| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkDraw.h" |
| #include "SkBlitter.h" |
| #include "SkBounder.h" |
| #include "SkCanvas.h" |
| #include "SkColorPriv.h" |
| #include "SkDevice.h" |
| #include "SkFixed.h" |
| #include "SkMaskFilter.h" |
| #include "SkPaint.h" |
| #include "SkPathEffect.h" |
| #include "SkRasterClip.h" |
| #include "SkRasterizer.h" |
| #include "SkScan.h" |
| #include "SkShader.h" |
| #include "SkString.h" |
| #include "SkStroke.h" |
| #include "SkTemplatesPriv.h" |
| #include "SkTLazy.h" |
| #include "SkUtils.h" |
| |
| #include "SkAutoKern.h" |
| #include "SkBitmapProcShader.h" |
| #include "SkDrawProcs.h" |
| #include "SkMatrixUtils.h" |
| |
| //#define TRACE_BITMAP_DRAWS |
| |
| #define kBlitterStorageLongCount (sizeof(SkBitmapProcShader) >> 2) |
| |
| /** Helper for allocating small blitters on the stack. |
| */ |
| class SkAutoBlitterChoose : SkNoncopyable { |
| public: |
| SkAutoBlitterChoose() { |
| fBlitter = NULL; |
| } |
| SkAutoBlitterChoose(const SkBitmap& device, const SkMatrix& matrix, |
| const SkPaint& paint) { |
| fBlitter = SkBlitter::Choose(device, matrix, paint, |
| fStorage, sizeof(fStorage)); |
| } |
| |
| ~SkAutoBlitterChoose(); |
| |
| SkBlitter* operator->() { return fBlitter; } |
| SkBlitter* get() const { return fBlitter; } |
| |
| void choose(const SkBitmap& device, const SkMatrix& matrix, |
| const SkPaint& paint) { |
| SkASSERT(!fBlitter); |
| fBlitter = SkBlitter::Choose(device, matrix, paint, |
| fStorage, sizeof(fStorage)); |
| } |
| |
| private: |
| SkBlitter* fBlitter; |
| uint32_t fStorage[kBlitterStorageLongCount]; |
| }; |
| |
| SkAutoBlitterChoose::~SkAutoBlitterChoose() { |
| if ((void*)fBlitter == (void*)fStorage) { |
| fBlitter->~SkBlitter(); |
| } else { |
| SkDELETE(fBlitter); |
| } |
| } |
| |
| /** |
| * Since we are providing the storage for the shader (to avoid the perf cost |
| * of calling new) we insist that in our destructor we can account for all |
| * owners of the shader. |
| */ |
| class SkAutoBitmapShaderInstall : SkNoncopyable { |
| public: |
| SkAutoBitmapShaderInstall(const SkBitmap& src, const SkPaint& paint) |
| : fPaint(paint) /* makes a copy of the paint */ { |
| fPaint.setShader(SkShader::CreateBitmapShader(src, |
| SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, |
| fStorage, sizeof(fStorage))); |
| // we deliberately left the shader with an owner-count of 2 |
| SkASSERT(2 == fPaint.getShader()->getRefCnt()); |
| } |
| |
| ~SkAutoBitmapShaderInstall() { |
| SkShader* shader = fPaint.getShader(); |
| // since we manually destroy shader, we insist that owners == 2 |
| SkASSERT(2 == shader->getRefCnt()); |
| |
| fPaint.setShader(NULL); // unref the shader by 1 |
| |
| // now destroy to take care of the 2nd owner-count |
| if ((void*)shader == (void*)fStorage) { |
| shader->~SkShader(); |
| } else { |
| SkDELETE(shader); |
| } |
| } |
| |
| // return the new paint that has the shader applied |
| const SkPaint& paintWithShader() const { return fPaint; } |
| |
| private: |
| SkPaint fPaint; // copy of caller's paint (which we then modify) |
