blob: 8b7d2d0285dbe6f7eb847c6079089142003a4a5c [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrContext.h"
#include "effects/GrConvolutionEffect.h"
#include "effects/GrSingleTextureEffect.h"
#include "effects/GrConfigConversionEffect.h"
#include "GrBufferAllocPool.h"
#include "GrGpu.h"
#include "GrIndexBuffer.h"
#include "GrInOrderDrawBuffer.h"
#include "GrPathRenderer.h"
#include "GrPathUtils.h"
#include "GrResourceCache.h"
#include "GrSoftwarePathRenderer.h"
#include "GrStencilBuffer.h"
#include "GrTextStrike.h"
#include "SkTLazy.h"
#include "SkTLS.h"
#include "SkTrace.h"
SK_DEFINE_INST_COUNT(GrContext)
SK_DEFINE_INST_COUNT(GrDrawState)
// It can be useful to set this to kNo_BufferedDraw to test whether a bug is caused by using the
// InOrderDrawBuffer, to compare performance of using/not using InOrderDrawBuffer, or to make
// debugging easier.
#define DEFAULT_BUFFERING (GR_DISABLE_DRAW_BUFFERING ? kNo_BufferedDraw : kYes_BufferedDraw)
#define MAX_BLUR_SIGMA 4.0f
// When we're using coverage AA but the blend is incompatible (given gpu
// limitations) should we disable AA or draw wrong?
#define DISABLE_COVERAGE_AA_FOR_BLEND 1
#if GR_DEBUG
// change this to a 1 to see notifications when partial coverage fails
#define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0
#else
#define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0
#endif
static const size_t MAX_TEXTURE_CACHE_COUNT = 256;
static const size_t MAX_TEXTURE_CACHE_BYTES = 16 * 1024 * 1024;
static const size_t DRAW_BUFFER_VBPOOL_BUFFER_SIZE = 1 << 15;
static const int DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS = 4;
static const size_t DRAW_BUFFER_IBPOOL_BUFFER_SIZE = 1 << 11;
static const int DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS = 4;
#define ASSERT_OWNED_RESOURCE(R) GrAssert(!(R) || (R)->getContext() == this)
GrContext* GrContext::Create(GrEngine engine,
GrPlatform3DContext context3D) {
GrContext* ctx = NULL;
GrGpu* fGpu = GrGpu::Create(engine, context3D);
if (NULL != fGpu) {
ctx = SkNEW_ARGS(GrContext, (fGpu));
fGpu->unref();
}
return ctx;
}
namespace {
void* CreateThreadInstanceCount() {
return SkNEW_ARGS(int, (0));
}
void DeleteThreadInstanceCount(void* v) {
delete reinterpret_cast<int*>(v);
}
#define THREAD_INSTANCE_COUNT \
(*reinterpret_cast<int*>(SkTLS::Get(CreateThreadInstanceCount, \
DeleteThreadInstanceCount)))
}
int GrContext::GetThreadInstanceCount() {
return THREAD_INSTANCE_COUNT;
}
GrContext::~GrContext() {
for (int i = 0; i < fCleanUpData.count(); ++i) {
(*fCleanUpData[i].fFunc)(this, fCleanUpData[i].fInfo);
}
this->flush();
// Since the gpu can hold scratch textures, give it a chance to let go
// of them before freeing the texture cache
fGpu->purgeResources();
delete fTextureCache;
fTextureCache = NULL;
delete fFontCache;
delete fDrawBuffer;
delete fDrawBufferVBAllocPool;
delete fDrawBufferIBAllocPool;
fAARectRenderer->unref();
fGpu->unref();
GrSafeUnref(fPathRendererChain);
GrSafeUnref(fSoftwarePathRenderer);
fDrawState->unref();
--THREAD_INSTANCE_COUNT;
}
void GrContext::contextLost() {
contextDestroyed();
this->setupDrawBuffer();
}
void GrContext::contextDestroyed() {
// abandon first to so destructors
// don't try to free the resources in the API.
fGpu->abandonResources();
// a path renderer may be holding onto resources that
// are now unusable
GrSafeSetNull(fPathRendererChain);
GrSafeSetNull(fSoftwarePathRenderer);
delete fDrawBuffer;
fDrawBuffer = NULL;
delete fDrawBufferVBAllocPool;
fDrawBufferVBAllocPool = NULL;
delete fDrawBufferIBAllocPool;
fDrawBufferIBAllocPool = NULL;
fAARectRenderer->reset();
fTextureCache->purgeAllUnlocked();
fFontCache->freeAll();
fGpu->markContextDirty();
}
void GrContext::resetContext() {
fGpu->markContextDirty();
}
void GrContext::freeGpuResources() {
this->flush();
fGpu->purgeResources();
fAARectRenderer->reset();
fTextureCache->purgeAllUnlocked();
fFontCache->freeAll();
// a path renderer may be holding onto resources
GrSafeSetNull(fPathRendererChain);
GrSafeSetNull(fSoftwarePathRenderer);
}
size_t GrContext::getGpuTextureCacheBytes() const {
return fTextureCache->getCachedResourceBytes();
}
////////////////////////////////////////////////////////////////////////////////
namespace {
void scale_rect(SkRect* rect, float xScale, float yScale) {
rect->fLeft = SkScalarMul(rect->fLeft, SkFloatToScalar(xScale));
rect->fTop = SkScalarMul(rect->fTop, SkFloatToScalar(yScale));
rect->fRight = SkScalarMul(rect->fRight, SkFloatToScalar(xScale));
rect->fBottom = SkScalarMul(rect->fBottom, SkFloatToScalar(yScale));
}
float adjust_sigma(float sigma, int *scaleFactor, int *radius) {
*scaleFactor = 1;
while (sigma > MAX_BLUR_SIGMA) {
*scaleFactor *= 2;
sigma *= 0.5f;
}
*radius = static_cast<int>(ceilf(sigma * 3.0f));
GrAssert(*radius <= GrConvolutionEffect::kMaxKernelRadius);
return sigma;
}
void convolve_gaussian(GrDrawTarget* target,
GrTexture* texture,
const SkRect& rect,
float sigma,
int radius,
Gr1DKernelEffect::Direction direction) {
GrRenderTarget* rt = target->drawState()->getRenderTarget();
GrDrawTarget::AutoStateRestore asr(target, GrDrawTarget::kReset_ASRInit);
GrDrawState* drawState = target->drawState();
drawState->setRenderTarget(rt);
GrMatrix sampleM;
sampleM.setIDiv(texture->width(), texture->height());
SkAutoTUnref<GrConvolutionEffect> conv(SkNEW_ARGS(GrConvolutionEffect,
(texture, direction, radius,
sigma)));
drawState->sampler(0)->setCustomStage(conv, sampleM);
target->drawSimpleRect(rect, NULL);
}
}
GrTexture* GrContext::findTexture(const GrCacheKey& key) {
return static_cast<GrTexture*>(fTextureCache->find(key.key()));
}
GrTexture* GrContext::findTexture(const GrTextureDesc& desc,
const GrCacheData& cacheData,
const GrTextureParams* params) {
GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheData, false);
GrResource* resource = fTextureCache->find(resourceKey);
return static_cast<GrTexture*>(resource);
}
bool GrContext::isTextureInCache(const GrTextureDesc& desc,
const GrCacheData& cacheData,
const GrTextureParams* params) const {
GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheData, false);
return fTextureCache->hasKey(resourceKey);
}
void GrContext::addStencilBuffer(GrStencilBuffer* sb) {
ASSERT_OWNED_RESOURCE(sb);
GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(sb->width(),
sb->height(),
sb->numSamples());
fTextureCache->create(resourceKey, sb);
}
GrStencilBuffer* GrContext::findStencilBuffer(int width, int height,
int sampleCnt) {
GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(width,
height,
sampleCnt);
GrResource* resource = fTextureCache->find(resourceKey);
return static_cast<GrStencilBuffer*>(resource);
}
static void stretchImage(void* dst,
int dstW,
int dstH,
void* src,
int srcW,
int srcH,
int bpp) {
GrFixed dx = (srcW << 16) / dstW;
GrFixed dy = (srcH << 16) / dstH;
GrFixed y = dy >> 1;
int dstXLimit = dstW*bpp;
for (int j = 0; j < dstH; ++j) {
GrFixed x = dx >> 1;
void* srcRow = (uint8_t*)src + (y>>16)*srcW*bpp;
void* dstRow = (uint8_t*)dst + j*dstW*bpp;
for (int i = 0; i < dstXLimit; i += bpp) {
memcpy((uint8_t*) dstRow + i,
(uint8_t*) srcRow + (x>>16)*bpp,
bpp);
x += dx;
}
y += dy;
}
}
// The desired texture is NPOT and tiled but that isn't supported by
// the current hardware. Resize the texture to be a POT
GrTexture* GrContext::createResizedTexture(const GrTextureDesc& desc,
const GrCacheData& cacheData,
void* srcData,
size_t rowBytes,
bool needsFiltering) {
GrTexture* clampedTexture = this->findTexture(desc, cacheData, NULL);
if (NULL == clampedTexture) {
clampedTexture = this->createTexture(NULL, desc, cacheData, srcData, rowBytes);
GrAssert(NULL != clampedTexture);
if (NULL == clampedTexture) {
return NULL;
}
}
clampedTexture->ref();
GrTextureDesc rtDesc = desc;
rtDesc.fFlags = rtDesc.fFlags |
kRenderTarget_GrTextureFlagBit |
kNoStencil_GrTextureFlagBit;
rtDesc.fWidth = GrNextPow2(GrMax(desc.fWidth, 64));
rtDesc.fHeight = GrNextPow2(GrMax(desc.fHeight, 64));
GrTexture* texture = fGpu->createTexture(rtDesc, NULL, 0);
if (NULL != texture) {
GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit);
GrDrawState* drawState = fGpu->drawState();
drawState->setRenderTarget(texture->asRenderTarget());
// if filtering is not desired then we want to ensure all
// texels in the resampled image are copies of texels from
// the original.
