| /* |
| ** License Applicability. Except to the extent portions of this file are |
| ** made subject to an alternative license as permitted in the SGI Free |
| ** Software License B, Version 1.1 (the "License"), the contents of this |
| ** file are subject only to the provisions of the License. You may not use |
| ** this file except in compliance with the License. You may obtain a copy |
| ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 |
| ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: |
| ** |
| ** http://oss.sgi.com/projects/FreeB |
| ** |
| ** Note that, as provided in the License, the Software is distributed on an |
| ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS |
| ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND |
| ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A |
| ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. |
| ** |
| ** Original Code. The Original Code is: OpenGL Sample Implementation, |
| ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, |
| ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. |
| ** Copyright in any portions created by third parties is as indicated |
| ** elsewhere herein. All Rights Reserved. |
| ** |
| ** Additional Notice Provisions: The application programming interfaces |
| ** established by SGI in conjunction with the Original Code are The |
| ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released |
| ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version |
| ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X |
| ** Window System(R) (Version 1.3), released October 19, 1998. This software |
| ** was created using the OpenGL(R) version 1.2.1 Sample Implementation |
| ** published by SGI, but has not been independently verified as being |
| ** compliant with the OpenGL(R) version 1.2.1 Specification. |
| ** |
| */ |
| /* |
| ** Author: Eric Veach, July 1994. |
| ** |
| ** $Date$ $Revision$ |
| ** $Header: //depot/main/gfx/lib/glu/libtess/geom.c#5 $ |
| */ |
| |
| #include "gluos.h" |
| #include <assert.h> |
| #include "mesh.h" |
| #include "geom.h" |
| |
| int __gl_vertLeq( GLUvertex *u, GLUvertex *v ) |
| { |
| /* Returns TRUE if u is lexicographically <= v. */ |
| |
| return VertLeq( u, v ); |
| } |
| |
| GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w ) |
| { |
| /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w), |
| * evaluates the t-coord of the edge uw at the s-coord of the vertex v. |
| * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v. |
| * If uw is vertical (and thus passes thru v), the result is zero. |
| * |
| * The calculation is extremely accurate and stable, even when v |
| * is very close to u or w. In particular if we set v->t = 0 and |
| * let r be the negated result (this evaluates (uw)(v->s)), then |
| * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t). |
| */ |
| GLdouble gapL, gapR; |
| |
| assert( VertLeq( u, v ) && VertLeq( v, w )); |
| |
| gapL = v->s - u->s; |
| gapR = w->s - v->s; |
| |
| if( gapL + gapR > 0 ) { |
| if( gapL < gapR ) { |
| return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR)); |
| } else { |
| return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR)); |
| } |
| } |
| /* vertical line */ |
| return 0; |
| } |
| |
| GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w ) |
| { |
| /* Returns a number whose sign matches EdgeEval(u,v,w) but which |
| * is cheaper to evaluate. Returns > 0, == 0 , or < 0 |
| * as v is above, on, or below the edge uw. |
| */ |
| GLdouble gapL, gapR; |
| |
| assert( VertLeq( u, v ) && VertLeq( v, w )); |
| |
| gapL = v->s - u->s; |
| gapR = w->s - v->s; |
| |
| if( gapL + gapR > 0 ) { |
| return (v->t - w->t) * gapL + (v->t - u->t) * gapR; |
| } |
| /* vertical line */ |
| return 0; |
| } |
| |
| |
| /*********************************************************************** |
| * Define versions of EdgeSign, EdgeEval with s and t transposed. |
| */ |
| |
| GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w ) |
| { |
| /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w), |
| * evaluates the t-coord of the edge uw at the s-coord of the vertex v. |
| * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v. |
| * If uw is vertical (and thus passes thru v), the result is zero. |
| * |
| * The calculation is extremely accurate and stable, even when v |
| * is very close to u or w. In particular if we set v->s = 0 and |
| * let r be the negated result (this evaluates (uw)(v->t)), then |
| * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s). |
| */ |
| GLdouble gapL, gapR; |
| |
| assert( TransLeq( u, v ) && TransLeq( v, w )); |
| |
| gapL = v->t - u->t; |
| gapR = w->t - v->t; |
| |
| if( gapL + gapR > 0 ) { |
| if( gapL < gapR ) { |
| return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR)); |
| } else { |