| uint32_t fStorage[kBlitterStorageLongCount]; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkDraw::SkDraw() { |
| sk_bzero(this, sizeof(*this)); |
| } |
| |
| SkDraw::SkDraw(const SkDraw& src) { |
| memcpy(this, &src, sizeof(*this)); |
| } |
| |
| bool SkDraw::computeConservativeLocalClipBounds(SkRect* localBounds) const { |
| if (fRC->isEmpty()) { |
| return false; |
| } |
| |
| SkMatrix inverse; |
| if (!fMatrix->invert(&inverse)) { |
| return false; |
| } |
| |
| SkIRect devBounds = fRC->getBounds(); |
| // outset to have slop for antialasing and hairlines |
| devBounds.outset(1, 1); |
| inverse.mapRect(localBounds, SkRect::Make(devBounds)); |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| typedef void (*BitmapXferProc)(void* pixels, size_t bytes, uint32_t data); |
| |
| static void D_Clear_BitmapXferProc(void* pixels, size_t bytes, uint32_t) { |
| sk_bzero(pixels, bytes); |
| } |
| |
| static void D_Dst_BitmapXferProc(void*, size_t, uint32_t data) {} |
| |
| static void D32_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { |
| sk_memset32((uint32_t*)pixels, data, bytes >> 2); |
| } |
| |
| static void D16_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { |
| sk_memset16((uint16_t*)pixels, data, bytes >> 1); |
| } |
| |
| static void DA8_Src_BitmapXferProc(void* pixels, size_t bytes, uint32_t data) { |
| memset(pixels, data, bytes); |
| } |
| |
| static BitmapXferProc ChooseBitmapXferProc(const SkBitmap& bitmap, |
| const SkPaint& paint, |
| uint32_t* data) { |
| // todo: we can apply colorfilter up front if no shader, so we wouldn't |
| // need to abort this fastpath |
| if (paint.getShader() || paint.getColorFilter()) { |
| return NULL; |
| } |
| |
| SkXfermode::Mode mode; |
| if (!SkXfermode::AsMode(paint.getXfermode(), &mode)) { |
| return NULL; |
| } |
| |
| SkColor color = paint.getColor(); |
| |
| // collaps modes based on color... |
| if (SkXfermode::kSrcOver_Mode == mode) { |
| unsigned alpha = SkColorGetA(color); |
| if (0 == alpha) { |
| mode = SkXfermode::kDst_Mode; |
| } else if (0xFF == alpha) { |
| mode = SkXfermode::kSrc_Mode; |
| } |
| } |
| |
| switch (mode) { |
| case SkXfermode::kClear_Mode: |
| // SkDebugf("--- D_Clear_BitmapXferProc\n"); |
| return D_Clear_BitmapXferProc; // ignore data |
| case SkXfermode::kDst_Mode: |
| // SkDebugf("--- D_Dst_BitmapXferProc\n"); |
| return D_Dst_BitmapXferProc; // ignore data |
| case SkXfermode::kSrc_Mode: { |
| /* |
| should I worry about dithering for the lower depths? |
| */ |
| SkPMColor pmc = SkPreMultiplyColor(color); |
| switch (bitmap.config()) { |
| case SkBitmap::kARGB_8888_Config: |
| if (data) { |
| *data = pmc; |
| } |
| // SkDebugf("--- D32_Src_BitmapXferProc\n"); |
| return D32_Src_BitmapXferProc; |
| case SkBitmap::kARGB_4444_Config: |
| if (data) { |
| *data = SkPixel32ToPixel4444(pmc); |
| } |
| // SkDebugf("--- D16_Src_BitmapXferProc\n"); |
| return D16_Src_BitmapXferProc; |
| case SkBitmap::kRGB_565_Config: |
| if (data) { |
| *data = SkPixel32ToPixel16(pmc); |
| } |
| // SkDebugf("--- D16_Src_BitmapXferProc\n"); |
| return D16_Src_BitmapXferProc; |
| case SkBitmap::kA8_Config: |
