blob: 5119729447bb75e4b3e3ea1a54cba838ddd0c993 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkDeferredCanvas.h"
#include "SkChunkAlloc.h"
#include "SkColorFilter.h"
#include "SkDevice.h"
#include "SkDrawFilter.h"
#include "SkGPipe.h"
#include "SkPaint.h"
#include "SkPaintPriv.h"
#include "SkRRect.h"
#include "SkShader.h"
enum {
// Deferred canvas will auto-flush when recording reaches this limit
kDefaultMaxRecordingStorageBytes = 64*1024*1024,
kDeferredCanvasBitmapSizeThreshold = ~0U, // Disables this feature
};
enum PlaybackMode {
kNormal_PlaybackMode,
kSilent_PlaybackMode,
};
namespace {
bool shouldDrawImmediately(const SkBitmap* bitmap, const SkPaint* paint,
size_t bitmapSizeThreshold) {
if (bitmap && ((bitmap->getTexture() && !bitmap->isImmutable()) ||
(bitmap->getSize() > bitmapSizeThreshold))) {
return true;
}
if (paint) {
SkShader* shader = paint->getShader();
// Here we detect the case where the shader is an SkBitmapProcShader
// with a gpu texture attached. Checking this without RTTI
// requires making the assumption that only gradient shaders
// and SkBitmapProcShader implement asABitmap(). The following
// code may need to be revised if that assumption is ever broken.
if (shader && !shader->asAGradient(NULL)) {
SkBitmap bm;
if (shader->asABitmap(&bm, NULL, NULL) &&
NULL != bm.getTexture()) {
return true;
}
}
}
return false;
}
}
//-----------------------------------------------------------------------------
// DeferredPipeController
//-----------------------------------------------------------------------------
class DeferredPipeController : public SkGPipeController {
public:
DeferredPipeController();
void setPlaybackCanvas(SkCanvas*);
virtual ~DeferredPipeController();
virtual void* requestBlock(size_t minRequest, size_t* actual) SK_OVERRIDE;
virtual void notifyWritten(size_t bytes) SK_OVERRIDE;
void playback(bool silent);
bool hasPendingCommands() const { return fAllocator.blockCount() != 0; }
size_t storageAllocatedForRecording() const { return fAllocator.totalCapacity(); }
private:
enum {
kMinBlockSize = 4096
};
struct PipeBlock {
PipeBlock(void* block, size_t size) { fBlock = block, fSize = size; }
void* fBlock;
size_t fSize;
};
void* fBlock;
size_t fBytesWritten;
SkChunkAlloc fAllocator;
SkTDArray<PipeBlock> fBlockList;
SkGPipeReader fReader;
};
DeferredPipeController::DeferredPipeController() :
fAllocator(kMinBlockSize) {
fBlock = NULL;
fBytesWritten = 0;
}
DeferredPipeController::~DeferredPipeController() {
fAllocator.reset();
}
void DeferredPipeController::setPlaybackCanvas(SkCanvas* canvas) {
fReader.setCanvas(canvas);
}
void* DeferredPipeController::requestBlock(size_t minRequest, size_t *actual) {
if (fBlock) {
// Save the previous block for later
PipeBlock previousBloc(fBlock, fBytesWritten);
fBlockList.push(previousBloc);
}
int32_t blockSize = SkMax32(minRequest, kMinBlockSize);
fBlock = fAllocator.allocThrow(blockSize);
fBytesWritten = 0;
*actual = blockSize;
return fBlock;
}
void DeferredPipeController::notifyWritten(size_t bytes) {
fBytesWritten += bytes;
}
void DeferredPipeController::playback(bool silent) {
uint32_t flags = silent ? SkGPipeReader::kSilent_PlaybackFlag : 0;
for (int currentBlock = 0; currentBlock < fBlockList.count(); currentBlock++ ) {
fReader.playback(fBlockList[currentBlock].fBlock, fBlockList[currentBlock].fSize,
flags);
}
fBlockList.reset();
if (fBlock) {
fReader.playback(fBlock, fBytesWritten, flags);
fBlock = NULL;
}
// Release all allocated blocks
fAllocator.reset();
}
//-----------------------------------------------------------------------------
// DeferredDevice
//-----------------------------------------------------------------------------
