| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkClipStack.h" |
| #include "SkPath.h" |
| #include "SkThread.h" |
| |
| #include <new> |
| |
| |
| // 0-2 are reserved for invalid, empty & wide-open |
| static const int32_t kFirstUnreservedGenID = 3; |
| int32_t SkClipStack::gGenID = kFirstUnreservedGenID; |
| |
| void SkClipStack::Element::invertShapeFillType() { |
| switch (fType) { |
| case kRect_Type: |
| fPath.reset(); |
| fPath.addRect(fRect); |
| fPath.setFillType(SkPath::kInverseWinding_FillType); |
| fType = kPath_Type; |
| break; |
| case kPath_Type: |
| fPath.toggleInverseFillType(); |
| case kEmpty_Type: |
| break; |
| } |
| } |
| |
| void SkClipStack::Element::checkEmpty() const { |
| SkASSERT(fFiniteBound.isEmpty()); |
| SkASSERT(kNormal_BoundsType == fFiniteBoundType); |
| SkASSERT(!fIsIntersectionOfRects); |
| SkASSERT(kEmptyGenID == fGenID); |
| SkASSERT(fPath.isEmpty()); |
| } |
| |
| bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const { |
| if (kEmpty_Type == fType && |
| (SkRegion::kDifference_Op == op || SkRegion::kIntersect_Op == op)) { |
| return true; |
| } |
| // Only clips within the same save/restore frame (as captured by |
| // the save count) can be merged |
| return fSaveCount == saveCount && |
| SkRegion::kIntersect_Op == op && |
| (SkRegion::kIntersect_Op == fOp || SkRegion::kReplace_Op == fOp); |
| } |
| |
| bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const { |
| SkASSERT(kRect_Type == fType); |
| |
| if (fDoAA == newAA) { |
| // if the AA setting is the same there is no issue |
| return true; |
| } |
| |
| if (!SkRect::Intersects(fRect, newR)) { |
| // The calling code will correctly set the result to the empty clip |
| return true; |
| } |
| |
| if (fRect.contains(newR)) { |
| // if the new rect carves out a portion of the old one there is no |
| // issue |
| return true; |
| } |
| |
| // So either the two overlap in some complex manner or newR contains oldR. |
| // In the first, case the edges will require different AA. In the second, |
| // the AA setting that would be carried forward is incorrect (e.g., oldR |
| // is AA while newR is BW but since newR contains oldR, oldR will be |
| // drawn BW) since the new AA setting will predominate. |
| return false; |
| } |
| |
| // a mirror of combineBoundsRevDiff |
| void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) { |
| switch (combination) { |
| case kInvPrev_InvCur_FillCombo: |
| // In this case the only pixels that can remain set |
| // are inside the current clip rect since the extensions |
| // to infinity of both clips cancel out and whatever |
| // is outside of the current clip is removed |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kInvPrev_Cur_FillCombo: |
| // In this case the current op is finite so the only pixels |
| // that aren't set are whatever isn't set in the previous |
| // clip and whatever this clip carves out |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kPrev_InvCur_FillCombo: |
| // In this case everything outside of this clip's bound |
| // is erased, so the only pixels that can remain set |
| // occur w/in the intersection of the two finite bounds |
| if (!fFiniteBound.intersect(prevFinite)) { |
| fFiniteBound.setEmpty(); |
| fGenID = kEmptyGenID; |
| } |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kPrev_Cur_FillCombo: |
| // The most conservative result bound is that of the |
| // prior clip. This could be wildly incorrect if the |
| // second clip either exactly matches the first clip |
| // (which should yield the empty set) or reduces the |
| // size of the prior bound (e.g., if the second clip |
| // exactly matched the bottom half of the prior clip). |
| // We ignore these two possibilities. |
| fFiniteBound = prevFinite; |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination"); |
| break; |
| } |
| } |
| |
