blob: 6f8dfcc4d989679c08dbf7a63bfcbd9d0fc219a9 [file] [log] [blame]
/*
* Copyright 2010, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SkImageDecoder.h"
#include "SkImageEncoder.h"
#include "SkColorPriv.h"
#include "SkDither.h"
#include "SkScaledBitmapSampler.h"
#include "SkStream.h"
#include "SkTemplates.h"
#include "SkUtils.h"
// A WebP decoder only, on top of (subset of) libwebp
// For more information on WebP image format, and libwebp library, see:
// http://code.google.com/speed/webp/
// http://www.webmproject.org/code/#libwebp_webp_image_decoder_library
// http://review.webmproject.org/gitweb?p=libwebp.git
#include <stdio.h>
extern "C" {
// If moving libwebp out of skia source tree, path for webp headers must be updated accordingly.
// Here, we enforce using local copy in webp sub-directory.
#include "webp/decode.h"
#include "webp/decode_vp8.h"
#include "webp/encode.h"
}
/* If defined, work around missing padding byte in content generated by webpconv */
#define WEBPCONV_MISSING_PADDING 1
#ifdef ANDROID
#include <cutils/properties.h>
// Key to lookup the size of memory buffer set in system property
static const char KEY_MEM_CAP[] = "ro.media.dec.webp.memcap";
#endif
// this enables timing code to report milliseconds for a decode
//#define TIME_DECODE
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// Define VP8 I/O on top of Skia stream
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// An helper to extract a integer (little endian) from byte array. This is
// called only once per decoding, so no real need to optimize it in any way
static uint32_t getint32l(unsigned char *in) {
int result;
unsigned char *buffer = (unsigned char*) in;
if (buffer == NULL) {
return 0;
}
result = buffer[3];
result = (result << 8) + buffer[2];
result = (result << 8) + buffer[1];
result = (result << 8) + buffer[0];
return result;
}
static const size_t WEBP_VP8_HEADER_SIZE = 30;
static const size_t WEBP_IDECODE_BUFFER_SZ = (1 << 16);
// Parse headers of RIFF container, and check for valid Webp (VP8) content.
static bool webp_parse_header(SkStream* stream, int* width, int* height) {
unsigned char buffer[WEBP_VP8_HEADER_SIZE];
const size_t len = stream->read(buffer, WEBP_VP8_HEADER_SIZE);
if (len != WEBP_VP8_HEADER_SIZE) {
return false; // can't read enough
}
if (WebPGetInfo(buffer, WEBP_VP8_HEADER_SIZE, width, height) == 0) {
return false; // Invalid WebP file.
}
// sanity check for image size that's about to be decoded.
{
Sk64 size;
size.setMul(*width, *height);
if (size.isNeg() || !size.is32()) {
return false;
}
// now check that if we are 4-bytes per pixel, we also don't overflow
if (size.get32() > (0x7FFFFFFF >> 2)) {
return false;
}
}
return true;
}
class SkWEBPImageDecoder: public SkImageDecoder {
public:
virtual Format getFormat() const {
return kWEBP_Format;
}
protected:
virtual bool onDecode(SkStream* stream, SkBitmap* bm, Mode);
private:
bool setDecodeConfig(SkBitmap* decodedBitmap, int width, int height);
};
//////////////////////////////////////////////////////////////////////////
#include "SkTime.h"
class AutoTimeMillis {
public:
AutoTimeMillis(const char label[]) :
fLabel(label) {
if (!fLabel) {
fLabel = "";
}
fNow = SkTime::GetMSecs();
}
~AutoTimeMillis() {
SkDebugf("---- Time (ms): %s %d\n", fLabel, SkTime::GetMSecs() - fNow);
}
private:
const char* fLabel;
SkMSec fNow;
};
///////////////////////////////////////////////////////////////////////////////
// This guy exists just to aid in debugging, as it allows debuggers to just
// set a break-point in one place to see all error exists.
static bool return_false(const SkBitmap& bm, const char msg[]) {
#if 0
SkDebugf("libwebp error %s [%d %d]", msg, bm.width(), bm.height());
#endif
return false; // must always return false
}
typedef struct {
SkBitmap* image;
SkStream* stream;
} WEBPImage;
// WebP library embeds its own YUV to RGB converter. However, High-level API doesn't take benefit
// of (U,v) clipped values being valid for up to 4 pixels, and so there is a significant improvement
// in performance in handling this on our own.