GrTextureParams params(SkShader::kClamp_TileMode, needsFiltering);
drawState->createTextureEffect(0, clampedTexture, GrMatrix::I(), params);
static const GrVertexLayout layout =
GrDrawTarget::StageTexCoordVertexLayoutBit(0,0);
GrDrawTarget::AutoReleaseGeometry arg(fGpu, layout, 4, 0);
if (arg.succeeded()) {
GrPoint* verts = (GrPoint*) arg.vertices();
verts[0].setIRectFan(0, 0,
texture->width(),
texture->height(),
2*sizeof(GrPoint));
verts[1].setIRectFan(0, 0, 1, 1, 2*sizeof(GrPoint));
fGpu->drawNonIndexed(kTriangleFan_GrPrimitiveType,
0, 4);
}
texture->releaseRenderTarget();
} else {
// TODO: Our CPU stretch doesn't filter. But we create separate
// stretched textures when the sampler state is either filtered or
// not. Either implement filtered stretch blit on CPU or just create
// one when FBO case fails.
rtDesc.fFlags = kNone_GrTextureFlags;
// no longer need to clamp at min RT size.
rtDesc.fWidth = GrNextPow2(desc.fWidth);
rtDesc.fHeight = GrNextPow2(desc.fHeight);
int bpp = GrBytesPerPixel(desc.fConfig);
SkAutoSMalloc<128*128*4> stretchedPixels(bpp *
rtDesc.fWidth *
rtDesc.fHeight);
stretchImage(stretchedPixels.get(), rtDesc.fWidth, rtDesc.fHeight,
srcData, desc.fWidth, desc.fHeight, bpp);
size_t stretchedRowBytes = rtDesc.fWidth * bpp;
GrTexture* texture = fGpu->createTexture(rtDesc,
stretchedPixels.get(),
stretchedRowBytes);
GrAssert(NULL != texture);
}
clampedTexture->unref();
return texture;
}
GrTexture* GrContext::createTexture(
const GrTextureParams* params,
const GrTextureDesc& desc,
const GrCacheData& cacheData,
void* srcData,
size_t rowBytes) {
SK_TRACE_EVENT0("GrContext::createAndLockTexture");
#if GR_DUMP_TEXTURE_UPLOAD
GrPrintf("GrContext::createAndLockTexture [%d %d]\n", desc.fWidth, desc.fHeight);
#endif
GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheData, false);
SkAutoTUnref<GrTexture> texture;
if (GrTexture::NeedsResizing(resourceKey)) {
texture.reset(this->createResizedTexture(desc, cacheData,
srcData, rowBytes,
GrTexture::NeedsFiltering(resourceKey)));
} else {
texture.reset(fGpu->createTexture(desc, srcData, rowBytes));
}
if (NULL != texture) {
fTextureCache->create(resourceKey, texture);
}
return texture;
}
GrTexture* GrContext::lockScratchTexture(const GrTextureDesc& inDesc,
ScratchTexMatch match) {
GrTextureDesc desc = inDesc;
GrCacheData cacheData(GrCacheData::kScratch_CacheID);
GrAssert((desc.fFlags & kRenderTarget_GrTextureFlagBit) ||
!(desc.fFlags & kNoStencil_GrTextureFlagBit));
if (kExact_ScratchTexMatch != match) {
// bin by pow2 with a reasonable min
static const int MIN_SIZE = 256;
desc.fWidth = GrMax(MIN_SIZE, GrNextPow2(desc.fWidth));
desc.fHeight = GrMax(MIN_SIZE, GrNextPow2(desc.fHeight));
}
GrResource* resource = NULL;
int origWidth = desc.fWidth;
int origHeight = desc.fHeight;
bool doubledW = false;
bool doubledH = false;
do {
GrResourceKey key = GrTexture::ComputeKey(fGpu, NULL, desc, cacheData, true);
resource = fTextureCache->find(key);
// if we miss, relax the fit of the flags...
// then try doubling width... then height.
if (NULL != resource || kExact_ScratchTexMatch == match) {
break;
}
// We no longer try to reuse textures that were previously used as render targets in
// situations where no RT is needed; doing otherwise can confuse the video driver and
// cause significant performance problems in some cases.
if (desc.fFlags & kNoStencil_GrTextureFlagBit) {
desc.fFlags = desc.fFlags & ~kNoStencil_GrTextureFlagBit;
} else if (!doubledW) {
desc.fFlags = inDesc.fFlags;
desc.fWidth *= 2;
doubledW = true;
} else if (!doubledH) {
desc.fFlags = inDesc.fFlags;
desc.fWidth = origWidth;
desc.fHeight *= 2;
doubledH = true;
} else {
break;
}
} while (true);
if (NULL == resource) {
desc.fFlags = inDesc.fFlags;
desc.fWidth = origWidth;
desc.fHeight = origHeight;
SkAutoTUnref<GrTexture> texture(fGpu->createTexture(desc, NULL, 0));
if (NULL != texture) {
GrResourceKey key = GrTexture::ComputeKey(fGpu, NULL,
texture->desc(),
cacheData,
true);
fTextureCache->create(key, texture);
resource = texture;
}
}
// If the caller gives us the same desc/sampler twice we don't want
// to return the same texture the second time (unless it was previously
// released). So make it exclusive to hide it from future searches.
if (NULL != resource) {
fTextureCache->makeExclusive(resource->getCacheEntry());
}
return static_cast<GrTexture*>(resource);
}
void GrContext::addExistingTextureToCache(GrTexture* texture) {
if (NULL == texture) {
return;
}
// This texture should already have a cache entry since it was once
// attached
GrAssert(NULL != texture->getCacheEntry());
// Conceptually, the cache entry is going to assume responsibility
// for the creation ref.