| void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) { |
| |
| switch (combination) { |
| case kInvPrev_Cur_FillCombo: // fall through |
| case kPrev_InvCur_FillCombo: |
| // With only one of the clips inverted the result will always |
| // extend to infinity. The only pixels that may be un-writeable |
| // lie within the union of the two finite bounds |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kInvPrev_InvCur_FillCombo: |
| // The only pixels that can survive are within the |
| // union of the two bounding boxes since the extensions |
| // to infinity of both clips cancel out |
| // fall through! |
| case kPrev_Cur_FillCombo: |
| // The most conservative bound for xor is the |
| // union of the two bounds. If the two clips exactly overlapped |
| // the xor could yield the empty set. Similarly the xor |
| // could reduce the size of the original clip's bound (e.g., |
| // if the second clip exactly matched the bottom half of the |
| // first clip). We ignore these two cases. |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination"); |
| break; |
| } |
| } |
| |
| // a mirror of combineBoundsIntersection |
| void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) { |
| |
| switch (combination) { |
| case kInvPrev_InvCur_FillCombo: |
| if (!fFiniteBound.intersect(prevFinite)) { |
| fFiniteBound.setEmpty(); |
| fGenID = kWideOpenGenID; |
| } |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kInvPrev_Cur_FillCombo: |
| // The only pixels that won't be drawable are inside |
| // the prior clip's finite bound |
| fFiniteBound = prevFinite; |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kPrev_InvCur_FillCombo: |
| // The only pixels that won't be drawable are inside |
| // this clip's finite bound |
| break; |
| case kPrev_Cur_FillCombo: |
| fFiniteBound.join(prevFinite); |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination"); |
| break; |
| } |
| } |
| |
| // a mirror of combineBoundsUnion |
| void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) { |
| |
| switch (combination) { |
| case kInvPrev_InvCur_FillCombo: |
| // The only pixels that aren't writable in this case |
| // occur in the union of the two finite bounds |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kInvPrev_Cur_FillCombo: |
| // In this case the only pixels that will remain writeable |
| // are within the current clip |
| break; |
| case kPrev_InvCur_FillCombo: |
| // In this case the only pixels that will remain writeable |
| // are with the previous clip |
| fFiniteBound = prevFinite; |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kPrev_Cur_FillCombo: |
| if (!fFiniteBound.intersect(prevFinite)) { |
| fFiniteBound.setEmpty(); |
| fGenID = kEmptyGenID; |
| } |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination"); |
| break; |
| } |
| } |
| |
| // a mirror of combineBoundsDiff |
| void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) { |
| |
| switch (combination) { |
| case kInvPrev_InvCur_FillCombo: |
| // The only pixels that can survive are in the |
| // previous bound since the extensions to infinity in |
| // both clips cancel out |
| fFiniteBound = prevFinite; |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kInvPrev_Cur_FillCombo: |
| if (!fFiniteBound.intersect(prevFinite)) { |
| fFiniteBound.setEmpty(); |
| fGenID = kEmptyGenID; |
| } |
| fFiniteBoundType = kNormal_BoundsType; |
| break; |
| case kPrev_InvCur_FillCombo: |
| fFiniteBound.join(prevFinite); |
| fFiniteBoundType = kInsideOut_BoundsType; |
| break; |
| case kPrev_Cur_FillCombo: |
| // Fall through - as with the kDifference_Op case, the |
| // most conservative result bound is the bound of the |
| // current clip. The prior clip could reduce the size of this |
| // bound (as in the kDifference_Op case) but we are ignoring |
| // those cases. |
| break; |
| default: |
| SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination"); |