| if (data) { |
| *data = SkGetPackedA32(pmc); |
| } |
| // SkDebugf("--- DA8_Src_BitmapXferProc\n"); |
| return DA8_Src_BitmapXferProc; |
| default: |
| break; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| return NULL; |
| } |
| |
| static void CallBitmapXferProc(const SkBitmap& bitmap, const SkIRect& rect, |
| BitmapXferProc proc, uint32_t procData) { |
| int shiftPerPixel; |
| switch (bitmap.config()) { |
| case SkBitmap::kARGB_8888_Config: |
| shiftPerPixel = 2; |
| break; |
| case SkBitmap::kARGB_4444_Config: |
| case SkBitmap::kRGB_565_Config: |
| shiftPerPixel = 1; |
| break; |
| case SkBitmap::kA8_Config: |
| shiftPerPixel = 0; |
| break; |
| default: |
| SkDEBUGFAIL("Can't use xferproc on this config"); |
| return; |
| } |
| |
| uint8_t* pixels = (uint8_t*)bitmap.getPixels(); |
| SkASSERT(pixels); |
| const size_t rowBytes = bitmap.rowBytes(); |
| const int widthBytes = rect.width() << shiftPerPixel; |
| |
| // skip down to the first scanline and X position |
| pixels += rect.fTop * rowBytes + (rect.fLeft << shiftPerPixel); |
| for (int scans = rect.height() - 1; scans >= 0; --scans) { |
| proc(pixels, widthBytes, procData); |
| pixels += rowBytes; |
| } |
| } |
| |
| void SkDraw::drawPaint(const SkPaint& paint) const { |
| SkDEBUGCODE(this->validate();) |
| |
| if (fRC->isEmpty()) { |
| return; |
| } |
| |
| SkIRect devRect; |
| devRect.set(0, 0, fBitmap->width(), fBitmap->height()); |
| if (fBounder && !fBounder->doIRect(devRect)) { |
| return; |
| } |
| |
| if (fRC->isBW()) { |
| /* If we don't have a shader (i.e. we're just a solid color) we may |
| be faster to operate directly on the device bitmap, rather than invoking |
| a blitter. Esp. true for xfermodes, which require a colorshader to be |
| present, which is just redundant work. Since we're drawing everywhere |
| in the clip, we don't have to worry about antialiasing. |
| */ |
| uint32_t procData = 0; // to avoid the warning |
| BitmapXferProc proc = ChooseBitmapXferProc(*fBitmap, paint, &procData); |
| if (proc) { |
| if (D_Dst_BitmapXferProc == proc) { // nothing to do |
| return; |
| } |
| |
| SkRegion::Iterator iter(fRC->bwRgn()); |
| while (!iter.done()) { |
| CallBitmapXferProc(*fBitmap, iter.rect(), proc, procData); |
| iter.next(); |
| } |
| return; |
| } |
| } |
| |
| // normal case: use a blitter |
| SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); |
| SkScan::FillIRect(devRect, *fRC, blitter.get()); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct PtProcRec { |
| SkCanvas::PointMode fMode; |
| const SkPaint* fPaint; |
| const SkRegion* fClip; |
| const SkRasterClip* fRC; |
| |
| // computed values |
| SkFixed fRadius; |
| |
| typedef void (*Proc)(const PtProcRec&, const SkPoint devPts[], int count, |
| SkBlitter*); |
| |
| bool init(SkCanvas::PointMode, const SkPaint&, const SkMatrix* matrix, |
| const SkRasterClip*); |
| Proc chooseProc(SkBlitter** blitter); |
| |
| private: |
| SkAAClipBlitterWrapper fWrapper; |
| }; |
| |
| static void bw_pt_rect_hair_proc(const PtProcRec& rec, const SkPoint devPts[], |
| int count, SkBlitter* blitter) { |