// TODO: use architecture-optimized (eventually hardware-accelerated) YUV converters
#define YUV_HALF (1 << (YUV_FIX - 1))
#define YUV_FIX 16 // fixed-point precision
#define YUV_RANGE_MIN (-227) // min value of r/g/b output
#define YUV_RANGE_MAX (256 + 226) // max value of r/g/b output
static int16_t VP8kVToR[256], VP8kUToB[256];
static int32_t VP8kVToG[256], VP8kUToG[256];
static uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
static void yuv_init_tables() {
int i;
for (i = 0; i < 256; ++i) {
VP8kVToR[i] = (89858 * (i - 128) + YUV_HALF) >> YUV_FIX;
VP8kUToG[i] = -22014 * (i - 128) + YUV_HALF;
VP8kVToG[i] = -45773 * (i - 128);
VP8kUToB[i] = (113618 * (i - 128) + YUV_HALF) >> YUV_FIX;
}
for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) {
const int k = ((i - 16) * 76283 + YUV_HALF) >> YUV_FIX;
VP8kClip[i - YUV_RANGE_MIN] = (k < 0) ? 0 : (k > 255) ? 255 : k;
}
}
// Static global mutex to protect Webp initialization
static SkMutex gYUVMutex;
static bool gYUVReady = false;
static bool yuv_init() {
if (!gYUVReady) {
gYUVMutex.acquire();
if (!gYUVReady) {
yuv_init_tables();
gYUVReady = true;
}
gYUVMutex.release();
}
return gYUVReady;
}
#define PutRGBA(p,r,g,b) (((SkPMColor*) (p))[0] = SkPackARGB32(0xff,(r),(g),(b)))
#define PutRGB565(p,r,g,b) (((SkPMColor16*) (p))[0] = SkPackRGB16((r)>>3,(g)>>2,(b)>>3))
#define PutRGBA4444(p,r,g,b) (((SkPMColor16*) (p))[0] = SkPackARGB4444(0xf,(r)>>4,(g)>>4,(b)>>4))
#define CRGBA(p,y,roff,goff,boff) PutRGBA(p, \
VP8kClip[(y) + (roff) - YUV_RANGE_MIN], \
VP8kClip[(y) + (goff) - YUV_RANGE_MIN], \
VP8kClip[(y) + (boff) - YUV_RANGE_MIN])
#define CRGB565(p,y,roff,goff,boff) PutRGB565(p, \
VP8kClip[(y) + (roff) - YUV_RANGE_MIN], \
VP8kClip[(y) + (goff) - YUV_RANGE_MIN], \
VP8kClip[(y) + (boff) - YUV_RANGE_MIN])
#define CRGBA4444(p,y,roff,goff,boff) PutRGBA4444(p, \
VP8kClip[(y) + (roff) - YUV_RANGE_MIN], \
VP8kClip[(y) + (goff) - YUV_RANGE_MIN], \
VP8kClip[(y) + (boff) - YUV_RANGE_MIN])
static int block_put(const VP8Io* io) {
WEBPImage *p = (WEBPImage*) io->opaque;
SkBitmap* decodedBitmap = p->image;
const int w = io->width;
const int mb_h = io->mb_h;
const uint8_t *y, *y2, *u, *v;
const uint8_t *py, *py2, *pu, *pv;
uint8_t* pout;
uint8_t* pout2;
int i, j;
const int ystride2 = io->y_stride * 2;
int bpp;
SkBitmap::Config config = decodedBitmap->config();
//SkASSERT(!(io->mb_y & 1));
y = io->y;
u = io->u;
v = io->v;
switch (config) {
case SkBitmap::kARGB_8888_Config:
bpp = 4;
break;
case SkBitmap::kRGB_565_Config:
bpp = 2;
break;
case SkBitmap::kARGB_4444_Config:
bpp = 2;
break;
default:
// Unsupported config
return 0;
}
for (j = 0; j < mb_h;) {
pout = decodedBitmap->getAddr8(0, io->mb_y + j);
if (j + 1 < mb_h) {
y2 = y + io->y_stride;
pout2 = decodedBitmap->getAddr8(0, io->mb_y + j + 1);
} else {
y2 = NULL;
pout2 = NULL;
}
// Copy YUV into target buffer
py = y;
pu = u;
pv = v;
py2 = y2;
// Leave test for config out of inner loop. This implies some redundancy in code,
// but help in supporting several configs without degrading performance.