| break; |
| } |
| } |
| |
| void SkClipStack::Element::updateBoundAndGenID(const Element* prior) { |
| // We set this first here but we may overwrite it later if we determine that the clip is |
| // either wide-open or empty. |
| fGenID = GetNextGenID(); |
| |
| // First, optimistically update the current Element's bound information |
| // with the current clip's bound |
| fIsIntersectionOfRects = false; |
| if (kRect_Type == fType) { |
| fFiniteBound = fRect; |
| fFiniteBoundType = kNormal_BoundsType; |
| |
| if (SkRegion::kReplace_Op == fOp || |
| (SkRegion::kIntersect_Op == fOp && NULL == prior) || |
| (SkRegion::kIntersect_Op == fOp && prior->fIsIntersectionOfRects && |
| prior->rectRectIntersectAllowed(fRect, fDoAA))) { |
| fIsIntersectionOfRects = true; |
| } |
| |
| } else { |
| SkASSERT(kPath_Type == fType); |
| |
| fFiniteBound = fPath.getBounds(); |
| |
| if (fPath.isInverseFillType()) { |
| fFiniteBoundType = kInsideOut_BoundsType; |
| } else { |
| fFiniteBoundType = kNormal_BoundsType; |
| } |
| } |
| |
| if (!fDoAA) { |
| // Here we mimic a non-anti-aliased scanline system. If there is |
| // no anti-aliasing we can integerize the bounding box to exclude |
| // fractional parts that won't be rendered. |
| // Note: the left edge is handled slightly differently below. We |
| // are a bit more generous in the rounding since we don't want to |
| // risk missing the left pixels when fLeft is very close to .5 |
| fFiniteBound.set(SkIntToScalar(SkScalarFloorToInt(fFiniteBound.fLeft+0.45f)), |
| SkIntToScalar(SkScalarRound(fFiniteBound.fTop)), |
| SkIntToScalar(SkScalarRound(fFiniteBound.fRight)), |
| SkIntToScalar(SkScalarRound(fFiniteBound.fBottom))); |
| } |
| |
| // Now determine the previous Element's bound information taking into |
| // account that there may be no previous clip |
| SkRect prevFinite; |
| SkClipStack::BoundsType prevType; |
| |
| if (NULL == prior) { |
| // no prior clip means the entire plane is writable |
| prevFinite.setEmpty(); // there are no pixels that cannot be drawn to |
| prevType = kInsideOut_BoundsType; |
| } else { |
| prevFinite = prior->fFiniteBound; |
| prevType = prior->fFiniteBoundType; |
| } |
| |
| FillCombo combination = kPrev_Cur_FillCombo; |
| if (kInsideOut_BoundsType == fFiniteBoundType) { |
| combination = (FillCombo) (combination | 0x01); |
| } |
| if (kInsideOut_BoundsType == prevType) { |
| combination = (FillCombo) (combination | 0x02); |
| } |
| |
| SkASSERT(kInvPrev_InvCur_FillCombo == combination || |
| kInvPrev_Cur_FillCombo == combination || |
| kPrev_InvCur_FillCombo == combination || |
| kPrev_Cur_FillCombo == combination); |
| |
| // Now integrate with clip with the prior clips |
| switch (fOp) { |
| case SkRegion::kDifference_Op: |
| this->combineBoundsDiff(combination, prevFinite); |
| break; |
| case SkRegion::kXOR_Op: |
| this->combineBoundsXOR(combination, prevFinite); |
| break; |
| case SkRegion::kUnion_Op: |
| this->combineBoundsUnion(combination, prevFinite); |
| break; |
| case SkRegion::kIntersect_Op: |
| this->combineBoundsIntersection(combination, prevFinite); |
| break; |
| case SkRegion::kReverseDifference_Op: |
| this->combineBoundsRevDiff(combination, prevFinite); |
| break; |
| case SkRegion::kReplace_Op: |
| // Replace just ignores everything prior |
| // The current clip's bound information is already filled in |
| // so nothing to do |
| break; |
| default: |
| SkDebugf("SkRegion::Op error/n"); |
| SkASSERT(0); |
| break; |
| } |
| } |
| |
| // This constant determines how many Element's are allocated together as a block in |
| // the deque. As such it needs to balance allocating too much memory vs. |
| // incurring allocation/deallocation thrashing. It should roughly correspond to |
| // the deepest save/restore stack we expect to see. |
| static const int kDefaultElementAllocCnt = 8; |
| |