GrAssert(1 == texture->getRefCnt());
// Since this texture came from an AutoScratchTexture it should
// still be in the exclusive pile
fTextureCache->makeNonExclusive(texture->getCacheEntry());
this->purgeCache();
}
void GrContext::unlockScratchTexture(GrTexture* texture) {
ASSERT_OWNED_RESOURCE(texture);
GrAssert(NULL != texture->getCacheEntry());
// If this is a scratch texture we detached it from the cache
// while it was locked (to avoid two callers simultaneously getting
// the same texture).
if (GrTexture::IsScratchTexture(texture->getCacheEntry()->key())) {
fTextureCache->makeNonExclusive(texture->getCacheEntry());
}
this->purgeCache();
}
void GrContext::purgeCache() {
if (NULL != fTextureCache) {
fTextureCache->purgeAsNeeded();
}
}
GrTexture* GrContext::createUncachedTexture(const GrTextureDesc& descIn,
void* srcData,
size_t rowBytes) {
GrTextureDesc descCopy = descIn;
return fGpu->createTexture(descCopy, srcData, rowBytes);
}
void GrContext::getTextureCacheLimits(int* maxTextures,
size_t* maxTextureBytes) const {
fTextureCache->getLimits(maxTextures, maxTextureBytes);
}
void GrContext::setTextureCacheLimits(int maxTextures, size_t maxTextureBytes) {
fTextureCache->setLimits(maxTextures, maxTextureBytes);
}
int GrContext::getMaxTextureSize() const {
return fGpu->getCaps().maxTextureSize();
}
int GrContext::getMaxRenderTargetSize() const {
return fGpu->getCaps().maxRenderTargetSize();
}
///////////////////////////////////////////////////////////////////////////////
GrTexture* GrContext::createPlatformTexture(const GrPlatformTextureDesc& desc) {
return fGpu->createPlatformTexture(desc);
}
GrRenderTarget* GrContext::createPlatformRenderTarget(const GrPlatformRenderTargetDesc& desc) {
return fGpu->createPlatformRenderTarget(desc);
}
///////////////////////////////////////////////////////////////////////////////
bool GrContext::supportsIndex8PixelConfig(const GrTextureParams* params,
int width, int height) const {
const GrDrawTarget::Caps& caps = fGpu->getCaps();
if (!caps.eightBitPaletteSupport()) {
return false;
}
bool isPow2 = GrIsPow2(width) && GrIsPow2(height);
if (!isPow2) {
bool tiled = NULL != params && params->isTiled();
if (tiled && !caps.npotTextureTileSupport()) {
return false;
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
const GrClipData* GrContext::getClip() const {
return fGpu->getClip();
}
void GrContext::setClip(const GrClipData* clipData) {
fGpu->setClip(clipData);
fDrawState->setState(GrDrawState::kClip_StateBit,
clipData->fClipStack && !clipData->fClipStack->isWideOpen());
}
////////////////////////////////////////////////////////////////////////////////
void GrContext::clear(const GrIRect* rect,
const GrColor color,
GrRenderTarget* target) {
this->prepareToDraw(NULL, DEFAULT_BUFFERING)->clear(rect, color, target);
}
void GrContext::drawPaint(const GrPaint& origPaint) {
// set rect to be big enough to fill the space, but not super-huge, so we
// don't overflow fixed-point implementations
GrRect r;
r.setLTRB(0, 0,
GrIntToScalar(getRenderTarget()->width()),
GrIntToScalar(getRenderTarget()->height()));
GrMatrix inverse;
SkTCopyOnFirstWrite<GrPaint> paint(origPaint);
AutoMatrix am;
// We attempt to map r by the inverse matrix and draw that. mapRect will
// map the four corners and bound them with a new rect. This will not
// produce a correct result for some perspective matrices.
if (!this->getMatrix().hasPerspective()) {
if (!fDrawState->getViewInverse(&inverse)) {
GrPrintf("Could not invert matrix\n");
return;
}
inverse.mapRect(&r);
} else {
if (!am.setIdentity(this, paint.writable())) {
GrPrintf("Could not invert matrix\n");
return;
}
}
// by definition this fills the entire clip, no need for AA
if (paint->isAntiAlias()) {
paint.writable()->setAntiAlias(false);
}
this->drawRect(*paint, r);
}
////////////////////////////////////////////////////////////////////////////////
namespace {
inline bool disable_coverage_aa_for_blend(GrDrawTarget* target) {
return DISABLE_COVERAGE_AA_FOR_BLEND && !target->canApplyCoverage();
}
}
////////////////////////////////////////////////////////////////////////////////
/* create a triangle strip that strokes the specified triangle. There are 8
unique vertices, but we repreat the last 2 to close up. Alternatively we
could use an indices array, and then only send 8 verts, but not sure that
would be faster.
*/
static void setStrokeRectStrip(GrPoint verts[10], GrRect rect,
GrScalar width) {
const GrScalar rad = GrScalarHalf(width);
rect.sort();
verts[0].set(rect.fLeft + rad, rect.fTop + rad);
verts[1].set(rect.fLeft - rad, rect.fTop - rad);
verts[2].set(rect.fRight - rad, rect.fTop + rad);
verts[3].set(rect.fRight + rad, rect.fTop - rad);
verts[4].set(rect.fRight - rad, rect.fBottom - rad);
verts[5].set(rect.fRight + rad, rect.fBottom + rad);
verts[6].set(rect.fLeft + rad, rect.fBottom - rad);
verts[7].set(rect.fLeft - rad, rect.fBottom + rad);
verts[8] = verts[0];
verts[9] = verts[1];
}
/**
* Returns true if the rects edges are integer-aligned.
*/
static bool isIRect(const GrRect& r) {
return GrScalarIsInt(r.fLeft) && GrScalarIsInt(r.fTop) &&
GrScalarIsInt(r.fRight) && GrScalarIsInt(r.fBottom);
}
static bool apply_aa_to_rect(GrDrawTarget* target,
const GrRect& rect,
GrScalar width,
const GrMatrix* matrix,
GrMatrix* combinedMatrix,
GrRect* devRect,
bool* useVertexCoverage) {
// we use a simple coverage ramp to do aa on axis-aligned rects
// we check if the rect will be axis-aligned, and the rect won't land on
// integer coords.
// we are keeping around the "tweak the alpha" trick because
// it is our only hope for the fixed-pipe implementation.
// In a shader implementation we can give a separate coverage input
// TODO: remove this ugliness when we drop the fixed-pipe impl
*useVertexCoverage = false;
if (!target->canTweakAlphaForCoverage()) {
if (disable_coverage_aa_for_blend(target)) {
#if GR_DEBUG
//GrPrintf("Turning off AA to correctly apply blend.\n");
#endif
return false;
} else {
*useVertexCoverage = true;
}
}
const GrDrawState& drawState = target->getDrawState();
if (drawState.getRenderTarget()->isMultisampled()) {
return false;
}
if (0 == width && target->willUseHWAALines()) {
return false;
}
if (!drawState.getViewMatrix().preservesAxisAlignment()) {
return false;
}
if (NULL != matrix &&
!matrix->preservesAxisAlignment()) {
return false;
}
*combinedMatrix = drawState.getViewMatrix();
if (NULL != matrix) {
combinedMatrix->preConcat(*matrix);
GrAssert(combinedMatrix->preservesAxisAlignment());
}
combinedMatrix->mapRect(devRect, rect);
devRect->sort();
if (width < 0) {
return !isIRect(*devRect);
} else {
return true;
}
}
void GrContext::drawRect(const GrPaint& paint,
const GrRect& rect,
GrScalar width,
const GrMatrix* matrix) {
SK_TRACE_EVENT0("GrContext::drawRect");
GrDrawTarget* target = this->prepareToDraw(&paint, DEFAULT_BUFFERING);
GrDrawState::AutoStageDisable atr(fDrawState);
GrRect devRect = rect;
GrMatrix combinedMatrix;
bool useVertexCoverage;
bool needAA = paint.isAntiAlias() &&
!this->getRenderTarget()->isMultisampled();
bool doAA = needAA && apply_aa_to_rect(target, rect, width, matrix,
&combinedMatrix, &devRect,
&useVertexCoverage);
if (doAA) {
GrDrawState::AutoDeviceCoordDraw adcd(target->drawState());
if (!adcd.succeeded()) {
return;
}
if (width >= 0) {
GrVec strokeSize;;
if (width > 0) {
strokeSize.set(width, width);
combinedMatrix.mapVectors(&strokeSize, 1);
strokeSize.setAbs(strokeSize);
} else {
strokeSize.set(GR_Scalar1, GR_Scalar1);
}
fAARectRenderer->strokeAARect(this->getGpu(), target, devRect,
strokeSize, useVertexCoverage);
} else {
fAARectRenderer->fillAARect(this->getGpu(), target,
devRect, useVertexCoverage);
}
return;
}
if (width >= 0) {
// TODO: consider making static vertex buffers for these cases.