class DeferredDevice : public SkDevice {
public:
DeferredDevice(SkDevice* immediateDevice,
SkDeferredCanvas::NotificationClient* notificationClient = NULL);
~DeferredDevice();
void setNotificationClient(SkDeferredCanvas::NotificationClient* notificationClient);
SkCanvas* recordingCanvas();
SkCanvas* immediateCanvas() const {return fImmediateCanvas;}
SkDevice* immediateDevice() const {return fImmediateDevice;}
bool isFreshFrame();
bool hasPendingCommands();
size_t storageAllocatedForRecording() const;
size_t freeMemoryIfPossible(size_t bytesToFree);
size_t getBitmapSizeThreshold() const;
void setBitmapSizeThreshold(size_t sizeThreshold);
void flushPendingCommands(PlaybackMode);
void skipPendingCommands();
void setMaxRecordingStorage(size_t);
void recordedDrawCommand();
virtual uint32_t getDeviceCapabilities() SK_OVERRIDE;
virtual int width() const SK_OVERRIDE;
virtual int height() const SK_OVERRIDE;
virtual SkGpuRenderTarget* accessRenderTarget() SK_OVERRIDE;
virtual SkDevice* onCreateCompatibleDevice(SkBitmap::Config config,
int width, int height,
bool isOpaque,
Usage usage) SK_OVERRIDE;
virtual void writePixels(const SkBitmap& bitmap, int x, int y,
SkCanvas::Config8888 config8888) SK_OVERRIDE;
protected:
virtual const SkBitmap& onAccessBitmap(SkBitmap*) SK_OVERRIDE;
virtual bool onReadPixels(const SkBitmap& bitmap,
int x, int y,
SkCanvas::Config8888 config8888) SK_OVERRIDE;
// The following methods are no-ops on a deferred device
virtual bool filterTextFlags(const SkPaint& paint, TextFlags*)
SK_OVERRIDE
{return false;}
// None of the following drawing methods should ever get called on the
// deferred device
virtual void clear(SkColor color)
{SkASSERT(0);}
virtual void drawPaint(const SkDraw&, const SkPaint& paint)
{SkASSERT(0);}
virtual void drawPoints(const SkDraw&, SkCanvas::PointMode mode,
size_t count, const SkPoint[],
const SkPaint& paint)
{SkASSERT(0);}
virtual void drawRect(const SkDraw&, const SkRect& r,
const SkPaint& paint)
{SkASSERT(0);}
virtual void drawPath(const SkDraw&, const SkPath& path,
const SkPaint& paint,
const SkMatrix* prePathMatrix = NULL,
bool pathIsMutable = false)
{SkASSERT(0);}
virtual void drawBitmap(const SkDraw&, const SkBitmap& bitmap,
const SkIRect* srcRectOrNull,
const SkMatrix& matrix, const SkPaint& paint)
{SkASSERT(0);}
virtual void drawSprite(const SkDraw&, const SkBitmap& bitmap,
int x, int y, const SkPaint& paint)
{SkASSERT(0);}
virtual void drawText(const SkDraw&, const void* text, size_t len,
SkScalar x, SkScalar y, const SkPaint& paint)
{SkASSERT(0);}
virtual void drawPosText(const SkDraw&, const void* text, size_t len,
const SkScalar pos[], SkScalar constY,
int scalarsPerPos, const SkPaint& paint)
{SkASSERT(0);}
virtual void drawTextOnPath(const SkDraw&, const void* text,
size_t len, const SkPath& path,
const SkMatrix* matrix,
const SkPaint& paint)
{SkASSERT(0);}
virtual void drawPosTextOnPath(const SkDraw& draw, const void* text,
size_t len, const SkPoint pos[],
const SkPaint& paint,
const SkPath& path,
const SkMatrix* matrix)
{SkASSERT(0);}
virtual void drawVertices(const SkDraw&, SkCanvas::VertexMode,
int vertexCount, const SkPoint verts[],
const SkPoint texs[], const SkColor colors[],
SkXfermode* xmode, const uint16_t indices[],
int indexCount, const SkPaint& paint)
{SkASSERT(0);}
virtual void drawDevice(const SkDraw&, SkDevice*, int x, int y,
const SkPaint&)
{SkASSERT(0);}
private:
virtual void flush();
void beginRecording();
DeferredPipeController fPipeController;
SkGPipeWriter fPipeWriter;
SkDevice* fImmediateDevice;
SkCanvas* fImmediateCanvas;
SkCanvas* fRecordingCanvas;
SkDeferredCanvas::NotificationClient* fNotificationClient;
bool fFreshFrame;