| SkClipStack::SkClipStack() |
| : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
| , fSaveCount(0) { |
| } |
| |
| SkClipStack::SkClipStack(const SkClipStack& b) |
| : fDeque(sizeof(Element), kDefaultElementAllocCnt) { |
| *this = b; |
| } |
| |
| SkClipStack::SkClipStack(const SkRect& r) |
| : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
| , fSaveCount(0) { |
| if (!r.isEmpty()) { |
| this->clipDevRect(r, SkRegion::kReplace_Op, false); |
| } |
| } |
| |
| SkClipStack::SkClipStack(const SkIRect& r) |
| : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
| , fSaveCount(0) { |
| if (!r.isEmpty()) { |
| SkRect temp; |
| temp.set(r); |
| this->clipDevRect(temp, SkRegion::kReplace_Op, false); |
| } |
| } |
| |
| SkClipStack::~SkClipStack() { |
| reset(); |
| } |
| |
| SkClipStack& SkClipStack::operator=(const SkClipStack& b) { |
| if (this == &b) { |
| return *this; |
| } |
| reset(); |
| |
| fSaveCount = b.fSaveCount; |
| SkDeque::F2BIter recIter(b.fDeque); |
| for (const Element* element = (const Element*)recIter.next(); |
| element != NULL; |
| element = (const Element*)recIter.next()) { |
| new (fDeque.push_back()) Element(*element); |
| } |
| |
| return *this; |
| } |
| |
| bool SkClipStack::operator==(const SkClipStack& b) const { |
| if (fSaveCount != b.fSaveCount || |
| fDeque.count() != b.fDeque.count()) { |
| return false; |
| } |
| SkDeque::F2BIter myIter(fDeque); |
| SkDeque::F2BIter bIter(b.fDeque); |
| const Element* myElement = (const Element*)myIter.next(); |
| const Element* bElement = (const Element*)bIter.next(); |
| |
| while (myElement != NULL && bElement != NULL) { |
| if (*myElement != *bElement) { |
| return false; |
| } |
| myElement = (const Element*)myIter.next(); |
| bElement = (const Element*)bIter.next(); |
| } |
| return myElement == NULL && bElement == NULL; |
| } |
| |
| void SkClipStack::reset() { |
| // We used a placement new for each object in fDeque, so we're responsible |
| // for calling the destructor on each of them as well. |
| while (!fDeque.empty()) { |
| Element* element = (Element*)fDeque.back(); |
| element->~Element(); |
| fDeque.pop_back(); |
| } |
| |
| fSaveCount = 0; |
| } |
| |
| void SkClipStack::save() { |
| fSaveCount += 1; |
| } |
| |
| void SkClipStack::restore() { |
| fSaveCount -= 1; |
| while (!fDeque.empty()) { |
| Element* element = (Element*)fDeque.back(); |
| if (element->fSaveCount <= fSaveCount) { |
| break; |
| } |
| this->purgeClip(element); |
| element->~Element(); |
| fDeque.pop_back(); |
| } |
| } |
| |
| void SkClipStack::getBounds(SkRect* canvFiniteBound, |
| BoundsType* boundType, |
| bool* isIntersectionOfRects) const { |
| SkASSERT(NULL != canvFiniteBound && NULL != boundType); |
| |
| Element* element = (Element*)fDeque.back(); |
| |
| if (NULL == element) { |
| // the clip is wide open - the infinite plane w/ no pixels un-writeable |
| canvFiniteBound->setEmpty(); |
| *boundType = kInsideOut_BoundsType; |
| if (NULL != isIntersectionOfRects) { |
| *isIntersectionOfRects = false; |
| } |
| return; |
| } |
| |
| *canvFiniteBound = element->fFiniteBound; |
| *boundType = element->fFiniteBoundType; |
| if (NULL != isIntersectionOfRects) { |
| *isIntersectionOfRects = element->fIsIntersectionOfRects; |
| } |
| } |
| |
| bool SkClipStack::intersectRectWithClip(SkRect* rect) const { |
| SkASSERT(NULL != rect); |
| |
| SkRect bounds; |
| SkClipStack::BoundsType bt; |
| this->getBounds(&bounds, &bt); |
| if (bt == SkClipStack::kInsideOut_BoundsType) { |
| if (bounds.contains(*rect)) { |
| return false; |
| } else { |
| // If rect's x values are both within bound's x range we |
| // could clip here. Same for y. But we don't bother to check. |
| return true; |
| } |
| } else { |
| return rect->intersect(bounds); |
| } |
| } |
| |
| bool SkClipStack::quickContains(const SkRect& rect) const { |
| |
| Iter iter(*this, Iter::kTop_IterStart); |