| SkASSERT(rec.fClip->isRect()); |
| const SkIRect& r = rec.fClip->getBounds(); |
| |
| for (int i = 0; i < count; i++) { |
| int x = SkScalarFloorToInt(devPts[i].fX); |
| int y = SkScalarFloorToInt(devPts[i].fY); |
| if (r.contains(x, y)) { |
| blitter->blitH(x, y, 1); |
| } |
| } |
| } |
| |
| static void bw_pt_rect_16_hair_proc(const PtProcRec& rec, |
| const SkPoint devPts[], int count, |
| SkBlitter* blitter) { |
| SkASSERT(rec.fRC->isRect()); |
| const SkIRect& r = rec.fRC->getBounds(); |
| uint32_t value; |
| const SkBitmap* bitmap = blitter->justAnOpaqueColor(&value); |
| SkASSERT(bitmap); |
| |
| uint16_t* addr = bitmap->getAddr16(0, 0); |
| int rb = bitmap->rowBytes(); |
| |
| for (int i = 0; i < count; i++) { |
| int x = SkScalarFloorToInt(devPts[i].fX); |
| int y = SkScalarFloorToInt(devPts[i].fY); |
| if (r.contains(x, y)) { |
| ((uint16_t*)((char*)addr + y * rb))[x] = SkToU16(value); |
| } |
| } |
| } |
| |
| static void bw_pt_rect_32_hair_proc(const PtProcRec& rec, |
| const SkPoint devPts[], int count, |
| SkBlitter* blitter) { |
| SkASSERT(rec.fRC->isRect()); |
| const SkIRect& r = rec.fRC->getBounds(); |
| uint32_t value; |
| const SkBitmap* bitmap = blitter->justAnOpaqueColor(&value); |
| SkASSERT(bitmap); |
| |
| SkPMColor* addr = bitmap->getAddr32(0, 0); |
| int rb = bitmap->rowBytes(); |
| |
| for (int i = 0; i < count; i++) { |
| int x = SkScalarFloorToInt(devPts[i].fX); |
| int y = SkScalarFloorToInt(devPts[i].fY); |
| if (r.contains(x, y)) { |
| ((SkPMColor*)((char*)addr + y * rb))[x] = value; |
| } |
| } |
| } |
| |
| static void bw_pt_hair_proc(const PtProcRec& rec, const SkPoint devPts[], |
| int count, SkBlitter* blitter) { |
| for (int i = 0; i < count; i++) { |
| int x = SkScalarFloor(devPts[i].fX); |
| int y = SkScalarFloor(devPts[i].fY); |
| if (rec.fClip->contains(x, y)) { |
| blitter->blitH(x, y, 1); |
| } |
| } |
| } |
| |
| static void bw_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[], |
| int count, SkBlitter* blitter) { |
| for (int i = 0; i < count; i += 2) { |
| SkScan::HairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); |
| } |
| } |
| |
| static void bw_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[], |
| int count, SkBlitter* blitter) { |
| for (int i = 0; i < count - 1; i++) { |
| SkScan::HairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); |
| } |
| } |
| |
| // aa versions |
| |
| static void aa_line_hair_proc(const PtProcRec& rec, const SkPoint devPts[], |
| int count, SkBlitter* blitter) { |
| for (int i = 0; i < count; i += 2) { |
| SkScan::AntiHairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); |
| } |
| } |
| |
| static void aa_poly_hair_proc(const PtProcRec& rec, const SkPoint devPts[], |
| int count, SkBlitter* blitter) { |
| for (int i = 0; i < count - 1; i++) { |
| SkScan::AntiHairLine(devPts[i], devPts[i+1], *rec.fRC, blitter); |
| } |
| } |
| |
| // square procs (strokeWidth > 0 but matrix is square-scale (sx == sy) |
| |
| static void bw_square_proc(const PtProcRec& rec, const SkPoint devPts[], |
| int count, SkBlitter* blitter) { |
| const SkFixed radius = rec.fRadius; |