// Hairline could be done by just adding closing vertex to
// unitSquareVertexBuffer()
static const int worstCaseVertCount = 10;
GrDrawTarget::AutoReleaseGeometry geo(target, 0, worstCaseVertCount, 0);
if (!geo.succeeded()) {
GrPrintf("Failed to get space for vertices!\n");
return;
}
GrPrimitiveType primType;
int vertCount;
GrPoint* vertex = geo.positions();
if (width > 0) {
vertCount = 10;
primType = kTriangleStrip_GrPrimitiveType;
setStrokeRectStrip(vertex, rect, width);
} else {
// hairline
vertCount = 5;
primType = kLineStrip_GrPrimitiveType;
vertex[0].set(rect.fLeft, rect.fTop);
vertex[1].set(rect.fRight, rect.fTop);
vertex[2].set(rect.fRight, rect.fBottom);
vertex[3].set(rect.fLeft, rect.fBottom);
vertex[4].set(rect.fLeft, rect.fTop);
}
GrDrawState::AutoViewMatrixRestore avmr;
if (NULL != matrix) {
GrDrawState* drawState = target->drawState();
avmr.set(drawState, *matrix);
}
target->drawNonIndexed(primType, 0, vertCount);
} else {
#if GR_STATIC_RECT_VB
const GrVertexBuffer* sqVB = fGpu->getUnitSquareVertexBuffer();
if (NULL == sqVB) {
GrPrintf("Failed to create static rect vb.\n");
return;
}
target->setVertexSourceToBuffer(0, sqVB);
GrDrawState* drawState = target->drawState();
GrMatrix m;
m.setAll(rect.width(), 0, rect.fLeft,
0, rect.height(), rect.fTop,
0, 0, GrMatrix::I()[8]);
if (NULL != matrix) {
m.postConcat(*matrix);
}
GrDrawState::AutoViewMatrixRestore avmr(drawState, m);
target->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4);
#else
target->drawSimpleRect(rect, matrix);
#endif
}
}
void GrContext::drawRectToRect(const GrPaint& paint,
const GrRect& dstRect,
const GrRect& srcRect,
const GrMatrix* dstMatrix,
const GrMatrix* srcMatrix) {
SK_TRACE_EVENT0("GrContext::drawRectToRect");
// srcRect refers to paint's first color stage
if (!paint.isColorStageEnabled(0)) {
drawRect(paint, dstRect, -1, dstMatrix);
return;
}
GrDrawTarget* target = this->prepareToDraw(&paint, DEFAULT_BUFFERING);
#if GR_STATIC_RECT_VB
GrDrawState::AutoStageDisable atr(fDrawState);
GrDrawState* drawState = target->drawState();
GrMatrix m;
m.setAll(dstRect.width(), 0, dstRect.fLeft,
0, dstRect.height(), dstRect.fTop,
0, 0, GrMatrix::I()[8]);
if (NULL != dstMatrix) {
m.postConcat(*dstMatrix);
}
// The first color stage's coords come from srcRect rather than applying a matrix to dstRect.
// We explicitly compute a matrix for that stage below, no need to adjust here.
static const uint32_t kExplicitCoordMask = 1 << GrPaint::kFirstColorStage;
GrDrawState::AutoViewMatrixRestore avmr(drawState, m, kExplicitCoordMask);
m.setAll(srcRect.width(), 0, srcRect.fLeft,
0, srcRect.height(), srcRect.fTop,
0, 0, GrMatrix::I()[8]);
if (NULL != srcMatrix) {
m.postConcat(*srcMatrix);
}
drawState->sampler(GrPaint::kFirstColorStage)->preConcatMatrix(m);
const GrVertexBuffer* sqVB = fGpu->getUnitSquareVertexBuffer();
if (NULL == sqVB) {
GrPrintf("Failed to create static rect vb.\n");
return;
}
target->setVertexSourceToBuffer(0, sqVB);
target->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4);
#else
GrDrawState::AutoStageDisable atr(fDrawState);
const GrRect* srcRects[GrDrawState::kNumStages] = {NULL};
const GrMatrix* srcMatrices[GrDrawState::kNumStages] = {NULL};
srcRects[0] = &srcRect;
srcMatrices[0] = srcMatrix;
target->drawRect(dstRect, dstMatrix, srcRects, srcMatrices);
#endif
}
void GrContext::drawVertices(const GrPaint& paint,
GrPrimitiveType primitiveType,
int vertexCount,
const GrPoint positions[],
const GrPoint texCoords[],
const GrColor colors[],
const uint16_t indices[],
int indexCount) {
SK_TRACE_EVENT0("GrContext::drawVertices");
GrDrawTarget::AutoReleaseGeometry geo;
GrDrawTarget* target = this->prepareToDraw(&paint, DEFAULT_BUFFERING);
GrDrawState::AutoStageDisable atr(fDrawState);
GrVertexLayout layout = 0;
if (NULL != texCoords) {
layout |= GrDrawTarget::StageTexCoordVertexLayoutBit(0, 0);
}
if (NULL != colors) {
layout |= GrDrawTarget::kColor_VertexLayoutBit;
}
int vertexSize = GrDrawTarget::VertexSize(layout);
if (sizeof(GrPoint) != vertexSize) {
if (!geo.set(target, layout, vertexCount, 0)) {
GrPrintf("Failed to get space for vertices!\n");
return;
}
int texOffsets[GrDrawState::kMaxTexCoords];
int colorOffset;
GrDrawTarget::VertexSizeAndOffsetsByIdx(layout,
texOffsets,
&colorOffset,
NULL,
NULL);
void* curVertex = geo.vertices();
for (int i = 0; i < vertexCount; ++i) {
*((GrPoint*)curVertex) = positions[i];
if (texOffsets[0] > 0) {
*(GrPoint*)((intptr_t)curVertex + texOffsets[0]) = texCoords[i];
}
if (colorOffset > 0) {
*(GrColor*)((intptr_t)curVertex + colorOffset) = colors[i];
}
curVertex = (void*)((intptr_t)curVertex + vertexSize);
}
} else {
target->setVertexSourceToArray(layout, positions, vertexCount);
}
// we don't currently apply offscreen AA to this path. Need improved
// management of GrDrawTarget's geometry to avoid copying points per-tile.
if (NULL != indices) {
target->setIndexSourceToArray(indices, indexCount);
target->drawIndexed(primitiveType, 0, 0, vertexCount, indexCount);
} else {
target->drawNonIndexed(primitiveType, 0, vertexCount);
}
}
///////////////////////////////////////////////////////////////////////////////
namespace {
struct CircleVertex {
GrPoint fPos;
GrPoint fCenter;
GrScalar fOuterRadius;
GrScalar fInnerRadius;
};
/* Returns true if will map a circle to another circle. This can be true
* if the matrix only includes square-scale, rotation, translation.
*/
inline bool isSimilarityTransformation(const SkMatrix& matrix,
SkScalar tol = SK_ScalarNearlyZero) {
if (matrix.isIdentity() || matrix.getType() == SkMatrix::kTranslate_Mask) {
return true;
}
if (matrix.hasPerspective()) {
return false;
}
SkScalar mx = matrix.get(SkMatrix::kMScaleX);
SkScalar sx = matrix.get(SkMatrix::kMSkewX);
SkScalar my = matrix.get(SkMatrix::kMScaleY);
SkScalar sy = matrix.get(SkMatrix::kMSkewY);
if (mx == 0 && sx == 0 && my == 0 && sy == 0) {
return false;
}
// it has scales or skews, but it could also be rotation, check it out.
SkVector vec[2];
vec[0].set(mx, sx);
vec[1].set(sy, my);
return SkScalarNearlyZero(vec[0].dot(vec[1]), SkScalarSquare(tol)) &&
SkScalarNearlyEqual(vec[0].lengthSqd(), vec[1].lengthSqd(),
SkScalarSquare(tol));
}
}
// TODO: strokeWidth can't be larger than zero right now.