| return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR)); |
| } |
| } |
| /* vertical line */ |
| return 0; |
| } |
| |
| GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w ) |
| { |
| /* Returns a number whose sign matches TransEval(u,v,w) but which |
| * is cheaper to evaluate. Returns > 0, == 0 , or < 0 |
| * as v is above, on, or below the edge uw. |
| */ |
| GLdouble gapL, gapR; |
| |
| assert( TransLeq( u, v ) && TransLeq( v, w )); |
| |
| gapL = v->t - u->t; |
| gapR = w->t - v->t; |
| |
| if( gapL + gapR > 0 ) { |
| return (v->s - w->s) * gapL + (v->s - u->s) * gapR; |
| } |
| /* vertical line */ |
| return 0; |
| } |
| |
| |
| int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w ) |
| { |
| /* For almost-degenerate situations, the results are not reliable. |
| * Unless the floating-point arithmetic can be performed without |
| * rounding errors, *any* implementation will give incorrect results |
| * on some degenerate inputs, so the client must have some way to |
| * handle this situation. |
| */ |
| return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0; |
| } |
| |
| /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b), |
| * or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces |
| * this in the rare case that one argument is slightly negative. |
| * The implementation is extremely stable numerically. |
| * In particular it guarantees that the result r satisfies |
| * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate |
| * even when a and b differ greatly in magnitude. |
| */ |
| #define RealInterpolate(a,x,b,y) \ |
| (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \ |
| ((a <= b) ? ((b == 0) ? ((x+y) / 2) \ |
| : (x + (y-x) * (a/(a+b)))) \ |
| : (y + (x-y) * (b/(a+b))))) |
| |
| #ifndef FOR_TRITE_TEST_PROGRAM |
| #define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y) |
| #else |
| |
| /* Claim: the ONLY property the sweep algorithm relies on is that |
| * MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that. |
| */ |
| #include <stdlib.h> |
| extern int RandomInterpolate; |
| |
| GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y) |
| { |
| printf("*********************%d\n",RandomInterpolate); |
| if( RandomInterpolate ) { |
| a = 1.2 * drand48() - 0.1; |
| a = (a < 0) ? 0 : ((a > 1) ? 1 : a); |
| b = 1.0 - a; |
| } |
| return RealInterpolate(a,x,b,y); |
| } |
| |
| #endif |
| |
| #define Swap(a,b) do { GLUvertex *t = a; a = b; b = t; } while(0) |
| |
| void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1, |
| GLUvertex *o2, GLUvertex *d2, |
| GLUvertex *v ) |
| /* Given edges (o1,d1) and (o2,d2), compute their point of intersection. |
| * The computed point is guaranteed to lie in the intersection of the |
| * bounding rectangles defined by each edge. |
| */ |
| { |
| GLdouble z1, z2; |
| |
| /* This is certainly not the most efficient way to find the intersection |
| * of two line segments, but it is very numerically stable. |
| * |
| * Strategy: find the two middle vertices in the VertLeq ordering, |
| * and interpolate the intersection s-value from these. Then repeat |
| * using the TransLeq ordering to find the intersection t-value. |
| */ |
| |
| if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); } |
| if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); } |
| if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); } |
| |
| if( ! VertLeq( o2, d1 )) { |
| /* Technically, no intersection -- do our best */ |
| v->s = (o2->s + d1->s) / 2; |
| } else if( VertLeq( d1, d2 )) { |
| /* Interpolate between o2 and d1 */ |
| z1 = EdgeEval( o1, o2, d1 ); |
| z2 = EdgeEval( o2, d1, d2 ); |
| if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } |
| v->s = Interpolate( z1, o2->s, z2, d1->s ); |
| } else { |
| /* Interpolate between o2 and d2 */ |
| z1 = EdgeSign( o1, o2, d1 ); |
| z2 = -EdgeSign( o1, d2, d1 ); |
| if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } |
| v->s = Interpolate( z1, o2->s, z2, d2->s ); |
| } |
| |
| /* Now repeat the process for t */ |
| |
| if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); } |
| if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); } |
| if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); } |
| |
| if( ! TransLeq( o2, d1 )) { |
| /* Technically, no intersection -- do our best */ |
| v->t = (o2->t + d1->t) / 2; |
| } else if( TransLeq( d1, d2 )) { |
| /* Interpolate between o2 and d1 */ |
| z1 = TransEval( o1, o2, d1 ); |
| z2 = TransEval( o2, d1, d2 ); |
| if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } |
| v->t = Interpolate( z1, o2->t, z2, d1->t ); |
| } else { |
| /* Interpolate between o2 and d2 */ |
| z1 = TransSign( o1, o2, d1 ); |
| z2 = -TransSign( o1, d2, d1 ); |
| if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; } |
| v->t = Interpolate( z1, o2->t, z2, d2->t ); |
| } |
| } |