| |
| /* |
| * Copyright 2008 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkPoint.h" |
| |
| void SkIPoint::rotateCW(SkIPoint* dst) const { |
| SkASSERT(dst); |
| |
| // use a tmp in case this == dst |
| int32_t tmp = fX; |
| dst->fX = -fY; |
| dst->fY = tmp; |
| } |
| |
| void SkIPoint::rotateCCW(SkIPoint* dst) const { |
| SkASSERT(dst); |
| |
| // use a tmp in case this == dst |
| int32_t tmp = fX; |
| dst->fX = fY; |
| dst->fY = -tmp; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) { |
| SkASSERT(stride >= sizeof(SkPoint)); |
| |
| ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l), |
| SkIntToScalar(t)); |
| ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l), |
| SkIntToScalar(b)); |
| ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r), |
| SkIntToScalar(b)); |
| ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r), |
| SkIntToScalar(t)); |
| } |
| |
| void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, |
| size_t stride) { |
| SkASSERT(stride >= sizeof(SkPoint)); |
| |
| ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t); |
| ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b); |
| ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b); |
| ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t); |
| } |
| |
| void SkPoint::rotateCW(SkPoint* dst) const { |
| SkASSERT(dst); |
| |
| // use a tmp in case this == dst |
| SkScalar tmp = fX; |
| dst->fX = -fY; |
| dst->fY = tmp; |
| } |
| |
| void SkPoint::rotateCCW(SkPoint* dst) const { |
| SkASSERT(dst); |
| |
| // use a tmp in case this == dst |
| SkScalar tmp = fX; |
| dst->fX = fY; |
| dst->fY = -tmp; |
| } |
| |
| void SkPoint::scale(SkScalar scale, SkPoint* dst) const { |
| SkASSERT(dst); |
| dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale)); |
| } |
| |
| bool SkPoint::normalize() { |
| return this->setLength(fX, fY, SK_Scalar1); |
| } |
| |
| bool SkPoint::setNormalize(SkScalar x, SkScalar y) { |
| return this->setLength(x, y, SK_Scalar1); |
| } |
| |
| bool SkPoint::setLength(SkScalar length) { |
| return this->setLength(fX, fY, length); |
| } |
| |
| #ifdef SK_SCALAR_IS_FLOAT |
| |
| // Returns the square of the Euclidian distance to (dx,dy). |
| static inline float getLengthSquared(float dx, float dy) { |
| return dx * dx + dy * dy; |
| } |
| |
| // Calculates the square of the Euclidian distance to (dx,dy) and stores it in |
| // *lengthSquared. Returns true if the distance is judged to be "nearly zero". |
| // |
| // This logic is encapsulated in a helper method to make it explicit that we |
| // always perform this check in the same manner, to avoid inconsistencies |
| // (see http://code.google.com/p/skia/issues/detail?id=560 ). |
| static inline bool isLengthNearlyZero(float dx, float dy, |
| float *lengthSquared) { |
| *lengthSquared = getLengthSquared(dx, dy); |
| return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero); |
| } |
| |
| SkScalar SkPoint::Normalize(SkPoint* pt) { |
| float mag2; |
| if (!isLengthNearlyZero(pt->fX, pt->fY, &mag2)) { |
| float mag = sk_float_sqrt(mag2); |
| float scale = 1.0f / mag; |
| pt->fX = pt->fX * scale; |
| pt->fY = pt->fY * scale; |
| return mag; |
| } |
| return 0; |
| } |
| |
| SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { |
| return sk_float_sqrt(getLengthSquared(dx, dy)); |
| } |
| |
| bool SkPoint::setLength(float x, float y, float length) { |
