| |
| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include <ctype.h> |
| #include "SkDrawPath.h" |
| #include "SkParse.h" |
| #include "SkPoint.h" |
| #include "SkUtils.h" |
| #define QUADRATIC_APPROXIMATION 1 |
| |
| #if QUADRATIC_APPROXIMATION |
| //////////////////////////////////////////////////////////////////////////////////// |
| //functions to approximate a cubic using two quadratics |
| |
| // midPt sets the first argument to be the midpoint of the other two |
| // it is used by quadApprox |
| static inline void midPt(SkPoint& dest,const SkPoint& a,const SkPoint& b) |
| { |
| dest.set(SkScalarAve(a.fX, b.fX),SkScalarAve(a.fY, b.fY)); |
| } |
| // quadApprox - makes an approximation, which we hope is faster |
| static void quadApprox(SkPath &fPath, const SkPoint &p0, const SkPoint &p1, const SkPoint &p2) |
| { |
| //divide the cubic up into two cubics, then convert them into quadratics |
| //define our points |
| SkPoint c,j,k,l,m,n,o,p,q, mid; |
| fPath.getLastPt(&c); |
| midPt(j, p0, c); |
| midPt(k, p0, p1); |
| midPt(l, p1, p2); |
| midPt(o, j, k); |
| midPt(p, k, l); |
| midPt(q, o, p); |
| //compute the first half |
| m.set(SkScalarHalf(3*j.fX - c.fX), SkScalarHalf(3*j.fY - c.fY)); |
| n.set(SkScalarHalf(3*o.fX -q.fX), SkScalarHalf(3*o.fY - q.fY)); |
| midPt(mid,m,n); |
| fPath.quadTo(mid,q); |
| c = q; |
| //compute the second half |
| m.set(SkScalarHalf(3*p.fX - c.fX), SkScalarHalf(3*p.fY - c.fY)); |
| n.set(SkScalarHalf(3*l.fX -p2.fX),SkScalarHalf(3*l.fY -p2.fY)); |
| midPt(mid,m,n); |
| fPath.quadTo(mid,p2); |
| } |
| #endif |
| |
| |
| static inline bool is_between(int c, int min, int max) |
| { |
| return (unsigned)(c - min) <= (unsigned)(max - min); |
| } |
| |
| static inline bool is_ws(int c) |
| { |
| return is_between(c, 1, 32); |
| } |
| |
| static inline bool is_digit(int c) |
| { |
| return is_between(c, '0', '9'); |
| } |
| |
| static inline bool is_sep(int c) |
| { |
| return is_ws(c) || c == ','; |
| } |
| |
| static const char* skip_ws(const char str[]) |
| { |
| SkASSERT(str); |
| while (is_ws(*str)) |
| str++; |
| return str; |
| } |
| |
| static const char* skip_sep(const char str[]) |
| { |
| SkASSERT(str); |
| while (is_sep(*str)) |
| str++; |
| return str; |
| } |
| |
| static const char* find_points(const char str[], SkPoint value[], int count, |
| bool isRelative, SkPoint* relative) |
| { |
| str = SkParse::FindScalars(str, &value[0].fX, count * 2); |
| if (isRelative) { |
| for (int index = 0; index < count; index++) { |
| value[index].fX += relative->fX; |
| value[index].fY += relative->fY; |
| } |
| } |
| return str; |
| } |
| |
| static const char* find_scalar(const char str[], SkScalar* value, |
| bool isRelative, SkScalar relative) |
| { |
| str = SkParse::FindScalar(str, value); |
| if (isRelative) |
| *value += relative; |
| return str; |
| } |
| |
| void SkDrawPath::parseSVG() { |
| fPath.reset(); |
| const char* data = d.c_str(); |
| SkPoint f = {0, 0}; |
| SkPoint c = {0, 0}; |
| SkPoint lastc = {0, 0}; |
| SkPoint points[3]; |
| char op = '\0'; |
| char previousOp = '\0'; |
| bool relative = false; |
| do { |
| data = skip_ws(data); |
| if (data[0] == '\0') |
| break; |
| char ch = data[0]; |
| if (is_digit(ch) || ch == '-' || ch == '+') { |
| if (op == '\0') |
| return; |
| } |
| else { |
| op = ch; |
| relative = false; |
| if (islower(op)) { |
| op = (char) toupper(op); |
| relative = true; |
| } |
| data++; |
| data = skip_sep(data); |
| } |
| switch (op) { |
| case 'M': |
| data = find_points(data, points, 1, relative, &c); |
| fPath.moveTo(points[0]); |
| op = 'L'; |
| c = points[0]; |
| break; |
| case 'L': |
| data = find_points(data, points, 1, relative, &c); |
| fPath.lineTo(points[0]); |
| c = points[0]; |
| break; |
| case 'H': { |
| SkScalar x; |
| data = find_scalar(data, &x, relative, c.fX); |
| fPath.lineTo(x, c.fY); |
| c.fX = x; |
| } |
| break; |
| case 'V': { |
| SkScalar y; |
| data = find_scalar(data, &y, relative, c.fY); |
| fPath.lineTo(c.fX, y); |
| c.fY = y; |
| } |
| break; |
| case 'C': |
| data = find_points(data, points, 3, relative, &c); |
| goto cubicCommon; |
| case 'S': |
| data = find_points(data, &points[1], 2, relative, &c); |
| points[0] = c; |
| if (previousOp == 'C' || previousOp == 'S') { |
| points[0].fX -= lastc.fX - c.fX; |
| points[0].fY -= lastc.fY - c.fY; |
| } |
| cubicCommon: |
| // if (data[0] == '\0') |
| // return; |
| #if QUADRATIC_APPROXIMATION |
| quadApprox(fPath, points[0], points[1], points[2]); |
| #else //this way just does a boring, slow old cubic |
| fPath.cubicTo(points[0], points[1], points[2]); |
| #endif |
| //if we are using the quadApprox, lastc is what it would have been if we had used |
| //cubicTo |
| lastc = points[1]; |
| c = points[2]; |
| break; |
| case 'Q': // Quadratic Bezier Curve |
| data = find_points(data, points, 2, relative, &c); |
| goto quadraticCommon; |
| case 'T': |
| data = find_points(data, &points[1], 1, relative, &c); |
| points[0] = points[1]; |
| if (previousOp == 'Q' || previousOp == 'T') { |
| points[0].fX = c.fX * 2 - lastc.fX; |
| points[0].fY = c.fY * 2 - lastc.fY; |
| } |
| quadraticCommon: |
| fPath.quadTo(points[0], points[1]); |
| lastc = points[0]; |
| c = points[1]; |
| break; |
| case 'Z': |
| fPath.close(); |
| #if 0 // !!! still a bug? |
| if (fPath.isEmpty() && (f.fX != 0 || f.fY != 0)) { |
| c.fX -= SkScalar.Epsilon; // !!! enough? |
| fPath.moveTo(c); |
| fPath.lineTo(f); |
| fPath.close(); |
| } |
| #endif |
| c = f; |
| op = '\0'; |
| break; |
| case '~': { |
| SkPoint args[2]; |
| data = find_points(data, args, 2, false, NULL); |
| fPath.moveTo(args[0].fX, args[0].fY); |
| fPath.lineTo(args[1].fX, args[1].fY); |
| } |
| break; |
| default: |
| SkASSERT(0); |
| return; |
| } |
| if (previousOp == 0) |
| f = c; |
| previousOp = op; |
| } while (data[0] > 0); |
| } |
| |