// It will be fixed when drawPath() can handle strokes.
void GrContext::drawOval(const GrPaint& paint,
const GrRect& rect,
SkScalar strokeWidth) {
GrAssert(strokeWidth <= 0);
if (!isSimilarityTransformation(this->getMatrix()) ||
!paint.isAntiAlias() ||
rect.height() != rect.width()) {
SkPath path;
path.addOval(rect);
GrPathFill fill = (strokeWidth == 0) ?
kHairLine_GrPathFill : kWinding_GrPathFill;
this->internalDrawPath(paint, path, fill);
return;
}
GrDrawTarget* target = this->prepareToDraw(&paint, DEFAULT_BUFFERING);
GrDrawState* drawState = target->drawState();
GrDrawState::AutoStageDisable atr(fDrawState);
const GrMatrix vm = drawState->getViewMatrix();
const GrRenderTarget* rt = drawState->getRenderTarget();
if (NULL == rt) {
return;
}
GrDrawState::AutoDeviceCoordDraw adcd(drawState);
if (!adcd.succeeded()) {
return;
}
GrVertexLayout layout = GrDrawTarget::kEdge_VertexLayoutBit;
GrAssert(sizeof(CircleVertex) == GrDrawTarget::VertexSize(layout));
GrPoint center = GrPoint::Make(rect.centerX(), rect.centerY());
GrScalar radius = SkScalarHalf(rect.width());
vm.mapPoints(&center, 1);
radius = vm.mapRadius(radius);
GrScalar outerRadius = radius;
GrScalar innerRadius = 0;
SkScalar halfWidth = 0;
if (strokeWidth == 0) {
halfWidth = SkScalarHalf(SK_Scalar1);
outerRadius += halfWidth;
innerRadius = SkMaxScalar(0, radius - halfWidth);
}
GrDrawTarget::AutoReleaseGeometry geo(target, layout, 4, 0);
if (!geo.succeeded()) {
GrPrintf("Failed to get space for vertices!\n");
return;
}
CircleVertex* verts = reinterpret_cast<CircleVertex*>(geo.vertices());
// The fragment shader will extend the radius out half a pixel
// to antialias. Expand the drawn rect here so all the pixels
// will be captured.
SkScalar L = center.fX - outerRadius - SkFloatToScalar(0.5f);
SkScalar R = center.fX + outerRadius + SkFloatToScalar(0.5f);
SkScalar T = center.fY - outerRadius - SkFloatToScalar(0.5f);
SkScalar B = center.fY + outerRadius + SkFloatToScalar(0.5f);
verts[0].fPos = SkPoint::Make(L, T);
verts[1].fPos = SkPoint::Make(R, T);
verts[2].fPos = SkPoint::Make(L, B);
verts[3].fPos = SkPoint::Make(R, B);
for (int i = 0; i < 4; ++i) {
// this goes to fragment shader, it should be in y-points-up space.
verts[i].fCenter = SkPoint::Make(center.fX, rt->height() - center.fY);
verts[i].fOuterRadius = outerRadius;
verts[i].fInnerRadius = innerRadius;
}
drawState->setVertexEdgeType(GrDrawState::kCircle_EdgeType);
target->drawNonIndexed(kTriangleStrip_GrPrimitiveType, 0, 4);
}
void GrContext::drawPath(const GrPaint& paint, const SkPath& path, GrPathFill fill) {
if (path.isEmpty()) {
if (GrIsFillInverted(fill)) {
this->drawPaint(paint);
}
return;
}
SkRect ovalRect;
if (!GrIsFillInverted(fill) && path.isOval(&ovalRect)) {
SkScalar width = (fill == kHairLine_GrPathFill) ? 0 : -SK_Scalar1;
this->drawOval(paint, ovalRect, width);
return;
}
this->internalDrawPath(paint, path, fill);
}
void GrContext::internalDrawPath(const GrPaint& paint, const SkPath& path, GrPathFill fill) {
// Note that below we may sw-rasterize the path into a scratch texture.
// Scratch textures can be recycled after they are returned to the texture
// cache. This presents a potential hazard for buffered drawing. However,
// the writePixels that uploads to the scratch will perform a flush so we're
// OK.
GrDrawTarget* target = this->prepareToDraw(&paint, DEFAULT_BUFFERING);
GrDrawState::AutoStageDisable atr(fDrawState);
bool prAA = paint.isAntiAlias() && !this->getRenderTarget()->isMultisampled();
// An Assumption here is that path renderer would use some form of tweaking
// the src color (either the input alpha or in the frag shader) to implement
// aa. If we have some future driver-mojo path AA that can do the right
// thing WRT to the blend then we'll need some query on the PR.
if (disable_coverage_aa_for_blend(target)) {
#if GR_DEBUG
//GrPrintf("Turning off AA to correctly apply blend.\n");
#endif
prAA = false;
}
GrPathRenderer* pr = this->getPathRenderer(path, fill, target, prAA, true);
if (NULL == pr) {
#if GR_DEBUG
GrPrintf("Unable to find path renderer compatible with path.\n");
#endif
return;
}
pr->drawPath(path, fill, target, prAA);
}
////////////////////////////////////////////////////////////////////////////////
void GrContext::flush(int flagsBitfield) {
if (kDiscard_FlushBit & flagsBitfield) {
fDrawBuffer->reset();
} else {
this->flushDrawBuffer();
}
if (kForceCurrentRenderTarget_FlushBit & flagsBitfield) {
fGpu->forceRenderTargetFlush();
}
}
void GrContext::flushDrawBuffer() {
if (fDrawBuffer) {
// With addition of the AA clip path, flushing the draw buffer can
// result in the generation of an AA clip mask. During this
// process the SW path renderer may be invoked which recusively
// calls this method (via internalWriteTexturePixels) creating
// infinite recursion
GrInOrderDrawBuffer* temp = fDrawBuffer;
fDrawBuffer = NULL;
temp->flushTo(fGpu);
fDrawBuffer = temp;
}
}
void GrContext::writeTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer, size_t rowBytes,
uint32_t flags) {
SK_TRACE_EVENT0("GrContext::writeTexturePixels");
ASSERT_OWNED_RESOURCE(texture);
// TODO: use scratch texture to perform conversion
if (kUnpremul_PixelOpsFlag & flags) {
return;
}
if (!(kDontFlush_PixelOpsFlag & flags)) {
this->flush();
}
fGpu->writeTexturePixels(texture, left, top, width, height,
config, buffer, rowBytes);
}
bool GrContext::readTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, void* buffer, size_t rowBytes,
uint32_t flags) {
SK_TRACE_EVENT0("GrContext::readTexturePixels");
ASSERT_OWNED_RESOURCE(texture);
// TODO: code read pixels for textures that aren't also rendertargets
GrRenderTarget* target = texture->asRenderTarget();
if (NULL != target) {
return this->readRenderTargetPixels(target,
left, top, width, height,
config, buffer, rowBytes,
flags);
} else {
return false;
}
}
#include "SkConfig8888.h"
namespace {
/**
* Converts a GrPixelConfig to a SkCanvas::Config8888. Only byte-per-channel
* formats are representable as Config8888 and so the function returns false
* if the GrPixelConfig has no equivalent Config8888.
*/
bool grconfig_to_config8888(GrPixelConfig config,
bool unpremul,
SkCanvas::Config8888* config8888) {
switch (config) {
case kRGBA_8888_GrPixelConfig:
if (unpremul) {
*config8888 = SkCanvas::kRGBA_Unpremul_Config8888;
} else {
*config8888 = SkCanvas::kRGBA_Premul_Config8888;
}
return true;
case kBGRA_8888_GrPixelConfig:
if (unpremul) {
*config8888 = SkCanvas::kBGRA_Unpremul_Config8888;
} else {
*config8888 = SkCanvas::kBGRA_Premul_Config8888;
}
return true;
default:
return false;
}
}
// It returns a configuration with where the byte position of the R & B components are swapped in
// relation to the input config. This should only be called with the result of
// grconfig_to_config8888 as it will fail for other configs.