size_t fMaxRecordingStorageBytes;
size_t fPreviousStorageAllocated;
size_t fBitmapSizeThreshold;
};
DeferredDevice::DeferredDevice(
SkDevice* immediateDevice, SkDeferredCanvas::NotificationClient* notificationClient) :
SkDevice(SkBitmap::kNo_Config,
immediateDevice->width(), immediateDevice->height(),
immediateDevice->isOpaque(),
immediateDevice->getDeviceProperties())
, fRecordingCanvas(NULL)
, fFreshFrame(true)
, fPreviousStorageAllocated(0)
, fBitmapSizeThreshold(kDeferredCanvasBitmapSizeThreshold){
fMaxRecordingStorageBytes = kDefaultMaxRecordingStorageBytes;
fNotificationClient = notificationClient;
fImmediateDevice = immediateDevice; // ref counted via fImmediateCanvas
fImmediateCanvas = SkNEW_ARGS(SkCanvas, (fImmediateDevice));
fPipeController.setPlaybackCanvas(fImmediateCanvas);
this->beginRecording();
}
DeferredDevice::~DeferredDevice() {
this->flushPendingCommands(kSilent_PlaybackMode);
SkSafeUnref(fImmediateCanvas);
}
void DeferredDevice::setMaxRecordingStorage(size_t maxStorage) {
fMaxRecordingStorageBytes = maxStorage;
this->recordingCanvas(); // Accessing the recording canvas applies the new limit.
}
void DeferredDevice::beginRecording() {
SkASSERT(NULL == fRecordingCanvas);
fRecordingCanvas = fPipeWriter.startRecording(&fPipeController, 0,
fImmediateDevice->width(), fImmediateDevice->height());
}
void DeferredDevice::setNotificationClient(
SkDeferredCanvas::NotificationClient* notificationClient) {
fNotificationClient = notificationClient;
}
void DeferredDevice::skipPendingCommands() {
if (!fRecordingCanvas->isDrawingToLayer() && fPipeController.hasPendingCommands()) {
fFreshFrame = true;
flushPendingCommands(kSilent_PlaybackMode);
if (fNotificationClient) {
fNotificationClient->skippedPendingDrawCommands();
}
}
}
bool DeferredDevice::isFreshFrame() {
bool ret = fFreshFrame;
fFreshFrame = false;
return ret;
}
bool DeferredDevice::hasPendingCommands() {
return fPipeController.hasPendingCommands();
}
void DeferredDevice::flushPendingCommands(PlaybackMode playbackMode) {
if (!fPipeController.hasPendingCommands()) {
return;
}
if (playbackMode == kNormal_PlaybackMode && fNotificationClient) {
fNotificationClient->prepareForDraw();
}
fPipeWriter.flushRecording(true);
fPipeController.playback(kSilent_PlaybackMode == playbackMode);
if (playbackMode == kNormal_PlaybackMode && fNotificationClient) {
fNotificationClient->flushedDrawCommands();
}
fPreviousStorageAllocated = storageAllocatedForRecording();
}
void DeferredDevice::flush() {
this->flushPendingCommands(kNormal_PlaybackMode);
fImmediateCanvas->flush();
}
size_t DeferredDevice::freeMemoryIfPossible(size_t bytesToFree) {
size_t val = fPipeWriter.freeMemoryIfPossible(bytesToFree);
fPreviousStorageAllocated = storageAllocatedForRecording();
return val;
}
size_t DeferredDevice::getBitmapSizeThreshold() const {
return fBitmapSizeThreshold;
}
void DeferredDevice::setBitmapSizeThreshold(size_t sizeThreshold) {
fBitmapSizeThreshold = sizeThreshold;
}
size_t DeferredDevice::storageAllocatedForRecording() const {
return (fPipeController.storageAllocatedForRecording()
+ fPipeWriter.storageAllocatedForRecording());
}
void DeferredDevice::recordedDrawCommand() {
size_t storageAllocated = this->storageAllocatedForRecording();
if (storageAllocated > fMaxRecordingStorageBytes) {
// First, attempt to reduce cache without flushing
size_t tryFree = storageAllocated - fMaxRecordingStorageBytes;
if (this->freeMemoryIfPossible(tryFree) < tryFree) {
// Flush is necessary to free more space.
this->flushPendingCommands(kNormal_PlaybackMode);
// Free as much as possible to avoid oscillating around fMaxRecordingStorageBytes
// which could cause a high flushing frequency.