| for (int i = 0; i < count; i++) { |
| SkFixed x = SkScalarToFixed(devPts[i].fX); |
| SkFixed y = SkScalarToFixed(devPts[i].fY); |
| |
| SkXRect r; |
| r.fLeft = x - radius; |
| r.fTop = y - radius; |
| r.fRight = x + radius; |
| r.fBottom = y + radius; |
| |
| SkScan::FillXRect(r, *rec.fRC, blitter); |
| } |
| } |
| |
| static void aa_square_proc(const PtProcRec& rec, const SkPoint devPts[], |
| int count, SkBlitter* blitter) { |
| const SkFixed radius = rec.fRadius; |
| for (int i = 0; i < count; i++) { |
| SkFixed x = SkScalarToFixed(devPts[i].fX); |
| SkFixed y = SkScalarToFixed(devPts[i].fY); |
| |
| SkXRect r; |
| r.fLeft = x - radius; |
| r.fTop = y - radius; |
| r.fRight = x + radius; |
| r.fBottom = y + radius; |
| |
| SkScan::AntiFillXRect(r, *rec.fRC, blitter); |
| } |
| } |
| |
| // If this guy returns true, then chooseProc() must return a valid proc |
| bool PtProcRec::init(SkCanvas::PointMode mode, const SkPaint& paint, |
| const SkMatrix* matrix, const SkRasterClip* rc) { |
| if (paint.getPathEffect()) { |
| return false; |
| } |
| SkScalar width = paint.getStrokeWidth(); |
| if (0 == width) { |
| fMode = mode; |
| fPaint = &paint; |
| fClip = NULL; |
| fRC = rc; |
| fRadius = SK_FixedHalf; |
| return true; |
| } |
| if (paint.getStrokeCap() != SkPaint::kRound_Cap && |
| matrix->rectStaysRect() && SkCanvas::kPoints_PointMode == mode) { |
| SkScalar sx = matrix->get(SkMatrix::kMScaleX); |
| SkScalar sy = matrix->get(SkMatrix::kMScaleY); |
| if (SkScalarNearlyZero(sx - sy)) { |
| if (sx < 0) { |
| sx = -sx; |
| } |
| |
| fMode = mode; |
| fPaint = &paint; |
| fClip = NULL; |
| fRC = rc; |
| fRadius = SkScalarToFixed(SkScalarMul(width, sx)) >> 1; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| PtProcRec::Proc PtProcRec::chooseProc(SkBlitter** blitterPtr) { |
| Proc proc = NULL; |
| |
| SkBlitter* blitter = *blitterPtr; |
| if (fRC->isBW()) { |
| fClip = &fRC->bwRgn(); |
| } else { |
| fWrapper.init(*fRC, blitter); |
| fClip = &fWrapper.getRgn(); |
| blitter = fWrapper.getBlitter(); |
| *blitterPtr = blitter; |
| } |
| |
| // for our arrays |
| SkASSERT(0 == SkCanvas::kPoints_PointMode); |
| SkASSERT(1 == SkCanvas::kLines_PointMode); |
| SkASSERT(2 == SkCanvas::kPolygon_PointMode); |
| SkASSERT((unsigned)fMode <= (unsigned)SkCanvas::kPolygon_PointMode); |
| |
| if (fPaint->isAntiAlias()) { |
| if (0 == fPaint->getStrokeWidth()) { |
| static const Proc gAAProcs[] = { |
| aa_square_proc, aa_line_hair_proc, aa_poly_hair_proc |
| }; |
| proc = gAAProcs[fMode]; |
| } else if (fPaint->getStrokeCap() != SkPaint::kRound_Cap) { |
| SkASSERT(SkCanvas::kPoints_PointMode == fMode); |
| proc = aa_square_proc; |
| } |
| } else { // BW |
| if (fRadius <= SK_FixedHalf) { // small radii and hairline |
| if (SkCanvas::kPoints_PointMode == fMode && fClip->isRect()) { |
| uint32_t value; |
| const SkBitmap* bm = blitter->justAnOpaqueColor(&value); |
| if (bm && SkBitmap::kRGB_565_Config == bm->config()) { |
| proc = bw_pt_rect_16_hair_proc; |
| } else if (bm && SkBitmap::kARGB_8888_Config == bm->config()) { |
| proc = bw_pt_rect_32_hair_proc; |
| } else { |