| const Element* element = iter.prev(); |
| while (element != NULL) { |
| if (SkRegion::kIntersect_Op != element->getOp() && SkRegion::kReplace_Op != element->getOp()) |
| return false; |
| if (element->isInverseFilled()) { |
| // Part of 'rect' could be trimmed off by the inverse-filled clip element |
| if (SkRect::Intersects(element->getBounds(), rect)) { |
| return false; |
| } |
| } else { |
| if (!element->contains(rect)) { |
| return false; |
| } |
| } |
| if (SkRegion::kReplace_Op == element->getOp()) { |
| break; |
| } |
| element = iter.prev(); |
| } |
| return true; |
| } |
| |
| void SkClipStack::clipDevRect(const SkRect& rect, SkRegion::Op op, bool doAA) { |
| |
| // Use reverse iterator instead of back because Rect path may need previous |
| SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
| Element* element = (Element*) iter.prev(); |
| |
| if (element && element->canBeIntersectedInPlace(fSaveCount, op)) { |
| switch (element->fType) { |
| case Element::kEmpty_Type: |
| element->checkEmpty(); |
| return; |
| case Element::kRect_Type: |
| if (element->rectRectIntersectAllowed(rect, doAA)) { |
| this->purgeClip(element); |
| if (!element->fRect.intersect(rect)) { |
| element->setEmpty(); |
| return; |
| } |
| |
| element->fDoAA = doAA; |
| Element* prev = (Element*) iter.prev(); |
| element->updateBoundAndGenID(prev); |
| return; |
| } |
| break; |
| case Element::kPath_Type: |
| if (!SkRect::Intersects(element->fPath.getBounds(), rect)) { |
| this->purgeClip(element); |
| element->setEmpty(); |
| return; |
| } |
| break; |
| } |
| } |
| new (fDeque.push_back()) Element(fSaveCount, rect, op, doAA); |
| ((Element*) fDeque.back())->updateBoundAndGenID(element); |
| |
| if (element && element->fSaveCount == fSaveCount) { |
| this->purgeClip(element); |
| } |
| } |
| |
| void SkClipStack::clipDevPath(const SkPath& path, SkRegion::Op op, bool doAA) { |
| SkRect alt; |
| if (path.isRect(&alt) && !path.isInverseFillType()) { |
| return this->clipDevRect(alt, op, doAA); |
| } |
| |
| Element* element = (Element*)fDeque.back(); |
| if (element && element->canBeIntersectedInPlace(fSaveCount, op)) { |
| const SkRect& pathBounds = path.getBounds(); |
| switch (element->fType) { |
| case Element::kEmpty_Type: |
| element->checkEmpty(); |
| return; |
| case Element::kRect_Type: |
| if (!SkRect::Intersects(element->fRect, pathBounds)) { |
| this->purgeClip(element); |
| element->setEmpty(); |
| return; |
| } |
| break; |
| case Element::kPath_Type: |
| if (!SkRect::Intersects(element->fPath.getBounds(), pathBounds)) { |
| this->purgeClip(element); |
| element->setEmpty(); |
| return; |
| } |
| break; |
| } |
| } |
| new (fDeque.push_back()) Element(fSaveCount, path, op, doAA); |
| ((Element*) fDeque.back())->updateBoundAndGenID(element); |
| |
| if (element && element->fSaveCount == fSaveCount) { |
| this->purgeClip(element); |
| } |
| } |
| |
| void SkClipStack::clipEmpty() { |
| |
| Element* element = (Element*) fDeque.back(); |
| |
| if (element && element->canBeIntersectedInPlace(fSaveCount, SkRegion::kIntersect_Op)) { |
| switch (element->fType) { |
| case Element::kEmpty_Type: |
| element->checkEmpty(); |
| return; |
| case Element::kRect_Type: |
| case Element::kPath_Type: |
| this->purgeClip(element); |
| element->setEmpty(); |
| return; |
| } |
| } |
| new (fDeque.push_back()) Element(fSaveCount); |
| |
| if (element && element->fSaveCount == fSaveCount) { |
| this->purgeClip(element); |
| } |
| ((Element*)fDeque.back())->fGenID = kEmptyGenID; |
| } |
| |
| bool SkClipStack::isWideOpen() const { |
| if (0 == fDeque.count()) { |
| return true; |
| } |
| |
| const Element* back = (const Element*) fDeque.back(); |
| return kWideOpenGenID == back->fGenID || |
| (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty()); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkClipStack::Iter::Iter() : fStack(NULL) { |