this->freeMemoryIfPossible(~0U);
}
storageAllocated = this->storageAllocatedForRecording();
}
if (fNotificationClient &&
storageAllocated != fPreviousStorageAllocated) {
fPreviousStorageAllocated = storageAllocated;
fNotificationClient->storageAllocatedForRecordingChanged(storageAllocated);
}
}
SkCanvas* DeferredDevice::recordingCanvas() {
return fRecordingCanvas;
}
uint32_t DeferredDevice::getDeviceCapabilities() {
return fImmediateDevice->getDeviceCapabilities();
}
int DeferredDevice::width() const {
return fImmediateDevice->width();
}
int DeferredDevice::height() const {
return fImmediateDevice->height();
}
SkGpuRenderTarget* DeferredDevice::accessRenderTarget() {
this->flushPendingCommands(kNormal_PlaybackMode);
return fImmediateDevice->accessRenderTarget();
}
void DeferredDevice::writePixels(const SkBitmap& bitmap,
int x, int y, SkCanvas::Config8888 config8888) {
if (x <= 0 && y <= 0 && (x + bitmap.width()) >= width() &&
(y + bitmap.height()) >= height()) {
this->skipPendingCommands();
}
if (SkBitmap::kARGB_8888_Config == bitmap.config() &&
SkCanvas::kNative_Premul_Config8888 != config8888 &&
kPMColorAlias != config8888) {
//Special case config: no deferral
this->flushPendingCommands(kNormal_PlaybackMode);
fImmediateDevice->writePixels(bitmap, x, y, config8888);
return;
}
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
if (shouldDrawImmediately(&bitmap, NULL, getBitmapSizeThreshold())) {
this->flushPendingCommands(kNormal_PlaybackMode);
fImmediateCanvas->drawSprite(bitmap, x, y, &paint);
} else {
this->recordingCanvas()->drawSprite(bitmap, x, y, &paint);
this->recordedDrawCommand();
}
}
const SkBitmap& DeferredDevice::onAccessBitmap(SkBitmap*) {
this->flushPendingCommands(kNormal_PlaybackMode);
return fImmediateDevice->accessBitmap(false);
}
SkDevice* DeferredDevice::onCreateCompatibleDevice(
SkBitmap::Config config, int width, int height, bool isOpaque,
Usage usage) {
// Save layer usage not supported, and not required by SkDeferredCanvas.
SkASSERT(usage != kSaveLayer_Usage);
// Create a compatible non-deferred device.
SkAutoTUnref<SkDevice> compatibleDevice
(fImmediateDevice->createCompatibleDevice(config, width, height,
isOpaque));
return SkNEW_ARGS(DeferredDevice, (compatibleDevice, fNotificationClient));
}
bool DeferredDevice::onReadPixels(
const SkBitmap& bitmap, int x, int y, SkCanvas::Config8888 config8888) {
this->flushPendingCommands(kNormal_PlaybackMode);
return fImmediateCanvas->readPixels(const_cast<SkBitmap*>(&bitmap),
x, y, config8888);
}
class AutoImmediateDrawIfNeeded {
public:
AutoImmediateDrawIfNeeded(SkDeferredCanvas& canvas, const SkBitmap* bitmap,
const SkPaint* paint) {
this->init(canvas, bitmap, paint);
}
AutoImmediateDrawIfNeeded(SkDeferredCanvas& canvas, const SkPaint* paint) {
this->init(canvas, NULL, paint);
}
~AutoImmediateDrawIfNeeded() {
if (fCanvas) {
fCanvas->setDeferredDrawing(true);
}
}
private:
void init(SkDeferredCanvas& canvas, const SkBitmap* bitmap, const SkPaint* paint)
{
DeferredDevice* device = static_cast<DeferredDevice*>(canvas.getDevice());
if (canvas.isDeferredDrawing() && (NULL != device) &&
shouldDrawImmediately(bitmap, paint, device->getBitmapSizeThreshold())) {
canvas.setDeferredDrawing(false);
fCanvas = &canvas;
} else {
fCanvas = NULL;
}
}
SkDeferredCanvas* fCanvas;
};
SkDeferredCanvas::SkDeferredCanvas() {
this->init();
}
SkDeferredCanvas::SkDeferredCanvas(SkDevice* device) {
this->init();
this->setDevice(device);
}
void SkDeferredCanvas::init() {
fDeferredDrawing = true; // On by default
}
void SkDeferredCanvas::setMaxRecordingStorage(size_t maxStorage) {
this->validate();
this->getDeferredDevice()->setMaxRecordingStorage(maxStorage);
}
size_t SkDeferredCanvas::storageAllocatedForRecording() const {
return this->getDeferredDevice()->storageAllocatedForRecording();
}
size_t SkDeferredCanvas::freeMemoryIfPossible(size_t bytesToFree) {