SkCanvas::Config8888 swap_config8888_red_and_blue(SkCanvas::Config8888 config8888) {
switch (config8888) {
case SkCanvas::kBGRA_Premul_Config8888:
return SkCanvas::kRGBA_Premul_Config8888;
case SkCanvas::kBGRA_Unpremul_Config8888:
return SkCanvas::kRGBA_Unpremul_Config8888;
case SkCanvas::kRGBA_Premul_Config8888:
return SkCanvas::kBGRA_Premul_Config8888;
case SkCanvas::kRGBA_Unpremul_Config8888:
return SkCanvas::kBGRA_Unpremul_Config8888;
default:
GrCrash("Unexpected input");
return SkCanvas::kBGRA_Unpremul_Config8888;;
}
}
}
bool GrContext::readRenderTargetPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig config, void* buffer, size_t rowBytes,
uint32_t flags) {
SK_TRACE_EVENT0("GrContext::readRenderTargetPixels");
ASSERT_OWNED_RESOURCE(target);
if (NULL == target) {
target = fDrawState->getRenderTarget();
if (NULL == target) {
return false;
}
}
if (!(kDontFlush_PixelOpsFlag & flags)) {
this->flush();
}
// Determine which conversions have to be applied: flipY, swapRAnd, and/or unpremul.
// If fGpu->readPixels would incur a y-flip cost then we will read the pixels upside down. We'll
// either do the flipY by drawing into a scratch with a matrix or on the cpu after the read.
bool flipY = fGpu->readPixelsWillPayForYFlip(target, left, top,
width, height, config,
rowBytes);
bool swapRAndB = fGpu->preferredReadPixelsConfig(config) == GrPixelConfigSwapRAndB(config);
bool unpremul = SkToBool(kUnpremul_PixelOpsFlag & flags);
// flipY will get set to false when it is handled below using a scratch. However, in that case
// we still want to do the read upside down.
bool readUpsideDown = flipY;
if (unpremul && kRGBA_8888_GrPixelConfig != config && kBGRA_8888_GrPixelConfig != config) {
// The unpremul flag is only allowed for these two configs.
return false;
}
GrPixelConfig readConfig;
if (swapRAndB) {
readConfig = GrPixelConfigSwapRAndB(config);
GrAssert(kUnknown_GrPixelConfig != config);
} else {
readConfig = config;
}
// If the src is a texture and we would have to do conversions after read pixels, we instead
// do the conversions by drawing the src to a scratch texture. If we handle any of the
// conversions in the draw we set the corresponding bool to false so that we don't reapply it
// on the read back pixels.
GrTexture* src = target->asTexture();
GrAutoScratchTexture ast;
if (NULL != src && (swapRAndB || unpremul || flipY)) {
// Make the scratch a render target because we don't have a robust readTexturePixels as of
// yet. It calls this function.
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = readConfig;
// When a full readback is faster than a partial we could always make the scratch exactly
// match the passed rect. However, if we see many different size rectangles we will trash
// our texture cache and pay the cost of creating and destroying many textures. So, we only
// request an exact match when the caller is reading an entire RT.
ScratchTexMatch match = kApprox_ScratchTexMatch;
if (0 == left &&
0 == top &&
target->width() == width &&
target->height() == height &&
fGpu->fullReadPixelsIsFasterThanPartial()) {
match = kExact_ScratchTexMatch;
}
ast.set(this, desc, match);
GrTexture* texture = ast.texture();
if (texture) {
SkAutoTUnref<GrCustomStage> stage;
if (unpremul) {
stage.reset(this->createPMToUPMEffect(src, swapRAndB));
}
// If we failed to create a PM->UPM effect and have no other conversions to perform then
// there is no longer any point to using the scratch.
if (NULL != stage || flipY || swapRAndB) {
if (NULL == stage) {
stage.reset(GrConfigConversionEffect::Create(src, swapRAndB));
GrAssert(NULL != stage);
} else {
unpremul = false; // we will handle the UPM conversion in the draw
}
swapRAndB = false; // we will handle the swap in the draw.
GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit);
GrDrawState* drawState = fGpu->drawState();
drawState->setRenderTarget(texture->asRenderTarget());
GrMatrix matrix;
if (flipY) {
matrix.setTranslate(SK_Scalar1 * left,
SK_Scalar1 * (top + height));
matrix.set(GrMatrix::kMScaleY, -GR_Scalar1);
flipY = false; // the y flip will be handled in the draw
} else {
matrix.setTranslate(SK_Scalar1 *left, SK_Scalar1 *top);
}
matrix.postIDiv(src->width(), src->height());
drawState->sampler(0)->setCustomStage(stage, matrix);
GrRect rect = GrRect::MakeWH(GrIntToScalar(width), GrIntToScalar(height));
fGpu->drawSimpleRect(rect, NULL);
// we want to read back from the scratch's origin
left = 0;
top = 0;
target = texture->asRenderTarget();
}
}
}
if (!fGpu->readPixels(target,
left, top, width, height,
readConfig, buffer, rowBytes, readUpsideDown)) {
return false;
}
// Perform any conversions we weren't able to perfom using a scratch texture.
if (unpremul || swapRAndB || flipY) {
// These are initialized to suppress a warning
SkCanvas::Config8888 srcC8888 = SkCanvas::kNative_Premul_Config8888;
SkCanvas::Config8888 dstC8888 = SkCanvas::kNative_Premul_Config8888;
bool c8888IsValid = grconfig_to_config8888(config, false, &srcC8888);
grconfig_to_config8888(config, unpremul, &dstC8888);
if (swapRAndB) {
GrAssert(c8888IsValid); // we should only do r/b swap on 8888 configs
srcC8888 = swap_config8888_red_and_blue(srcC8888);
}
if (flipY) {
size_t tightRB = width * GrBytesPerPixel(config);
if (0 == rowBytes) {
rowBytes = tightRB;
}
SkAutoSTMalloc<256, uint8_t> tempRow(tightRB);
intptr_t top = reinterpret_cast<intptr_t>(buffer);
intptr_t bot = top + (height - 1) * rowBytes;
while (top < bot) {
uint32_t* t = reinterpret_cast<uint32_t*>(top);
uint32_t* b = reinterpret_cast<uint32_t*>(bot);
uint32_t* temp = reinterpret_cast<uint32_t*>(tempRow.get());
memcpy(temp, t, tightRB);
if (c8888IsValid) {
SkConvertConfig8888Pixels(t, tightRB, dstC8888,
b, tightRB, srcC8888,
width, 1);
SkConvertConfig8888Pixels(b, tightRB, dstC8888,
temp, tightRB, srcC8888,
width, 1);
} else {
memcpy(t, b, tightRB);
memcpy(b, temp, tightRB);
}
top += rowBytes;
bot -= rowBytes;
}
// The above loop does nothing on the middle row when height is odd.
if (top == bot && c8888IsValid && dstC8888 != srcC8888) {
uint32_t* mid = reinterpret_cast<uint32_t*>(top);
SkConvertConfig8888Pixels(mid, tightRB, dstC8888, mid, tightRB, srcC8888, width, 1);
}
} else {
// if we aren't flipping Y then we have no reason to be here other than doing
// conversions for 8888 (r/b swap or upm).
GrAssert(c8888IsValid);
uint32_t* b32 = reinterpret_cast<uint32_t*>(buffer);
SkConvertConfig8888Pixels(b32, rowBytes, dstC8888,
b32, rowBytes, srcC8888,
width, height);
}
}
return true;
}
void GrContext::resolveRenderTarget(GrRenderTarget* target) {
GrAssert(target);
ASSERT_OWNED_RESOURCE(target);
// In the future we may track whether there are any pending draws to this
// target. We don't today so we always perform a flush. We don't promise
// this to our clients, though.
this->flush();
fGpu->resolveRenderTarget(target);
}
void GrContext::copyTexture(GrTexture* src, GrRenderTarget* dst) {
if (NULL == src || NULL == dst) {
return;
}
ASSERT_OWNED_RESOURCE(src);
// Writes pending to the source texture are not tracked, so a flush
// is required to ensure that the copy captures the most recent contents
// of the source texture. See similar behaviour in
// GrContext::resolveRenderTarget.
this->flush();
GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit);
GrDrawState* drawState = fGpu->drawState();
drawState->setRenderTarget(dst);
GrMatrix sampleM;
sampleM.setIDiv(src->width(), src->height());
drawState->createTextureEffect(0, src, sampleM);
SkRect rect = SkRect::MakeXYWH(0, 0,
SK_Scalar1 * src->width(),
SK_Scalar1 * src->height());
fGpu->drawSimpleRect(rect, NULL);
}
void GrContext::writeRenderTargetPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig config,
const void* buffer,
size_t rowBytes,
uint32_t flags) {
SK_TRACE_EVENT0("GrContext::writeRenderTargetPixels");
ASSERT_OWNED_RESOURCE(target);
if (NULL == target) {
target = fDrawState->getRenderTarget();
if (NULL == target) {
return;
}
}
// TODO: when underlying api has a direct way to do this we should use it (e.g. glDrawPixels on
// desktop GL).