| } |
| |
| SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc) |
| : fStack(&stack) { |
| this->reset(stack, startLoc); |
| } |
| |
| const SkClipStack::Element* SkClipStack::Iter::next() { |
| return (const SkClipStack::Element*)fIter.next(); |
| } |
| |
| const SkClipStack::Element* SkClipStack::Iter::prev() { |
| return (const SkClipStack::Element*)fIter.prev(); |
| } |
| |
| const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkRegion::Op op) { |
| |
| if (NULL == fStack) { |
| return NULL; |
| } |
| |
| fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart); |
| |
| const SkClipStack::Element* element = NULL; |
| |
| for (element = (const SkClipStack::Element*) fIter.prev(); |
| NULL != element; |
| element = (const SkClipStack::Element*) fIter.prev()) { |
| |
| if (op == element->fOp) { |
| // The Deque's iterator is actually one pace ahead of the |
| // returned value. So while "element" is the element we want to |
| // return, the iterator is actually pointing at (and will |
| // return on the next "next" or "prev" call) the element |
| // in front of it in the deque. Bump the iterator forward a |
| // step so we get the expected result. |
| if (NULL == fIter.next()) { |
| // The reverse iterator has run off the front of the deque |
| // (i.e., the "op" clip is the first clip) and can't |
| // recover. Reset the iterator to start at the front. |
| fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
| } |
| break; |
| } |
| } |
| |
| if (NULL == element) { |
| // There were no "op" clips |
| fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
| } |
| |
| return this->next(); |
| } |
| |
| void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) { |
| fStack = &stack; |
| fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc)); |
| } |
| |
| // helper method |
| void SkClipStack::getConservativeBounds(int offsetX, |
| int offsetY, |
| int maxWidth, |
| int maxHeight, |
| SkRect* devBounds, |
| bool* isIntersectionOfRects) const { |
| SkASSERT(NULL != devBounds); |
| |
| devBounds->setLTRB(0, 0, |
| SkIntToScalar(maxWidth), SkIntToScalar(maxHeight)); |
| |
| SkRect temp; |
| SkClipStack::BoundsType boundType; |
| |
| // temp starts off in canvas space here |
| this->getBounds(&temp, &boundType, isIntersectionOfRects); |
| if (SkClipStack::kInsideOut_BoundsType == boundType) { |
| return; |
| } |
| |
| // but is converted to device space here |
| temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY)); |
| |
| if (!devBounds->intersect(temp)) { |
| devBounds->setEmpty(); |
| } |
| } |
| |
| void SkClipStack::addPurgeClipCallback(PFPurgeClipCB callback, void* data) const { |
| ClipCallbackData temp = { callback, data }; |
| fCallbackData.append(1, &temp); |
| } |
| |
| void SkClipStack::removePurgeClipCallback(PFPurgeClipCB callback, void* data) const { |
| ClipCallbackData temp = { callback, data }; |
| int index = fCallbackData.find(temp); |
| if (index >= 0) { |
| fCallbackData.removeShuffle(index); |
| } |
| } |
| |
| // The clip state represented by 'element' will never be used again. Purge it. |
| void SkClipStack::purgeClip(Element* element) { |
| SkASSERT(NULL != element); |
| if (element->fGenID >= 0 && element->fGenID < kFirstUnreservedGenID) { |
| return; |
| } |
| |
| for (int i = 0; i < fCallbackData.count(); ++i) { |
| (*fCallbackData[i].fCallback)(element->fGenID, fCallbackData[i].fData); |
| } |
| |
| // Invalidate element's gen ID so handlers can detect already handled records |
| element->fGenID = kInvalidGenID; |
| } |
| |
| int32_t SkClipStack::GetNextGenID() { |
| // TODO: handle overflow. |
| return sk_atomic_inc(&gGenID); |
| } |
| |
| int32_t SkClipStack::getTopmostGenID() const { |
| |
| if (fDeque.empty()) { |
| return kInvalidGenID; |
| } |
| |
| Element* element = (Element*)fDeque.back(); |
| return element->fGenID; |
| } |