return this->getDeferredDevice()->freeMemoryIfPossible(bytesToFree);
}
void SkDeferredCanvas::setBitmapSizeThreshold(size_t sizeThreshold) {
DeferredDevice* deferredDevice = this->getDeferredDevice();
SkASSERT(deferredDevice);
deferredDevice->setBitmapSizeThreshold(sizeThreshold);
}
void SkDeferredCanvas::recordedDrawCommand() {
if (fDeferredDrawing) {
this->getDeferredDevice()->recordedDrawCommand();
}
}
void SkDeferredCanvas::validate() const {
SkASSERT(this->getDevice());
}
SkCanvas* SkDeferredCanvas::drawingCanvas() const {
this->validate();
return fDeferredDrawing ? this->getDeferredDevice()->recordingCanvas() :
this->getDeferredDevice()->immediateCanvas();
}
SkCanvas* SkDeferredCanvas::immediateCanvas() const {
this->validate();
return this->getDeferredDevice()->immediateCanvas();
}
DeferredDevice* SkDeferredCanvas::getDeferredDevice() const {
return static_cast<DeferredDevice*>(this->getDevice());
}
void SkDeferredCanvas::setDeferredDrawing(bool val) {
this->validate(); // Must set device before calling this method
if (val != fDeferredDrawing) {
if (fDeferredDrawing) {
// Going live.
this->getDeferredDevice()->flushPendingCommands(kNormal_PlaybackMode);
}
fDeferredDrawing = val;
}
}
bool SkDeferredCanvas::isDeferredDrawing() const {
return fDeferredDrawing;
}
bool SkDeferredCanvas::isFreshFrame() const {
return this->getDeferredDevice()->isFreshFrame();
}
bool SkDeferredCanvas::hasPendingCommands() const {
return this->getDeferredDevice()->hasPendingCommands();
}
void SkDeferredCanvas::silentFlush() {
if (fDeferredDrawing) {
this->getDeferredDevice()->flushPendingCommands(kSilent_PlaybackMode);
}
}
SkDeferredCanvas::~SkDeferredCanvas() {
}
SkDevice* SkDeferredCanvas::setDevice(SkDevice* device) {
this->INHERITED::setDevice(SkNEW_ARGS(DeferredDevice, (device)))->unref();
return device;
}
SkDeferredCanvas::NotificationClient* SkDeferredCanvas::setNotificationClient(
NotificationClient* notificationClient) {
DeferredDevice* deferredDevice = this->getDeferredDevice();
SkASSERT(deferredDevice);
if (deferredDevice) {
deferredDevice->setNotificationClient(notificationClient);
}
return notificationClient;
}
bool SkDeferredCanvas::isFullFrame(const SkRect* rect,
const SkPaint* paint) const {
SkCanvas* canvas = this->drawingCanvas();
SkISize canvasSize = this->getDeviceSize();
if (rect) {
if (!canvas->getTotalMatrix().rectStaysRect()) {
return false; // conservative
}
SkRect transformedRect;
canvas->getTotalMatrix().mapRect(&transformedRect, *rect);
if (paint) {
SkPaint::Style paintStyle = paint->getStyle();
if (!(paintStyle == SkPaint::kFill_Style ||
paintStyle == SkPaint::kStrokeAndFill_Style)) {
return false;
}
if (paint->getMaskFilter() || paint->getLooper()
|| paint->getPathEffect() || paint->getImageFilter()) {
return false; // conservative
}
}
// The following test holds with AA enabled, and is conservative
// by a 0.5 pixel margin with AA disabled
if (transformedRect.fLeft > SkIntToScalar(0) ||
transformedRect.fTop > SkIntToScalar(0) ||
transformedRect.fRight < SkIntToScalar(canvasSize.fWidth) ||
transformedRect.fBottom < SkIntToScalar(canvasSize.fHeight)) {
return false;
}
}
return this->getClipStack()->quickContains(SkRect::MakeXYWH(0, 0,
SkIntToScalar(canvasSize.fWidth), SkIntToScalar(canvasSize.fHeight)));
}
int SkDeferredCanvas::save(SaveFlags flags) {
this->drawingCanvas()->save(flags);
int val = this->INHERITED::save(flags);
this->recordedDrawCommand();
return val;
}
int SkDeferredCanvas::saveLayer(const SkRect* bounds, const SkPaint* paint,
SaveFlags flags) {
this->drawingCanvas()->saveLayer(bounds, paint, flags);
int count = this->INHERITED::save(flags);
this->clipRectBounds(bounds, flags, NULL);
this->recordedDrawCommand();
return count;
}
void SkDeferredCanvas::restore() {
this->drawingCanvas()->restore();
this->INHERITED::restore();
this->recordedDrawCommand();
}
bool SkDeferredCanvas::isDrawingToLayer() const {
