| default: // kClose_Verb, just keep going |
| break; |
| } |
| } |
| CONTOUR_END: |
| fCurrPtCount = ptCount; |
| fCurrVerb = verbs; |
| SkDEBUGCODE(++fContourCounter;) |
| } |
| |
| // returns cross product of (p1 - p0) and (p2 - p0) |
| static SkScalar cross_prod(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { |
| SkScalar cross = SkPoint::CrossProduct(p1 - p0, p2 - p0); |
| // We may get 0 when the above subtracts underflow. We expect this to be |
| // very rare and lazily promote to double. |
| if (0 == cross) { |
| double p0x = SkScalarToDouble(p0.fX); |
| double p0y = SkScalarToDouble(p0.fY); |
| |
| double p1x = SkScalarToDouble(p1.fX); |
| double p1y = SkScalarToDouble(p1.fY); |
| |
| double p2x = SkScalarToDouble(p2.fX); |
| double p2y = SkScalarToDouble(p2.fY); |
| |
| cross = SkDoubleToScalar((p1x - p0x) * (p2y - p0y) - |
| (p1y - p0y) * (p2x - p0x)); |
| |
| } |
| return cross; |
| } |
| |
| // Returns the first pt with the maximum Y coordinate |
| static int find_max_y(const SkPoint pts[], int count) { |
| SkASSERT(count > 0); |
| SkScalar max = pts[0].fY; |
| int firstIndex = 0; |
| for (int i = 1; i < count; ++i) { |
| SkScalar y = pts[i].fY; |
| if (y > max) { |
| max = y; |
| firstIndex = i; |
| } |
| } |
| return firstIndex; |
| } |
| |
| static int find_diff_pt(const SkPoint pts[], int index, int n, int inc) { |
| int i = index; |
| for (;;) { |
| i = (i + inc) % n; |
| if (i == index) { // we wrapped around, so abort |
| break; |
| } |
| if (pts[index] != pts[i]) { // found a different point, success! |
| break; |
| } |
| } |
| return i; |
| } |
| |
| /** |
| * Starting at index, and moving forward (incrementing), find the xmin and |
| * xmax of the contiguous points that have the same Y. |
| */ |
| static int find_min_max_x_at_y(const SkPoint pts[], int index, int n, |
| int* maxIndexPtr) { |
| const SkScalar y = pts[index].fY; |
| SkScalar min = pts[index].fX; |
| SkScalar max = min; |
| int minIndex = index; |
| int maxIndex = index; |
| for (int i = index + 1; i < n; ++i) { |
| if (pts[i].fY != y) { |
| break; |
| } |
| SkScalar x = pts[i].fX; |
| if (x < min) { |
| min = x; |
| minIndex = i; |
| } else if (x > max) { |
| max = x; |
| maxIndex = i; |
| } |
| } |
| *maxIndexPtr = maxIndex; |
| return minIndex; |
| } |
| |
| static bool crossToDir(SkScalar cross, SkPath::Direction* dir) { |
| if (dir) { |
| *dir = cross > 0 ? SkPath::kCW_Direction : SkPath::kCCW_Direction; |
| } |
| return true; |
| } |
| |
| #if 0 |
| #include "SkString.h" |
| #include "../utils/SkParsePath.h" |
| static void dumpPath(const SkPath& path) { |
| SkString str; |
| SkParsePath::ToSVGString(path, &str); |
| SkDebugf("%s\n", str.c_str()); |
| } |
| #endif |
| |
| /* |
| * We loop through all contours, and keep the computed cross-product of the |
| * contour that contained the global y-max. If we just look at the first |
| * contour, we may find one that is wound the opposite way (correctly) since |
| * it is the interior of a hole (e.g. 'o'). Thus we must find the contour |
| * that is outer most (or at least has the global y-max) before we can consider |
| * its cross product. |
| */ |
| bool SkPath::cheapComputeDirection(Direction* dir) const { |
| // dumpPath(*this); |
| // don't want to pay the cost for computing this if it |
| // is unknown, so we don't call isConvex() |
| const Convexity conv = this->getConvexityOrUnknown(); |
| |
| ContourIter iter(fVerbs, fPts); |
| |
| // initialize with our logical y-min |
| SkScalar ymax = this->getBounds().fTop; |
| SkScalar ymaxCross = 0; |
| |
| for (; !iter.done(); iter.next()) { |
| int n = iter.count(); |
| if (n < 3) { |
| continue; |
| } |
| |
| const SkPoint* pts = iter.pts(); |
| SkScalar cross = 0; |
| if (kConvex_Convexity == conv) { |
| // we loop, skipping over degenerate or flat segments that will |
| // return 0 for the cross-product |
| for (int i = 0; i < n - 2; ++i) { |
| cross = cross_prod(pts[i], pts[i + 1], pts[i + 2]); |
| if (cross) { |
| // early-exit, as kConvex is assumed to have only 1 |
| // non-degenerate contour |
| return crossToDir(cross, dir); |
| } |
| } |
| } else { |
| int index = find_max_y(pts, n); |
| if (pts[index].fY < ymax) { |
| continue; |
| } |
| |
| // If there is more than 1 distinct point at the y-max, we take the |
| // x-min and x-max of them and just subtract to compute the dir. |
| if (pts[(index + 1) % n].fY == pts[index].fY) { |
| int maxIndex; |
| int minIndex = find_min_max_x_at_y(pts, index, n, &maxIndex); |
| if (minIndex == maxIndex) { |
| goto TRY_CROSSPROD; |
| } |
| SkASSERT(pts[minIndex].fY == pts[index].fY); |
| SkASSERT(pts[maxIndex].fY == pts[index].fY); |
| SkASSERT(pts[minIndex].fX <= pts[maxIndex].fX); |
| // we just subtract the indices, and let that auto-convert to |
| // SkScalar, since we just want - or + to signal the direction. |
| cross = minIndex - maxIndex; |
| } else { |
| TRY_CROSSPROD: |
| // Find a next and prev index to use for the cross-product test, |
| // but we try to find pts that form non-zero vectors from pts[index] |
| // |
| // Its possible that we can't find two non-degenerate vectors, so |
| // we have to guard our search (e.g. all the pts could be in the |
| // same place). |
| |
| // we pass n - 1 instead of -1 so we don't foul up % operator by |
| // passing it a negative LH argument. |
| int prev = find_diff_pt(pts, index, n, n - 1); |
| if (prev == index) { |
| // completely degenerate, skip to next contour |
| continue; |
| } |
| int next = find_diff_pt(pts, index, n, 1); |
| SkASSERT(next != index); |
| cross = cross_prod(pts[prev], pts[index], pts[next]); |
| // if we get a zero, but the pts aren't on top of each other, then |
| // we can just look at the direction |
| if (0 == cross) { |
| // construct the subtract so we get the correct Direction below |
| cross = pts[index].fX - pts[next].fX; |
| } |
| } |
| |
| if (cross) { |
| // record our best guess so far |
| ymax = pts[index].fY; |
| ymaxCross = cross; |
| } |
| } |
| } |
| |
| return ymaxCross ? crossToDir(ymaxCross, dir) : false; |
| } |