// We will always call some form of writeTexturePixels and we will pass our flags on to it.
// Thus, we don't perform a flush here since that call will do it (if the kNoFlush flag isn't
// set.)
// If the RT is also a texture and we don't have to premultiply then take the texture path.
// We expect to be at least as fast or faster since it doesn't use an intermediate texture as
// we do below.
#if !GR_MAC_BUILD
// At least some drivers on the Mac get confused when glTexImage2D is called on a texture
// attached to an FBO. The FBO still sees the old image. TODO: determine what OS versions and/or
// HW is affected.
if (NULL != target->asTexture() && !(kUnpremul_PixelOpsFlag & flags)) {
this->writeTexturePixels(target->asTexture(),
left, top, width, height,
config, buffer, rowBytes, flags);
return;
}
#endif
SkAutoTUnref<GrCustomStage> stage;
bool swapRAndB = (fGpu->preferredReadPixelsConfig(config) == GrPixelConfigSwapRAndB(config));
GrPixelConfig textureConfig;
if (swapRAndB) {
textureConfig = GrPixelConfigSwapRAndB(config);
} else {
textureConfig = config;
}
GrTextureDesc desc;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = textureConfig;
GrAutoScratchTexture ast(this, desc);
GrTexture* texture = ast.texture();
if (NULL == texture) {
return;
}
// allocate a tmp buffer and sw convert the pixels to premul
SkAutoSTMalloc<128 * 128, uint32_t> tmpPixels(0);
if (kUnpremul_PixelOpsFlag & flags) {
if (kRGBA_8888_GrPixelConfig != config && kBGRA_8888_GrPixelConfig != config) {
return;
}
stage.reset(this->createUPMToPMEffect(texture, swapRAndB));
if (NULL == stage) {
SkCanvas::Config8888 srcConfig8888, dstConfig8888;
GR_DEBUGCODE(bool success = )
grconfig_to_config8888(config, true, &srcConfig8888);
GrAssert(success);
GR_DEBUGCODE(success = )
grconfig_to_config8888(config, false, &dstConfig8888);
GrAssert(success);
const uint32_t* src = reinterpret_cast<const uint32_t*>(buffer);
tmpPixels.reset(width * height);
SkConvertConfig8888Pixels(tmpPixels.get(), 4 * width, dstConfig8888,
src, rowBytes, srcConfig8888,
width, height);
buffer = tmpPixels.get();
rowBytes = 4 * width;
}
}
if (NULL == stage) {
stage.reset(GrConfigConversionEffect::Create(texture, swapRAndB));
GrAssert(NULL != stage);
}
this->writeTexturePixels(texture,
0, 0, width, height,
textureConfig, buffer, rowBytes,
flags & ~kUnpremul_PixelOpsFlag);
GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit);
GrDrawState* drawState = fGpu->drawState();
GrMatrix matrix;
matrix.setTranslate(GrIntToScalar(left), GrIntToScalar(top));
drawState->setViewMatrix(matrix);
drawState->setRenderTarget(target);
matrix.setIDiv(texture->width(), texture->height());
drawState->sampler(0)->setCustomStage(stage, matrix);
fGpu->drawSimpleRect(GrRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)), NULL);
}
////////////////////////////////////////////////////////////////////////////////
GrDrawTarget* GrContext::prepareToDraw(const GrPaint* paint, BufferedDraw buffered) {
if (kNo_BufferedDraw == buffered && kYes_BufferedDraw == fLastDrawWasBuffered) {
this->flushDrawBuffer();
fLastDrawWasBuffered = kNo_BufferedDraw;
}
if (NULL != paint) {
GrAssert(fDrawState->stagesDisabled());
fDrawState->setFromPaint(*paint);
#if GR_DEBUG_PARTIAL_COVERAGE_CHECK
if ((paint->hasMask() || 0xff != paint->fCoverage) &&
!fGpu->canApplyCoverage()) {
GrPrintf("Partial pixel coverage will be incorrectly blended.\n");
}
#endif
}
if (kYes_BufferedDraw == buffered) {
fDrawBuffer->setClip(fGpu->getClip());
fLastDrawWasBuffered = kYes_BufferedDraw;
return fDrawBuffer;
} else {
GrAssert(kNo_BufferedDraw == buffered);
return fGpu;
}
}
/*
* This method finds a path renderer that can draw the specified path on
* the provided target.
* Due to its expense, the software path renderer has split out so it can
* can be individually allowed/disallowed via the "allowSW" boolean.
*/
GrPathRenderer* GrContext::getPathRenderer(const SkPath& path,
GrPathFill fill,
const GrDrawTarget* target,
bool antiAlias,
bool allowSW) {
if (NULL == fPathRendererChain) {
fPathRendererChain =
SkNEW_ARGS(GrPathRendererChain,
(this, GrPathRendererChain::kNone_UsageFlag));
}
GrPathRenderer* pr = fPathRendererChain->getPathRenderer(path, fill,
target,
antiAlias);
if (NULL == pr && allowSW) {
if (NULL == fSoftwarePathRenderer) {
fSoftwarePathRenderer = SkNEW_ARGS(GrSoftwarePathRenderer, (this));
}
pr = fSoftwarePathRenderer;
}
return pr;
}
////////////////////////////////////////////////////////////////////////////////
void GrContext::setRenderTarget(GrRenderTarget* target) {
ASSERT_OWNED_RESOURCE(target);
fDrawState->setRenderTarget(target);
}
GrRenderTarget* GrContext::getRenderTarget() {
return fDrawState->getRenderTarget();
}
const GrRenderTarget* GrContext::getRenderTarget() const {
return fDrawState->getRenderTarget();
}
bool GrContext::isConfigRenderable(GrPixelConfig config) const {
return fGpu->isConfigRenderable(config);
}
const GrMatrix& GrContext::getMatrix() const {
return fDrawState->getViewMatrix();
}
void GrContext::setMatrix(const GrMatrix& m) {
fDrawState->setViewMatrix(m);
}
void GrContext::setIdentityMatrix() {
fDrawState->viewMatrix()->reset();
}
void GrContext::concatMatrix(const GrMatrix& m) const {
fDrawState->preConcatViewMatrix(m);
}
static inline intptr_t setOrClear(intptr_t bits, int shift, intptr_t pred) {
intptr_t mask = 1 << shift;
if (pred) {
bits |= mask;
} else {
bits &= ~mask;
}
return bits;
}
GrContext::GrContext(GrGpu* gpu) {
++THREAD_INSTANCE_COUNT;
fGpu = gpu;
fGpu->ref();
fGpu->setContext(this);
fDrawState = SkNEW(GrDrawState);
fGpu->setDrawState(fDrawState);
fPathRendererChain = NULL;
fSoftwarePathRenderer = NULL;
fTextureCache = SkNEW_ARGS(GrResourceCache,
(MAX_TEXTURE_CACHE_COUNT,
MAX_TEXTURE_CACHE_BYTES));
fFontCache = SkNEW_ARGS(GrFontCache, (fGpu));
fLastDrawWasBuffered = kNo_BufferedDraw;
fDrawBuffer = NULL;
fDrawBufferVBAllocPool = NULL;
fDrawBufferIBAllocPool = NULL;
fAARectRenderer = SkNEW(GrAARectRenderer);
fDidTestPMConversions = false;
this->setupDrawBuffer();
}
void GrContext::setupDrawBuffer() {
GrAssert(NULL == fDrawBuffer);
GrAssert(NULL == fDrawBufferVBAllocPool);
GrAssert(NULL == fDrawBufferIBAllocPool);
fDrawBufferVBAllocPool =