| float mag2; |
| if (!isLengthNearlyZero(x, y, &mag2)) { |
| float scale = length / sk_float_sqrt(mag2); |
| fX = x * scale; |
| fY = y * scale; |
| return true; |
| } |
| return false; |
| } |
| |
| #else |
| |
| #include "Sk64.h" |
| |
| // Returns the square of the Euclidian distance to (dx,dy) in *result. |
| static inline void getLengthSquared(SkScalar dx, SkScalar dy, Sk64 *result) { |
| Sk64 dySqr; |
| |
| result->setMul(dx, dx); |
| dySqr.setMul(dy, dy); |
| result->add(dySqr); |
| } |
| |
| // Calculates the square of the Euclidian distance to (dx,dy) and stores it in |
| // *lengthSquared. Returns true if the distance is judged to be "nearly zero". |
| // |
| // This logic is encapsulated in a helper method to make it explicit that we |
| // always perform this check in the same manner, to avoid inconsistencies |
| // (see http://code.google.com/p/skia/issues/detail?id=560 ). |
| static inline bool isLengthNearlyZero(SkScalar dx, SkScalar dy, |
| Sk64 *lengthSquared) { |
| Sk64 tolSqr; |
| getLengthSquared(dx, dy, lengthSquared); |
| |
| // we want nearlyzero^2, but to compute it fast we want to just do a |
| // 32bit multiply, so we require that it not exceed 31bits. That is true |
| // if nearlyzero is <= 0xB504, which should be trivial, since usually |
| // nearlyzero is a very small fixed-point value. |
| SkASSERT(SK_ScalarNearlyZero <= 0xB504); |
| |
| tolSqr.set(0, SK_ScalarNearlyZero * SK_ScalarNearlyZero); |
| return *lengthSquared <= tolSqr; |
| } |
| |
| SkScalar SkPoint::Normalize(SkPoint* pt) { |
| Sk64 mag2; |
| if (!isLengthNearlyZero(pt->fX, pt->fY, &mag2)) { |
| SkScalar mag = mag2.getSqrt(); |
| SkScalar scale = SkScalarInvert(mag); |
| pt->fX = SkScalarMul(pt->fX, scale); |
| pt->fY = SkScalarMul(pt->fY, scale); |
| return mag; |
| } |
| return 0; |
| } |
| |
| bool SkPoint::CanNormalize(SkScalar dx, SkScalar dy) { |
| Sk64 mag2_unused; |
| return !isLengthNearlyZero(dx, dy, &mag2_unused); |
| } |
| |
| SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { |
| Sk64 tmp; |
| getLengthSquared(dx, dy, &tmp); |
| return tmp.getSqrt(); |
| } |
| |
| #ifdef SK_DEBUGx |
| static SkFixed fixlen(SkFixed x, SkFixed y) { |
| float fx = (float)x; |
| float fy = (float)y; |
| |
| return (int)floorf(sqrtf(fx*fx + fy*fy) + 0.5f); |
| } |
| #endif |
| |
| static inline uint32_t squarefixed(unsigned x) { |
| x >>= 16; |
| return x*x; |
| } |
| |
| #if 1 // Newton iter for setLength |
| |
| static inline unsigned invsqrt_iter(unsigned V, unsigned U) { |
| unsigned x = V * U >> 14; |
| x = x * U >> 14; |
| x = (3 << 14) - x; |
| x = (U >> 1) * x >> 14; |
| return x; |
| } |
| |
| static const uint16_t gInvSqrt14GuessTable[] = { |
| 0x4000, 0x3c57, 0x393e, 0x3695, 0x3441, 0x3235, 0x3061, |
| 0x2ebd, 0x2d41, 0x2be7, 0x2aaa, 0x2987, 0x287a, 0x2780, |
| 0x2698, 0x25be, 0x24f3, 0x2434, 0x2380, 0x22d6, 0x2235, |
| 0x219d, 0x210c, 0x2083, 0x2000, 0x1f82, 0x1f0b, 0x1e99, |
| 0x1e2b, 0x1dc2, 0x1d5d, 0x1cfc, 0x1c9f, 0x1c45, 0x1bee, |
| 0x1b9b, 0x1b4a, 0x1afc, 0x1ab0, 0x1a67, 0x1a20, 0x19dc, |
| 0x1999, 0x1959, 0x191a, 0x18dd, 0x18a2, 0x1868, 0x1830, |
| 0x17fa, 0x17c4, 0x1791, 0x175e, 0x172d, 0x16fd, 0x16ce |
| }; |
| |
| #define BUILD_INVSQRT_TABLEx |
| #ifdef BUILD_INVSQRT_TABLE |
| static void build_invsqrt14_guess_table() { |
| for (int i = 8; i <= 63; i++) { |
| unsigned x = SkToU16((1 << 28) / SkSqrt32(i << 25)); |