return this->drawingCanvas()->isDrawingToLayer();
}
bool SkDeferredCanvas::translate(SkScalar dx, SkScalar dy) {
this->drawingCanvas()->translate(dx, dy);
bool val = this->INHERITED::translate(dx, dy);
this->recordedDrawCommand();
return val;
}
bool SkDeferredCanvas::scale(SkScalar sx, SkScalar sy) {
this->drawingCanvas()->scale(sx, sy);
bool val = this->INHERITED::scale(sx, sy);
this->recordedDrawCommand();
return val;
}
bool SkDeferredCanvas::rotate(SkScalar degrees) {
this->drawingCanvas()->rotate(degrees);
bool val = this->INHERITED::rotate(degrees);
this->recordedDrawCommand();
return val;
}
bool SkDeferredCanvas::skew(SkScalar sx, SkScalar sy) {
this->drawingCanvas()->skew(sx, sy);
bool val = this->INHERITED::skew(sx, sy);
this->recordedDrawCommand();
return val;
}
bool SkDeferredCanvas::concat(const SkMatrix& matrix) {
this->drawingCanvas()->concat(matrix);
bool val = this->INHERITED::concat(matrix);
this->recordedDrawCommand();
return val;
}
void SkDeferredCanvas::setMatrix(const SkMatrix& matrix) {
this->drawingCanvas()->setMatrix(matrix);
this->INHERITED::setMatrix(matrix);
this->recordedDrawCommand();
}
bool SkDeferredCanvas::clipRect(const SkRect& rect,
SkRegion::Op op,
bool doAntiAlias) {
this->drawingCanvas()->clipRect(rect, op, doAntiAlias);
bool val = this->INHERITED::clipRect(rect, op, doAntiAlias);
this->recordedDrawCommand();
return val;
}
bool SkDeferredCanvas::clipRRect(const SkRRect& rrect,
SkRegion::Op op,
bool doAntiAlias) {
this->drawingCanvas()->clipRRect(rrect, op, doAntiAlias);
bool val = this->INHERITED::clipRRect(rrect, op, doAntiAlias);
this->recordedDrawCommand();
return val;
}
bool SkDeferredCanvas::clipPath(const SkPath& path,
SkRegion::Op op,
bool doAntiAlias) {
this->drawingCanvas()->clipPath(path, op, doAntiAlias);
bool val = this->INHERITED::clipPath(path, op, doAntiAlias);
this->recordedDrawCommand();
return val;
}
bool SkDeferredCanvas::clipRegion(const SkRegion& deviceRgn,
SkRegion::Op op) {
this->drawingCanvas()->clipRegion(deviceRgn, op);
bool val = this->INHERITED::clipRegion(deviceRgn, op);
this->recordedDrawCommand();
return val;
}
void SkDeferredCanvas::clear(SkColor color) {
// purge pending commands
if (fDeferredDrawing) {
this->getDeferredDevice()->skipPendingCommands();
}
this->drawingCanvas()->clear(color);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawPaint(const SkPaint& paint) {
if (fDeferredDrawing && this->isFullFrame(NULL, &paint) &&
isPaintOpaque(&paint)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPaint(paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawPoints(PointMode mode, size_t count,
const SkPoint pts[], const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPoints(mode, count, pts, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawOval(const SkRect& rect, const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawOval(rect, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawRect(const SkRect& rect, const SkPaint& paint) {
if (fDeferredDrawing && this->isFullFrame(&rect, &paint) &&
isPaintOpaque(&paint)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawRect(rect, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawRRect(const SkRRect& rrect, const SkPaint& paint) {
if (rrect.isRect()) {
this->SkDeferredCanvas::drawRect(rrect.getBounds(), paint);
} else if (rrect.isOval()) {
this->SkDeferredCanvas::drawOval(rrect.getBounds(), paint);
} else {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawRRect(rrect, paint);
this->recordedDrawCommand();
}
}
void SkDeferredCanvas::drawPath(const SkPath& path, const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPath(path, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawBitmap(const SkBitmap& bitmap, SkScalar left,
SkScalar top, const SkPaint* paint) {
SkRect bitmapRect = SkRect::MakeXYWH(left, top,
SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height()));
