| // from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c |
| /* |
| * Roots3And4.c |
| * |
| * Utility functions to find cubic and quartic roots, |
| * coefficients are passed like this: |
| * |
| * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0 |
| * |
| * The functions return the number of non-complex roots and |
| * put the values into the s array. |
| * |
| * Author: Jochen Schwarze (schwarze@isa.de) |
| * |
| * Jan 26, 1990 Version for Graphics Gems |
| * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic |
| * (reported by Mark Podlipec), |
| * Old-style function definitions, |
| * IsZero() as a macro |
| * Nov 23, 1990 Some systems do not declare acos() and cbrt() in |
| * <math.h>, though the functions exist in the library. |
| * If large coefficients are used, EQN_EPS should be |
| * reduced considerably (e.g. to 1E-30), results will be |
| * correct but multiple roots might be reported more |
| * than once. |
| */ |
| |
| #include <math.h> |
| #include "CubicUtilities.h" |
| #include "QuarticRoot.h" |
| |
| const double PI = 4 * atan(1); |
| |
| // unlike quadraticRoots in QuadraticUtilities.cpp, this does not discard |
| // real roots <= 0 or >= 1 |
| static int quadraticRootsX(const double A, const double B, const double C, |
| double s[2]) { |
| if (approximately_zero(A)) { |
| if (approximately_zero(B)) { |
| s[0] = 0; |
| return C == 0; |
| } |
| s[0] = -C / B; |
| return 1; |
| } |
| /* normal form: x^2 + px + q = 0 */ |
| const double p = B / (2 * A); |
| const double q = C / A; |
| const double D = p * p - q; |
| if (D < 0) { |
| return 0; |
| } |
| double sqrt_D = sqrt(D); |
| if (approximately_less_than_zero(sqrt_D)) { |
| s[0] = -p; |
| return 1; |
| } |
| s[0] = sqrt_D - p; |
| s[1] = -sqrt_D - p; |
| return 2; |
| } |
| |
| #define USE_GEMS 0 |
| #if USE_GEMS |
| // unlike cubicRoots in CubicUtilities.cpp, this does not discard |
| // real roots <= 0 or >= 1 |
| static int cubicRootsX(const double A, const double B, const double C, |
| const double D, double s[3]) { |
| int num; |
| /* normal form: x^3 + Ax^2 + Bx + C = 0 */ |
| const double invA = 1 / A; |
| const double a = B * invA; |
| const double b = C * invA; |
| const double c = D * invA; |
| /* substitute x = y - a/3 to eliminate quadric term: |
| x^3 +px + q = 0 */ |
| const double a2 = a * a; |
| const double Q = (-a2 + b * 3) / 9; |
| const double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
| /* use Cardano's formula */ |
| const double Q3 = Q * Q * Q; |
| const double R2plusQ3 = R * R + Q3; |
| if (approximately_zero(R2plusQ3)) { |
| if (approximately_zero(R)) {/* one triple solution */ |
| s[0] = 0; |
| num = 1; |
| } else { /* one single and one double solution */ |
| |
| double u = cube_root(-R); |
| s[0] = 2 * u; |
| s[1] = -u; |
| num = 2; |
| } |
| } |
| else if (R2plusQ3 < 0) { /* Casus irreducibilis: three real solutions */ |
| const double theta = acos(-R / sqrt(-Q3)) / 3; |
| const double _2RootQ = 2 * sqrt(-Q); |
| s[0] = _2RootQ * cos(theta); |
| s[1] = -_2RootQ * cos(theta + PI / 3); |
| s[2] = -_2RootQ * cos(theta - PI / 3); |
| num = 3; |
| } else { /* one real solution */ |
| const double sqrt_D = sqrt(R2plusQ3); |
| const double u = cube_root(sqrt_D - R); |
| const double v = -cube_root(sqrt_D + R); |
| s[0] = u + v; |
| num = 1; |
| } |
| /* resubstitute */ |
| const double sub = a / 3; |
| for (int i = 0; i < num; ++i) { |
| s[i] -= sub; |
| } |
| return num; |
| } |
| #else |
| |
| static int cubicRootsX(double A, double B, double C, double D, double s[3]) { |
| if (approximately_zero(A)) { // we're just a quadratic |
| return quadraticRootsX(B, C, D, s); |
| } |
| if (approximately_zero(D)) { // 0 is one root |
| int num = quadraticRootsX(A, B, C, s); |
| for (int i = 0; i < num; ++i) { |
| if (approximately_zero(s[i])) { |
| return num; |
| } |
| } |
| s[num++] = 0; |
| return num; |
| } |
| if (approximately_zero(A + B + C + D)) { // 1 is one root |