| printf("0x%x, ", x); |
| } |
| printf("\n"); |
| } |
| #endif |
| |
| static unsigned fast_invsqrt(uint32_t x) { |
| #ifdef BUILD_INVSQRT_TABLE |
| unsigned top2 = x >> 25; |
| SkASSERT(top2 >= 8 && top2 <= 63); |
| |
| static bool gOnce; |
| if (!gOnce) { |
| build_invsqrt14_guess_table(); |
| gOnce = true; |
| } |
| #endif |
| |
| unsigned V = x >> 14; // make V .14 |
| |
| unsigned top = x >> 25; |
| SkASSERT(top >= 8 && top <= 63); |
| SkASSERT(top - 8 < SK_ARRAY_COUNT(gInvSqrt14GuessTable)); |
| unsigned U = gInvSqrt14GuessTable[top - 8]; |
| |
| U = invsqrt_iter(V, U); |
| return invsqrt_iter(V, U); |
| } |
| |
| /* We "normalize" x,y to be .14 values (so we can square them and stay 32bits. |
| Then we Newton-iterate this in .14 space to compute the invser-sqrt, and |
| scale by it at the end. The .14 space means we can execute our iterations |
| and stay in 32bits as well, making the multiplies much cheaper than calling |
| SkFixedMul. |
| */ |
| bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) { |
| if (ox == 0) { |
| if (oy == 0) { |
| return false; |
| } |
| this->set(0, SkApplySign(length, SkExtractSign(oy))); |
| return true; |
| } |
| if (oy == 0) { |
| this->set(SkApplySign(length, SkExtractSign(ox)), 0); |
| return true; |
| } |
| |
| unsigned x = SkAbs32(ox); |
| unsigned y = SkAbs32(oy); |
| int zeros = SkCLZ(x | y); |
| |
| // make x,y 1.14 values so our fast sqr won't overflow |
| if (zeros > 17) { |
| x <<= zeros - 17; |
| y <<= zeros - 17; |
| } else { |
| x >>= 17 - zeros; |
| y >>= 17 - zeros; |
| } |
| SkASSERT((x | y) <= 0x7FFF); |
| |
| unsigned invrt = fast_invsqrt(x*x + y*y); |
| |
| x = x * invrt >> 12; |
| y = y * invrt >> 12; |
| |
| if (length != SK_Fixed1) { |
| x = SkFixedMul(x, length); |
| y = SkFixedMul(y, length); |
| } |
| this->set(SkApplySign(x, SkExtractSign(ox)), |
| SkApplySign(y, SkExtractSign(oy))); |
| return true; |
| } |
| #else |
| /* |
| Normalize x,y, and then scale them by length. |
| |
| The obvious way to do this would be the following: |
| S64 tmp1, tmp2; |
| tmp1.setMul(x,x); |
| tmp2.setMul(y,y); |
| tmp1.add(tmp2); |
| len = tmp1.getSqrt(); |
| x' = SkFixedDiv(x, len); |
| y' = SkFixedDiv(y, len); |
| This is fine, but slower than what we do below. |
| |
| The present technique does not compute the starting length, but |
| rather fiddles with x,y iteratively, all the while checking its |
| magnitude^2 (avoiding a sqrt). |
| |
| We normalize by first shifting x,y so that at least one of them |
| has bit 31 set (after taking the abs of them). |
| Then we loop, refining x,y by squaring them and comparing |
| against a very large 1.0 (1 << 28), and then adding or subtracting |
| a delta (which itself is reduced by half each time through the loop). |
| For speed we want the squaring to be with a simple integer mul. To keep |
| that from overflowing we shift our coordinates down until we are dealing |
| with at most 15 bits (2^15-1)^2 * 2 says withing 32 bits) |
| When our square is close to 1.0, we shift x,y down into fixed range. |
| */ |
| bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) { |
| if (ox == 0) { |
| if (oy == 0) |
| return false; |
| this->set(0, SkApplySign(length, SkExtractSign(oy))); |
| return true; |
| } |
| if (oy == 0) { |
| this->set(SkApplySign(length, SkExtractSign(ox)), 0); |
| return true; |
| } |
| |