// As a reminder, one must *NOT* put py increment into parameters (i.e. *py++) in the hope to
// improve performance or code readability. Since it is used as argument of a macro which uses it
// several times in its expression, so this would end up in having it too much incremented
switch (config) {
case SkBitmap::kARGB_8888_Config:
for (i = 0; i < w; i += 2) {
// U and V are common for up to 4 pixels
const int r_off = VP8kVToR[*pv];
const int g_off = (VP8kVToG[*pv] + VP8kUToG[*pu]) >> YUV_FIX;
const int b_off = VP8kUToB[*pu];
CRGBA(pout, *py, r_off, g_off, b_off);
pout += bpp;
py++;
// Width shouldn't be odd, so this should always be true
if (i + 1 < w) {
CRGBA(pout, *py, r_off, g_off, b_off);
pout += bpp;
py++;
}
if (pout2) {
CRGBA(pout2, *py2, r_off, g_off, b_off);
pout2 += bpp;
py2++;
// Width shouldn't be odd, so this should always be true
if (i + 1 < w) {
CRGBA(pout2, *py2, r_off, g_off, b_off);
pout2 += bpp;
py2++;
}
}
pu++;
pv++;
}
break;
case SkBitmap::kRGB_565_Config:
for (i = 0; i < w; i += 2) {
// U and V are common for up to 4 pixels
const int r_off = VP8kVToR[*pv];
const int g_off = (VP8kVToG[*pv] + VP8kUToG[*pu]) >> YUV_FIX;
const int b_off = VP8kUToB[*pu];
CRGB565(pout, *py, r_off, g_off, b_off);
pout += bpp;
py++;
// Width shouldn't be odd, so this should always be true
if (i + 1 < w) {
CRGB565(pout, *py, r_off, g_off, b_off);
pout += bpp;
py++;
}
if (pout2) {
CRGB565(pout2, *py2, r_off, g_off, b_off);
pout2 += bpp;
py2++;
// Width shouldn't be odd, so this should always be true
if (i + 1 < w) {
CRGB565(pout2, *py2, r_off, g_off, b_off);
pout2 += bpp;
py2++;
}
}
pu++;
pv++;
}
break;
case SkBitmap::kARGB_4444_Config:
for (i = 0; i < w; i += 2) {
// U and V are common for up to 4 pixels
const int r_off = VP8kVToR[*pv];
const int g_off = (VP8kVToG[*pv] + VP8kUToG[*pu]) >> YUV_FIX;
const int b_off = VP8kUToB[*pu];
CRGBA4444(pout, *py, r_off, g_off, b_off);
pout += bpp;
py++;
// Width shouldn't be odd, so this should always be true
if (i + 1 < w) {
CRGBA4444(pout, *py, r_off, g_off, b_off);
pout += bpp;
py++;
}
if (pout2) {
CRGBA4444(pout2, *py2, r_off, g_off, b_off);
pout2 += bpp;
py2++;
// Width shouldn't be odd, so this should always be true
if (i + 1 < w) {
CRGBA4444(pout2, *py2, r_off, g_off, b_off);
pout2 += bpp;
py2++;
}
}
pu++;
pv++;
}
break;
default:
// Unsupported config (can't happen, but prevents compiler warning)
SkASSERT(0);
break;
}
if (y2) {
// Scanned and populated two rows
y += ystride2;
y2 += ystride2;
j += 2;
} else {
// Skip to next row
y += io->y_stride;
j++;
}
u += io->uv_stride;
v += io->uv_stride;
}
return 1;
}
static int block_setup(VP8Io* io) {
yuv_init();
return 1;
}
static void block_teardown(const VP8Io* io) {
}
static bool webp_init_custom_io(WebPIDecoder* idec, SkBitmap* decodedBitmap) {
if (idec == NULL) {
return false;
}
WEBPImage pSrc;
// Custom Put callback need reference to target image.
pSrc.image = decodedBitmap;
if (!WebPISetIOHooks(idec, block_put, block_setup, block_teardown,
(void*)&pSrc)) {
return false;
}
return true;
}
// Incremental WebP image decoding. Reads input buffer of 64K size iteratively
// and decodes this block to appropriate color-space as per config object.
