| // Another approach is to start with the implicit form of one curve and solve |
| // (seek implicit coefficients in QuadraticParameter.cpp |
| // by substituting in the parametric form of the other. |
| // The downside of this approach is that early rejects are difficult to come by. |
| // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step |
| |
| |
| #include "CurveIntersection.h" |
| #include "Intersections.h" |
| #include "QuadraticParameterization.h" |
| #include "QuarticRoot.h" |
| #include "QuadraticUtilities.h" |
| |
| /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F |
| * and given x = at^2 + bt + c (the parameterized form) |
| * y = dt^2 + et + f |
| * then |
| * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F |
| */ |
| |
| static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double roots[4]) { |
| double a, b, c; |
| set_abc(&q2[0].x, a, b, c); |
| double d, e, f; |
| set_abc(&q2[0].y, d, e, f); |
| const double t4 = i.x2() * a * a |
| + i.xy() * a * d |
| + i.y2() * d * d; |
| const double t3 = 2 * i.x2() * a * b |
| + i.xy() * (a * e + b * d) |
| + 2 * i.y2() * d * e; |
| const double t2 = i.x2() * (b * b + 2 * a * c) |
| + i.xy() * (c * d + b * e + a * f) |
| + i.y2() * (e * e + 2 * d * f) |
| + i.x() * a |
| + i.y() * d; |
| const double t1 = 2 * i.x2() * b * c |
| + i.xy() * (c * e + b * f) |
| + 2 * i.y2() * e * f |
| + i.x() * b |
| + i.y() * e; |
| const double t0 = i.x2() * c * c |
| + i.xy() * c * f |
| + i.y2() * f * f |
| + i.x() * c |
| + i.y() * f |
| + i.c(); |
| return quarticRoots(t4, t3, t2, t1, t0, roots); |
| } |
| |
| static void addValidRoots(const double roots[4], const int count, const int side, Intersections& i) { |
| int index; |
| for (index = 0; index < count; ++index) { |
| if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) { |
| continue; |
| } |
| double t = 1 - roots[index]; |
| if (approximately_less_than_zero(t)) { |
| t = 0; |
| } else if (approximately_greater_than_one(t)) { |
| t = 1; |
| } |
| i.insertOne(t, side); |
| } |
| } |
| |
| static bool onlyEndPtsInCommon(const Quadratic& q1, const Quadratic& q2, Intersections& i) { |
| // the idea here is to see at minimum do a quick reject by rotating all points |
| // to either side of the line formed by connecting the endpoints |
| // if the opposite curves points are on the line or on the other side, the |
| // curves at most intersect at the endpoints |
| for (int oddMan = 0; oddMan < 3; ++oddMan) { |
| const _Point* endPt[2]; |
| for (int opp = 1; opp < 3; ++opp) { |
| int end = oddMan ^ opp; |
| if (end == 3) { |
| end = opp; |
| } |
| endPt[opp - 1] = &q1[end]; |
| } |
| double origX = endPt[0]->x; |
| double origY = endPt[0]->y; |
| double adj = endPt[1]->x - origX; |
| double opp = endPt[1]->y - origY; |
| double sign = (q1[oddMan].y - origY) * adj - (q1[oddMan].x - origX) * opp; |
| assert(!approximately_zero(sign)); |
| for (int n = 0; n < 3; ++n) { |
| double test = (q2[n].y - origY) * adj - (q2[n].x - origX) * opp; |
| if (test * sign > 0) { |
| goto tryNextHalfPlane; |
| } |
| } |
| for (int i1 = 0; i1 < 3; i1 += 2) { |
| for (int i2 = 0; i2 < 3; i2 += 2) { |
| if (q1[i1] == q2[i2]) { |
| i.insertOne(i1 >> 1, 0); |
| i.insertOne(i2 >> 1, 1); |
| } |
| } |
| } |
| assert(i.fUsed < 3); |
| return true; |
| tryNextHalfPlane: |
| ; |
| } |
| return false; |
| } |
| |
| bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) { |
| // if the quads share an end point, check to see if they overlap |
| |
| if (onlyEndPtsInCommon(q1, q2, i)) { |
| assert(i.insertBalanced()); |
| return i.intersected(); |
| } |
| QuadImplicitForm i1(q1); |
| QuadImplicitForm i2(q2); |
| if (i1.implicit_match(i2)) { |
| // FIXME: compute T values |
| // compute the intersections of the ends to find the coincident span |
| bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y); |
| double t; |
| if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) { |
| i.addCoincident(t, 0); |
| } |
| if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) { |
| i.addCoincident(t, 1); |
| } |
| useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y); |
| if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) { |
| i.addCoincident(0, t); |
| } |
| if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) { |
| i.addCoincident(1, t); |
| } |
| assert(i.fCoincidentUsed <= 2); |
| return i.fCoincidentUsed > 0; |
| } |
| double roots1[4], roots2[4]; |
| int rootCount = findRoots(i2, q1, roots1); |
| // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1 |
| #ifndef NDEBUG |
| int rootCount2 = |
| #endif |
| findRoots(i1, q2, roots2); |
| assert(rootCount == rootCount2); |
| addValidRoots(roots1, rootCount, 0, i); |
| addValidRoots(roots2, rootCount, 1, i); |
| _Point pts[4]; |
| bool matches[4]; |
| int flipCheck[4]; |
| int index, ndex2; |
| int flipIndex = 0; |
| for (ndex2 = 0; ndex2 < i.fUsed2; ++ndex2) { |
| xy_at_t(q2, i.fT[1][ndex2], pts[ndex2].x, pts[ndex2].y); |
| matches[ndex2] = false; |
| } |
| for (index = 0; index < i.fUsed; ) { |
| _Point xy; |
| xy_at_t(q1, i.fT[0][index], xy.x, xy.y); |
| for (ndex2 = 0; ndex2 < i.fUsed2; ++ndex2) { |
| if (approximately_equal(pts[ndex2].x, xy.x) && approximately_equal(pts[ndex2].y, xy.y)) { |
| assert(flipIndex < 4); |
| flipCheck[flipIndex++] = ndex2; |
| matches[ndex2] = true; |
| goto next; |
| } |
| } |
| if (--i.fUsed > index) { |
| memmove(&i.fT[0][index], &i.fT[0][index + 1], (i.fUsed - index) * sizeof(i.fT[0][0])); |
| continue; |
| } |
| next: |
| ++index; |
| } |
| for (ndex2 = 0; ndex2 < i.fUsed2; ) { |
| if (!matches[ndex2]) { |
| if (--i.fUsed2 > ndex2) { |
| memmove(&i.fT[1][ndex2], &i.fT[1][ndex2 + 1], (i.fUsed2 - ndex2) * sizeof(i.fT[1][0])); |
| memmove(&matches[ndex2], &matches[ndex2 + 1], (i.fUsed2 - ndex2) * sizeof(matches[0])); |
| continue; |
| } |
| } |
| ++ndex2; |
| } |
| i.fFlip = i.fUsed >= 2 && flipCheck[0] > flipCheck[1]; |
| assert(i.insertBalanced()); |
| return i.intersected(); |
| } |