| SkFixed x = SkAbs32(ox); |
| SkFixed y = SkAbs32(oy); |
| |
| // shift x,y so that the greater of them is 15bits (1.14 fixed point) |
| { |
| int shift = SkCLZ(x | y); |
| // make them .30 |
| x <<= shift - 1; |
| y <<= shift - 1; |
| } |
| |
| SkFixed dx = x; |
| SkFixed dy = y; |
| |
| for (int i = 0; i < 17; i++) { |
| dx >>= 1; |
| dy >>= 1; |
| |
| U32 len2 = squarefixed(x) + squarefixed(y); |
| if (len2 >> 28) { |
| x -= dx; |
| y -= dy; |
| } else { |
| x += dx; |
| y += dy; |
| } |
| } |
| x >>= 14; |
| y >>= 14; |
| |
| #ifdef SK_DEBUGx // measure how far we are from unit-length |
| { |
| static int gMaxError; |
| static int gMaxDiff; |
| |
| SkFixed len = fixlen(x, y); |
| int err = len - SK_Fixed1; |
| err = SkAbs32(err); |
| |
| if (err > gMaxError) { |
| gMaxError = err; |
| SkDebugf("gMaxError %d\n", err); |
| } |
| |
| float fx = SkAbs32(ox)/65536.0f; |
| float fy = SkAbs32(oy)/65536.0f; |
| float mag = sqrtf(fx*fx + fy*fy); |
| fx /= mag; |
| fy /= mag; |
| SkFixed xx = (int)floorf(fx * 65536 + 0.5f); |
| SkFixed yy = (int)floorf(fy * 65536 + 0.5f); |
| err = SkMax32(SkAbs32(xx-x), SkAbs32(yy-y)); |
| if (err > gMaxDiff) { |
| gMaxDiff = err; |
| SkDebugf("gMaxDiff %d\n", err); |
| } |
| } |
| #endif |
| |
| x = SkApplySign(x, SkExtractSign(ox)); |
| y = SkApplySign(y, SkExtractSign(oy)); |
| if (length != SK_Fixed1) { |
| x = SkFixedMul(x, length); |
| y = SkFixedMul(y, length); |
| } |
| |
| this->set(x, y); |
| return true; |
| } |
| #endif |
| |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkScalar SkPoint::distanceToLineBetweenSqd(const SkPoint& a, |
| const SkPoint& b, |
| Side* side) const { |
| |
| SkVector u = b - a; |
| SkVector v = *this - a; |
| |
| SkScalar uLengthSqd = u.lengthSqd(); |
| SkScalar det = u.cross(v); |
| if (NULL != side) { |
| SkASSERT(-1 == SkPoint::kLeft_Side && |
| 0 == SkPoint::kOn_Side && |
| 1 == kRight_Side); |
| *side = (Side) SkScalarSignAsInt(det); |
| } |
| return SkScalarMulDiv(det, det, uLengthSqd); |
| } |
| |
| SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a, |
| const SkPoint& b) const { |
| // See comments to distanceToLineBetweenSqd. If the projection of c onto |
| // u is between a and b then this returns the same result as that |
| // function. Otherwise, it returns the distance to the closer of a and |
| // b. Let the projection of v onto u be v'. There are three cases: |
| // 1. v' points opposite to u. c is not between a and b and is closer |
| // to a than b. |
| // 2. v' points along u and has magnitude less than y. c is between |
| // a and b and the distance to the segment is the same as distance |
| // to the line ab. |
| // 3. v' points along u and has greater magnitude than u. c is not |
| // not between a and b and is closer to b than a. |
| // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're |
| // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise |
| // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to |
| // avoid a sqrt to compute |u|. |
| |
| SkVector u = b - a; |
| SkVector v = *this - a; |
| |
| SkScalar uLengthSqd = u.lengthSqd(); |
| SkScalar uDotV = SkPoint::DotProduct(u, v); |
| |
| if (uDotV <= 0) { |
| return v.lengthSqd(); |
| } else if (uDotV > uLengthSqd) { |
| return b.distanceToSqd(*this); |
| } else { |
| SkScalar det = u.cross(v); |
| return SkScalarMulDiv(det, det, uLengthSqd); |
| } |
| } |