static bool webp_idecode(SkStream* stream, SkBitmap* decodedBitmap) {
SkAutoLockPixels alp(*decodedBitmap);
stream->rewind();
const uint32_t contentSize = stream->getLength();
WebPIDecoder* idec = WebPINew(MODE_YUV);
if (idec == NULL) {
return false;
}
if (!webp_init_custom_io(idec, decodedBitmap)) {
WebPIDelete(idec);
return false;
}
uint32_t read_buffer_size = contentSize;
if (read_buffer_size > WEBP_IDECODE_BUFFER_SZ) {
read_buffer_size = WEBP_IDECODE_BUFFER_SZ;
}
SkAutoMalloc srcStorage(read_buffer_size);
unsigned char* input = (uint8_t*)srcStorage.get();
if (input == NULL) {
WebPIDelete(idec);
return false;
}
uint32_t bytes_remaining = contentSize;
while (bytes_remaining > 0) {
const uint32_t bytes_to_read =
(bytes_remaining > WEBP_IDECODE_BUFFER_SZ) ?
WEBP_IDECODE_BUFFER_SZ : bytes_remaining;
const size_t bytes_read = stream->read(input, bytes_to_read);
if (bytes_read == 0) {
break;
}
VP8StatusCode status = WebPIAppend(idec, input, bytes_read);
if (status == VP8_STATUS_OK || status == VP8_STATUS_SUSPENDED) {
bytes_remaining -= bytes_read;
} else {
break;
}
}
srcStorage.free();
WebPIDelete(idec);
if (bytes_remaining > 0) {
return false;
} else {
return true;
}
}
bool SkWEBPImageDecoder::setDecodeConfig(SkBitmap* decodedBitmap,
int origWidth, int origHeight) {
bool hasAlpha = false;
SkBitmap::Config config = this->getPrefConfig(k32Bit_SrcDepth, hasAlpha);
// only accept prefConfig if it makes sense for us. YUV converter
// supports output in RGB565, RGBA4444 and RGBA8888 formats.
if (hasAlpha) {
if (config != SkBitmap::kARGB_4444_Config) {
config = SkBitmap::kARGB_8888_Config;
}
} else {
if (config != SkBitmap::kRGB_565_Config &&
config != SkBitmap::kARGB_4444_Config) {
config = SkBitmap::kARGB_8888_Config;
}
}
if (!this->chooseFromOneChoice(config, origWidth, origHeight)) {
return false;
}
decodedBitmap->setConfig(config, origWidth, origHeight, 0);
// Current WEBP specification has no support for alpha layer.
decodedBitmap->setIsOpaque(true);
return true;
}
bool SkWEBPImageDecoder::onDecode(SkStream* stream, SkBitmap* decodedBitmap,
Mode mode) {
#ifdef TIME_DECODE
AutoTimeMillis atm("WEBP Decode");
#endif
int origWidth, origHeight;
if (!webp_parse_header(stream, &origWidth, &origHeight)) {
return false;
}
if (!setDecodeConfig(decodedBitmap, origWidth, origHeight)) {
return false;
}
// If only bounds are requested, done
if (SkImageDecoder::kDecodeBounds_Mode == mode) {
return true;
}
if (!this->allocPixelRef(decodedBitmap, NULL)) {
return return_false(*decodedBitmap, "allocPixelRef");
}
// Decode the WebP image data stream using WebP incremental decoding.