SkNEW_ARGS(GrVertexBufferAllocPool, (fGpu, false,
DRAW_BUFFER_VBPOOL_BUFFER_SIZE,
DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS));
fDrawBufferIBAllocPool =
SkNEW_ARGS(GrIndexBufferAllocPool, (fGpu, false,
DRAW_BUFFER_IBPOOL_BUFFER_SIZE,
DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS));
fDrawBuffer = SkNEW_ARGS(GrInOrderDrawBuffer, (fGpu,
fDrawBufferVBAllocPool,
fDrawBufferIBAllocPool));
fDrawBuffer->setQuadIndexBuffer(this->getQuadIndexBuffer());
if (fDrawBuffer) {
fDrawBuffer->setAutoFlushTarget(fGpu);
fDrawBuffer->setDrawState(fDrawState);
}
}
GrDrawTarget* GrContext::getTextTarget(const GrPaint& paint) {
return prepareToDraw(&paint, DEFAULT_BUFFERING);
}
const GrIndexBuffer* GrContext::getQuadIndexBuffer() const {
return fGpu->getQuadIndexBuffer();
}
namespace {
void test_pm_conversions(GrContext* ctx, int* pmToUPMValue, int* upmToPMValue) {
GrConfigConversionEffect::PMConversion pmToUPM;
GrConfigConversionEffect::PMConversion upmToPM;
GrConfigConversionEffect::TestForPreservingPMConversions(ctx, &pmToUPM, &upmToPM);
*pmToUPMValue = pmToUPM;
*upmToPMValue = upmToPM;
}
}
GrCustomStage* GrContext::createPMToUPMEffect(GrTexture* texture, bool swapRAndB) {
if (!fDidTestPMConversions) {
test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion);
fDidTestPMConversions = true;
}
GrConfigConversionEffect::PMConversion pmToUPM =
static_cast<GrConfigConversionEffect::PMConversion>(fPMToUPMConversion);
if (GrConfigConversionEffect::kNone_PMConversion != pmToUPM) {
return GrConfigConversionEffect::Create(texture, swapRAndB, pmToUPM);
} else {
return NULL;
}
}
GrCustomStage* GrContext::createUPMToPMEffect(GrTexture* texture, bool swapRAndB) {
if (!fDidTestPMConversions) {
test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion);
fDidTestPMConversions = true;
}
GrConfigConversionEffect::PMConversion upmToPM =
static_cast<GrConfigConversionEffect::PMConversion>(fUPMToPMConversion);
if (GrConfigConversionEffect::kNone_PMConversion != upmToPM) {
return GrConfigConversionEffect::Create(texture, swapRAndB, upmToPM);
} else {
return NULL;
}
}
GrTexture* GrContext::gaussianBlur(GrTexture* srcTexture,
bool canClobberSrc,
const SkRect& rect,
float sigmaX, float sigmaY) {
ASSERT_OWNED_RESOURCE(srcTexture);
AutoRenderTarget art(this);
AutoMatrix am;
am.setIdentity(this);
SkIRect clearRect;
int scaleFactorX, radiusX;
int scaleFactorY, radiusY;
sigmaX = adjust_sigma(sigmaX, &scaleFactorX, &radiusX);
sigmaY = adjust_sigma(sigmaY, &scaleFactorY, &radiusY);
SkRect srcRect(rect);
scale_rect(&srcRect, 1.0f / scaleFactorX, 1.0f / scaleFactorY);
srcRect.roundOut();
scale_rect(&srcRect, static_cast<float>(scaleFactorX),
static_cast<float>(scaleFactorY));
AutoClip acs(this, srcRect);
GrAssert(kBGRA_8888_GrPixelConfig == srcTexture->config() ||
kRGBA_8888_GrPixelConfig == srcTexture->config() ||
kAlpha_8_GrPixelConfig == srcTexture->config());
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
desc.fWidth = SkScalarFloorToInt(srcRect.width());
desc.fHeight = SkScalarFloorToInt(srcRect.height());
desc.fConfig = srcTexture->config();
GrAutoScratchTexture temp1, temp2;
GrTexture* dstTexture = temp1.set(this, desc);
GrTexture* tempTexture = canClobberSrc ? srcTexture : temp2.set(this, desc);
GrPaint paint;
paint.reset();
for (int i = 1; i < scaleFactorX || i < scaleFactorY; i *= 2) {
GrMatrix matrix;
matrix.setIDiv(srcTexture->width(), srcTexture->height());
this->setRenderTarget(dstTexture->asRenderTarget());
SkRect dstRect(srcRect);
scale_rect(&dstRect, i < scaleFactorX ? 0.5f : 1.0f,
i < scaleFactorY ? 0.5f : 1.0f);
paint.colorSampler(0)->setCustomStage(SkNEW_ARGS(GrSingleTextureEffect,
(srcTexture, true)), matrix)->unref();
this->drawRectToRect(paint, dstRect, srcRect);
srcRect = dstRect;
srcTexture = dstTexture;
SkTSwap(dstTexture, tempTexture);
}
SkIRect srcIRect;
srcRect.roundOut(&srcIRect);
if (sigmaX > 0.0f) {
if (scaleFactorX > 1) {
// Clear out a radius to the right of the srcRect to prevent the
// X convolution from reading garbage.
clearRect = SkIRect::MakeXYWH(srcIRect.fRight, srcIRect.fTop,
radiusX, srcIRect.height());
this->clear(&clearRect, 0x0);
}
this->setRenderTarget(dstTexture->asRenderTarget());
GrDrawTarget* target = this->prepareToDraw(NULL, DEFAULT_BUFFERING);
convolve_gaussian(target, srcTexture, srcRect, sigmaX, radiusX,
Gr1DKernelEffect::kX_Direction);
srcTexture = dstTexture;
SkTSwap(dstTexture, tempTexture);
}
if (sigmaY > 0.0f) {
if (scaleFactorY > 1 || sigmaX > 0.0f) {
// Clear out a radius below the srcRect to prevent the Y
// convolution from reading garbage.
clearRect = SkIRect::MakeXYWH(srcIRect.fLeft, srcIRect.fBottom,
srcIRect.width(), radiusY);
this->clear(&clearRect, 0x0);
}
this->setRenderTarget(dstTexture->asRenderTarget());
GrDrawTarget* target = this->prepareToDraw(NULL, DEFAULT_BUFFERING);
convolve_gaussian(target, srcTexture, srcRect, sigmaY, radiusY,
Gr1DKernelEffect::kY_Direction);
srcTexture = dstTexture;
SkTSwap(dstTexture, tempTexture);
}
if (scaleFactorX > 1 || scaleFactorY > 1) {
// Clear one pixel to the right and below, to accommodate bilinear
// upsampling.
clearRect = SkIRect::MakeXYWH(srcIRect.fLeft, srcIRect.fBottom,
srcIRect.width() + 1, 1);
this->clear(&clearRect, 0x0);
clearRect = SkIRect::MakeXYWH(srcIRect.fRight, srcIRect.fTop,
1, srcIRect.height());
this->clear(&clearRect, 0x0);
GrMatrix matrix;
// FIXME: This should be mitchell, not bilinear.
matrix.setIDiv(srcTexture->width(), srcTexture->height());
this->setRenderTarget(dstTexture->asRenderTarget());
paint.colorSampler(0)->setCustomStage(SkNEW_ARGS(GrSingleTextureEffect,
(srcTexture, true)),
matrix)->unref();
SkRect dstRect(srcRect);
scale_rect(&dstRect, (float) scaleFactorX, (float) scaleFactorY);
this->drawRectToRect(paint, dstRect, srcRect);
srcRect = dstRect;
srcTexture = dstTexture;
SkTSwap(dstTexture, tempTexture);
}
if (srcTexture == temp1.texture()) {
return temp1.detach();
} else if (srcTexture == temp2.texture()) {
return temp2.detach();
} else {
srcTexture->ref();
return srcTexture;
}
}
///////////////////////////////////////////////////////////////////////////////
#if GR_CACHE_STATS
void GrContext::printCacheStats() const {
fTextureCache->printStats();
}
#endif