if (fDeferredDrawing &&
this->isFullFrame(&bitmapRect, paint) &&
isPaintOpaque(paint, &bitmap)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint);
this->drawingCanvas()->drawBitmap(bitmap, left, top, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawBitmapRectToRect(const SkBitmap& bitmap,
const SkRect* src,
const SkRect& dst,
const SkPaint* paint) {
if (fDeferredDrawing &&
this->isFullFrame(&dst, paint) &&
isPaintOpaque(paint, &bitmap)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint);
this->drawingCanvas()->drawBitmapRectToRect(bitmap, src, dst, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawBitmapMatrix(const SkBitmap& bitmap,
const SkMatrix& m,
const SkPaint* paint) {
// TODO: reset recording canvas if paint+bitmap is opaque and clip rect
// covers canvas entirely and transformed bitmap covers canvas entirely
AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint);
this->drawingCanvas()->drawBitmapMatrix(bitmap, m, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawBitmapNine(const SkBitmap& bitmap,
const SkIRect& center, const SkRect& dst,
const SkPaint* paint) {
// TODO: reset recording canvas if paint+bitmap is opaque and clip rect
// covers canvas entirely and dst covers canvas entirely
AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint);
this->drawingCanvas()->drawBitmapNine(bitmap, center, dst, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawSprite(const SkBitmap& bitmap, int left, int top,
const SkPaint* paint) {
SkRect bitmapRect = SkRect::MakeXYWH(
SkIntToScalar(left),
SkIntToScalar(top),
SkIntToScalar(bitmap.width()),
SkIntToScalar(bitmap.height()));
if (fDeferredDrawing &&
this->isFullFrame(&bitmapRect, paint) &&
isPaintOpaque(paint, &bitmap)) {
this->getDeferredDevice()->skipPendingCommands();
}
AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint);
this->drawingCanvas()->drawSprite(bitmap, left, top, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawText(const void* text, size_t byteLength,
SkScalar x, SkScalar y, const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawText(text, byteLength, x, y, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawPosText(const void* text, size_t byteLength,
const SkPoint pos[], const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPosText(text, byteLength, pos, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawPosTextH(const void* text, size_t byteLength,
const SkScalar xpos[], SkScalar constY,
const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawPosTextH(text, byteLength, xpos, constY, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawTextOnPath(const void* text, size_t byteLength,
const SkPath& path,
const SkMatrix* matrix,
const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawTextOnPath(text, byteLength, path, matrix, paint);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawPicture(SkPicture& picture) {
this->drawingCanvas()->drawPicture(picture);
this->recordedDrawCommand();
}
void SkDeferredCanvas::drawVertices(VertexMode vmode, int vertexCount,
const SkPoint vertices[],
const SkPoint texs[],
const SkColor colors[], SkXfermode* xmode,
const uint16_t indices[], int indexCount,
const SkPaint& paint) {
AutoImmediateDrawIfNeeded autoDraw(*this, &paint);
this->drawingCanvas()->drawVertices(vmode, vertexCount, vertices, texs, colors, xmode,
indices, indexCount, paint);
this->recordedDrawCommand();
}
SkBounder* SkDeferredCanvas::setBounder(SkBounder* bounder) {
this->drawingCanvas()->setBounder(bounder);
this->INHERITED::setBounder(bounder);
this->recordedDrawCommand();
return bounder;
}
SkDrawFilter* SkDeferredCanvas::setDrawFilter(SkDrawFilter* filter) {
this->drawingCanvas()->setDrawFilter(filter);
this->INHERITED::setDrawFilter(filter);
this->recordedDrawCommand();
return filter;
}
SkCanvas* SkDeferredCanvas::canvasForDrawIter() {
return this->drawingCanvas();
}