if (!webp_idecode(stream, decodedBitmap)) {
return false;
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
typedef void (*ScanlineImporter)(const uint8_t* in, uint8_t* out, int width,
const SkPMColor* SK_RESTRICT ctable);
static void ARGB_8888_To_RGB(const uint8_t* in, uint8_t* rgb, int width,
const SkPMColor*) {
const uint32_t* SK_RESTRICT src = (const uint32_t*)in;
for (int i = 0; i < width; ++i) {
const uint32_t c = *src++;
rgb[0] = SkGetPackedR32(c);
rgb[1] = SkGetPackedG32(c);
rgb[2] = SkGetPackedB32(c);
rgb += 3;
}
}
static void RGB_565_To_RGB(const uint8_t* in, uint8_t* rgb, int width,
const SkPMColor*) {
const uint16_t* SK_RESTRICT src = (const uint16_t*)in;
for (int i = 0; i < width; ++i) {
const uint16_t c = *src++;
rgb[0] = SkPacked16ToR32(c);
rgb[1] = SkPacked16ToG32(c);
rgb[2] = SkPacked16ToB32(c);
rgb += 3;
}
}
static void ARGB_4444_To_RGB(const uint8_t* in, uint8_t* rgb, int width,
const SkPMColor*) {
const SkPMColor16* SK_RESTRICT src = (const SkPMColor16*)in;
for (int i = 0; i < width; ++i) {
const SkPMColor16 c = *src++;
rgb[0] = SkPacked4444ToR32(c);
rgb[1] = SkPacked4444ToG32(c);
rgb[2] = SkPacked4444ToB32(c);
rgb += 3;
}
}
static void Index8_To_RGB(const uint8_t* in, uint8_t* rgb, int width,
const SkPMColor* SK_RESTRICT ctable) {
const uint8_t* SK_RESTRICT src = (const uint8_t*)in;
for (int i = 0; i < width; ++i) {
const uint32_t c = ctable[*src++];
rgb[0] = SkGetPackedR32(c);
rgb[1] = SkGetPackedG32(c);
rgb[2] = SkGetPackedB32(c);
rgb += 3;
}
}
static ScanlineImporter ChooseImporter(const SkBitmap::Config& config) {
switch (config) {
case SkBitmap::kARGB_8888_Config:
return ARGB_8888_To_RGB;
case SkBitmap::kRGB_565_Config:
return RGB_565_To_RGB;
case SkBitmap::kARGB_4444_Config:
return ARGB_4444_To_RGB;
case SkBitmap::kIndex8_Config:
return Index8_To_RGB;
default:
return NULL;
}
}
static int StreamWriter(const uint8_t* data, size_t data_size,
const WebPPicture* const picture) {
SkWStream* const stream = (SkWStream*)picture->custom_ptr;
return stream->write(data, data_size) ? 1 : 0;
}
class SkWEBPImageEncoder : public SkImageEncoder {
protected:
virtual bool onEncode(SkWStream* stream, const SkBitmap& bm, int quality);
};
bool SkWEBPImageEncoder::onEncode(SkWStream* stream, const SkBitmap& bm,
int quality) {
const SkBitmap::Config config = bm.getConfig();
const ScanlineImporter scanline_import = ChooseImporter(config);
if (NULL == scanline_import) {
return false;
}
SkAutoLockPixels alp(bm);
SkAutoLockColors ctLocker;
if (NULL == bm.getPixels()) {
return false;
}
WebPConfig webp_config;
if (!WebPConfigPreset(&webp_config, WEBP_PRESET_DEFAULT, quality)) {
return false;
}
WebPPicture pic;
WebPPictureInit(&pic);
pic.width = bm.width();
pic.height = bm.height();
pic.writer = StreamWriter;
pic.custom_ptr = (void*)stream;
const SkPMColor* colors = ctLocker.lockColors(bm);
const uint8_t* src = (uint8_t*)bm.getPixels();
const int rgb_stride = pic.width * 3;
// Import (for each scanline) the bit-map image (in appropriate color-space)
// to RGB color space.
uint8_t* rgb = new uint8_t[rgb_stride * pic.height];
for (int y = 0; y < pic.height; ++y) {
scanline_import(src + y * bm.rowBytes(), rgb + y * rgb_stride,
pic.width, colors);
}
bool ok = WebPPictureImportRGB(&pic, rgb, rgb_stride);
delete[] rgb;
ok = ok && WebPEncode(&webp_config, &pic);
WebPPictureFree(&pic);
return ok;
}
///////////////////////////////////////////////////////////////////////////////
#include "SkTRegistry.h"
static SkImageDecoder* DFactory(SkStream* stream) {
int width, height;
if (!webp_parse_header(stream, &width, &height)) {
return false;
}
// Magic matches, call decoder
return SkNEW(SkWEBPImageDecoder);
}
SkImageDecoder* sk_libwebp_dfactory(SkStream* stream) {
return DFactory(stream);
}
static SkImageEncoder* EFactory(SkImageEncoder::Type t) {
return (SkImageEncoder::kWEBP_Type == t) ? SkNEW(SkWEBPImageEncoder) : NULL;
}
SkImageEncoder* sk_libwebp_efactory(SkImageEncoder::Type t) {
return EFactory(t);
}
static SkTRegistry<SkImageDecoder*, SkStream*> gDReg(sk_libwebp_dfactory);
static SkTRegistry<SkImageEncoder*, SkImageEncoder::Type> gEReg(sk_libwebp_efactory);