| int num = quadraticRootsX(A, A + B, -D, s); |
| for (int i = 0; i < num; ++i) { |
| if (approximately_equal(s[i], 1)) { |
| return num; |
| } |
| } |
| s[num++] = 1; |
| return num; |
| } |
| double a, b, c; |
| { |
| double invA = 1 / A; |
| a = B * invA; |
| b = C * invA; |
| c = D * invA; |
| } |
| double a2 = a * a; |
| double Q = (a2 - b * 3) / 9; |
| double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
| double Q3 = Q * Q * Q; |
| double R2MinusQ3 = R * R - Q3; |
| double adiv3 = a / 3; |
| double r; |
| double* roots = s; |
| |
| if (R2MinusQ3 > -FLT_EPSILON / 10 && R2MinusQ3 < FLT_EPSILON / 10 ) { |
| if (approximately_zero(R)) {/* one triple solution */ |
| *roots++ = -adiv3; |
| } else { /* one single and one double solution */ |
| |
| double u = cube_root(-R); |
| *roots++ = 2 * u - adiv3; |
| *roots++ = -u - adiv3; |
| } |
| } |
| else if (R2MinusQ3 < 0) // we have 3 real roots |
| { |
| double theta = acos(R / sqrt(Q3)); |
| double neg2RootQ = -2 * sqrt(Q); |
| |
| r = neg2RootQ * cos(theta / 3) - adiv3; |
| *roots++ = r; |
| |
| r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; |
| *roots++ = r; |
| |
| r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; |
| *roots++ = r; |
| } |
| else // we have 1 real root |
| { |
| double A = fabs(R) + sqrt(R2MinusQ3); |
| A = cube_root(A); |
| if (R > 0) { |
| A = -A; |
| } |
| if (A != 0) { |
| A += Q / A; |
| } |
| r = A - adiv3; |
| *roots++ = r; |
| } |
| return (int)(roots - s); |
| } |
| #endif |
| |
| int quarticRoots(const double A, const double B, const double C, const double D, |
| const double E, double s[4]) { |
| if (approximately_zero(A)) { |
| if (approximately_zero(B)) { |
| return quadraticRootsX(C, D, E, s); |
| } |
| return cubicRootsX(B, C, D, E, s); |
| } |
| int num; |
| int i; |
| if (approximately_zero(E)) { // 0 is one root |
| num = cubicRootsX(A, B, C, D, s); |
| for (i = 0; i < num; ++i) { |
| if (approximately_zero(s[i])) { |
| return num; |
| } |
| } |
| s[num++] = 0; |
| return num; |
| } |
| if (approximately_zero(A + B + C + D + E)) { // 1 is one root |
| num = cubicRootsX(A, A + B, -(D + E), -E, s); // note that -C==A+B+D+E |
| for (i = 0; i < num; ++i) { |
| if (approximately_equal(s[i], 1)) { |
| return num; |
| } |
| } |
| s[num++] = 1; |
| return num; |
| } |
| double u, v; |
| /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */ |
| const double invA = 1 / A; |
| const double a = B * invA; |
| const double b = C * invA; |
| const double c = D * invA; |
| const double d = E * invA; |
| /* substitute x = y - a/4 to eliminate cubic term: |
| x^4 + px^2 + qx + r = 0 */ |
| const double a2 = a * a; |
| const double p = -3 * a2 / 8 + b; |
| const double q = a2 * a / 8 - a * b / 2 + c; |
| const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d; |
| if (approximately_zero(r)) { |
| /* no absolute term: y(y^3 + py + q) = 0 */ |
| num = cubicRootsX(1, 0, p, q, s); |
| s[num++] = 0; |
| } else { |
| /* solve the resolvent cubic ... */ |
| (void) cubicRootsX(1, -p / 2, -r, r * p / 2 - q * q / 8, s); |
| /* ... and take the one real solution ... */ |
| const double z = s[0]; |
| /* ... to build two quadric equations */ |
| u = z * z - r; |
| v = 2 * z - p; |
| if (approximately_zero(u)) { |
| u = 0; |
| } else if (u > 0) { |
| u = sqrt(u); |
| } else { |
| return 0; |
| } |
| if (approximately_zero(v)) { |
| v = 0; |
| } else if (v > 0) { |
| v = sqrt(v); |
| } else { |
| return 0; |
| } |
| num = quadraticRootsX(1, q < 0 ? -v : v, z - u, s); |
| num += quadraticRootsX(1, q < 0 ? v : -v, z + u, s + num); |
| } |
| // eliminate duplicates |
| for (i = 0; i < num - 1; ++i) { |
| for (int j = i + 1; j < num; ) { |
| if (approximately_equal(s[i], s[j])) { |
| if (j < --num) { |
| s[j] = s[num]; |
| } |
| } else { |
| ++j; |
| } |
| } |
| } |
| /* resubstitute */ |
| const double sub = a / 4; |
| for (i = 0; i < num; ++i) { |
| s[i] -= sub; |
| } |
| return num; |
| } |
| |
| |