| #include <assert.h> |
| #include <math.h> |
| #include "CubicUtilities.h" |
| #include "Intersection_Tests.h" |
| |
| namespace QuarticRootTest { |
| |
| #include "QuarticRoot.cpp" |
| |
| } |
| |
| double mulA[] = {-3, -1, 1, 3}; |
| size_t mulACount = sizeof(mulA) / sizeof(mulA[0]); |
| double rootB[] = {-9, -6, -3, -1, 0, 1, 3, 6, 9}; |
| size_t rootBCount = sizeof(rootB) / sizeof(rootB[0]); |
| double rootC[] = {-8, -6, -2, -1, 0, 1, 2, 6, 8}; |
| size_t rootCCount = sizeof(rootC) / sizeof(rootC[0]); |
| double rootD[] = {-7, -4, -1, 0, 1, 2, 5}; |
| size_t rootDCount = sizeof(rootD) / sizeof(rootD[0]); |
| double rootE[] = {-5, -1, 0, 1, 7}; |
| size_t rootECount = sizeof(rootE) / sizeof(rootE[0]); |
| |
| static void quadraticTest() { |
| // (x - a)(x - b) == x^2 - (a + b)x + ab |
| for (size_t aIndex = 0; aIndex < mulACount; ++aIndex) { |
| for (size_t bIndex = 0; bIndex < rootBCount; ++bIndex) { |
| for (size_t cIndex = 0; cIndex < rootCCount; ++cIndex) { |
| const double A = mulA[aIndex]; |
| const double B = rootB[bIndex]; |
| const double C = rootC[cIndex]; |
| const double b = A * (B + C); |
| const double c = A * B * C; |
| double roots[2]; |
| const int rootCount = QuarticRootTest::quadraticRootsX(A, b, c, roots); |
| const int expected = 1 + (B != C); |
| assert(rootCount == expected); |
| assert(approximately_equal(roots[0], -B) |
| || approximately_equal(roots[0], -C)); |
| if (B != C) { |
| assert(!approximately_equal(roots[0], roots[1])); |
| assert(approximately_equal(roots[1], -B) |
| || approximately_equal(roots[1], -C)); |
| } |
| } |
| } |
| } |
| } |
| |
| static void cubicTest() { |
| // (x - a)(x - b)(x - c) == x^3 - (a + b + c)x^2 + (ab + bc + ac)x - abc |
| for (size_t aIndex = 0; aIndex < mulACount; ++aIndex) { |
| for (size_t bIndex = 0; bIndex < rootBCount; ++bIndex) { |
| for (size_t cIndex = 0; cIndex < rootCCount; ++cIndex) { |
| for (size_t dIndex = 0; dIndex < rootDCount; ++dIndex) { |
| const double A = mulA[aIndex]; |
| const double B = rootB[bIndex]; |
| const double C = rootC[cIndex]; |
| const double D = rootD[dIndex]; |
| const double b = A * (B + C + D); |
| const double c = A * (B * C + C * D + B * D); |
| const double d = A * B * C * D; |
| double roots[3]; |
| const int rootCount = QuarticRootTest::cubicRootsX(A, b, c, d, roots); |
| const int expected = 1 + (B != C) + (B != D && C != D); |
| assert(rootCount == expected); |
| assert(approximately_equal(roots[0], -B) |
| || approximately_equal(roots[0], -C) |
| || approximately_equal(roots[0], -D)); |
| if (expected > 1) { |
| assert(!approximately_equal(roots[0], roots[1])); |
| assert(approximately_equal(roots[1], -B) |
| || approximately_equal(roots[1], -C) |
| || approximately_equal(roots[1], -D)); |
| if (expected > 2) { |
| assert(!approximately_equal(roots[0], roots[2]) |
| && !approximately_equal(roots[1], roots[2])); |
| assert(approximately_equal(roots[2], -B) |
| || approximately_equal(roots[2], -C) |
| || approximately_equal(roots[2], -D)); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static void quarticTest() { |
| // (x - a)(x - b)(x - c)(x - d) == x^4 - (a + b + c + d)x^3 |
| // + (ab + bc + cd + ac + bd + cd)x^2 - (abc + bcd + abd + acd) * x + abcd |
| for (size_t aIndex = 0; aIndex < mulACount; ++aIndex) { |
| for (size_t bIndex = 0; bIndex < rootBCount; ++bIndex) { |
| for (size_t cIndex = 0; cIndex < rootCCount; ++cIndex) { |
| for (size_t dIndex = 0; dIndex < rootDCount; ++dIndex) { |
| for (size_t eIndex = 0; eIndex < rootECount; ++eIndex) { |
| const double A = mulA[aIndex]; |
| const double B = rootB[bIndex]; |
| const double C = rootC[cIndex]; |
| const double D = rootD[dIndex]; |
| const double E = rootE[eIndex]; |
| const double b = A * (B + C + D + E); |
| const double c = A * (B * C + C * D + B * D + B * E + C * E + D * E); |
| const double d = A * (B * C * D + B * C * E + B * D * E + C * D * E); |
| const double e = A * B * C * D * E; |
| double roots[4]; |
| const int rootCount = QuarticRootTest::quarticRoots(A, b, c, d, e, roots); |
| const int expected = 1 + (B != C) + (B != D && C != D) + (B != E && C != E && D != E); |
| assert(rootCount == expected); |
| assert(approximately_equal(roots[0], -B) |
| || approximately_equal(roots[0], -C) |
| || approximately_equal(roots[0], -D) |
| || approximately_equal(roots[0], -E)); |
| if (expected > 1) { |
| assert(!approximately_equal(roots[0], roots[1])); |
| assert(approximately_equal(roots[1], -B) |
| || approximately_equal(roots[1], -C) |
| || approximately_equal(roots[1], -D) |
| || approximately_equal(roots[1], -E)); |
| if (expected > 2) { |
| assert(!approximately_equal(roots[0], roots[2]) |
| && !approximately_equal(roots[1], roots[2])); |
| assert(approximately_equal(roots[2], -B) |
| || approximately_equal(roots[2], -C) |
| || approximately_equal(roots[2], -D) |
| || approximately_equal(roots[2], -E)); |
| if (expected > 3) { |
| assert(!approximately_equal(roots[0], roots[3]) |
| && !approximately_equal(roots[1], roots[3]) |
| && !approximately_equal(roots[2], roots[3])); |
| assert(approximately_equal(roots[3], -B) |
| || approximately_equal(roots[3], -C) |
| || approximately_equal(roots[3], -D) |
| || approximately_equal(roots[3], -E)); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void QuarticRoot_Test() { |
| quadraticTest(); |
| cubicTest(); |
| quarticTest(); |
| } |