| proc = bw_pt_rect_hair_proc; |
| } |
| } else { |
| static Proc gBWProcs[] = { |
| bw_pt_hair_proc, bw_line_hair_proc, bw_poly_hair_proc |
| }; |
| proc = gBWProcs[fMode]; |
| } |
| } else { |
| proc = bw_square_proc; |
| } |
| } |
| return proc; |
| } |
| |
| static bool bounder_points(SkBounder* bounder, SkCanvas::PointMode mode, |
| size_t count, const SkPoint pts[], |
| const SkPaint& paint, const SkMatrix& matrix) { |
| SkIRect ibounds; |
| SkRect bounds; |
| SkScalar inset = paint.getStrokeWidth(); |
| |
| bounds.set(pts, count); |
| bounds.inset(-inset, -inset); |
| matrix.mapRect(&bounds); |
| |
| bounds.roundOut(&ibounds); |
| return bounder->doIRect(ibounds); |
| } |
| |
| // each of these costs 8-bytes of stack space, so don't make it too large |
| // must be even for lines/polygon to work |
| #define MAX_DEV_PTS 32 |
| |
| void SkDraw::drawPoints(SkCanvas::PointMode mode, size_t count, |
| const SkPoint pts[], const SkPaint& paint, |
| bool forceUseDevice) const { |
| // if we're in lines mode, force count to be even |
| if (SkCanvas::kLines_PointMode == mode) { |
| count &= ~(size_t)1; |
| } |
| |
| if ((long)count <= 0) { |
| return; |
| } |
| |
| SkASSERT(pts != NULL); |
| SkDEBUGCODE(this->validate();) |
| |
| // nothing to draw |
| if (fRC->isEmpty()) { |
| return; |
| } |
| |
| if (fBounder) { |
| if (!bounder_points(fBounder, mode, count, pts, paint, *fMatrix)) { |
| return; |
| } |
| |
| // clear the bounder and call this again, so we don't invoke the bounder |
| // later if we happen to call ourselves for drawRect, drawPath, etc. |
| SkDraw noBounder(*this); |
| noBounder.fBounder = NULL; |
| noBounder.drawPoints(mode, count, pts, paint, forceUseDevice); |
| return; |
| } |
| |
| PtProcRec rec; |
| if (!forceUseDevice && rec.init(mode, paint, fMatrix, fRC)) { |
| SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, paint); |
| |
| SkPoint devPts[MAX_DEV_PTS]; |
| const SkMatrix* matrix = fMatrix; |
| SkBlitter* bltr = blitter.get(); |
| PtProcRec::Proc proc = rec.chooseProc(&bltr); |
| // we have to back up subsequent passes if we're in polygon mode |
| const size_t backup = (SkCanvas::kPolygon_PointMode == mode); |
| |
| do { |
| size_t n = count; |
| if (n > MAX_DEV_PTS) { |
| n = MAX_DEV_PTS; |
| } |
| matrix->mapPoints(devPts, pts, n); |
| proc(rec, devPts, n, bltr); |
| pts += n - backup; |
| SkASSERT(count >= n); |
| count -= n; |
| if (count > 0) { |
| count += backup; |
| } |
| } while (count != 0); |
| } else { |
| switch (mode) { |
| case SkCanvas::kPoints_PointMode: { |
| // temporarily mark the paint as filling. |
| SkPaint newPaint(paint); |
| newPaint.setStyle(SkPaint::kFill_Style); |
| |
| SkScalar width = newPaint.getStrokeWidth(); |
| SkScalar radius = SkScalarHalf(width); |
| |
| if (newPaint.getStrokeCap() == SkPaint::kRound_Cap) { |
| SkPath path; |
| SkMatrix preMatrix; |
| |
| path.addCircle(0, 0, radius); |
| for (size_t i = 0; i < count; i++) { |
| preMatrix.setTranslate(pts[i].fX, pts[i].fY); |
| // pass true for the last point, since we can modify |
| // then path then |
| if (fDevice) { |
| fDevice->drawPath(*this, path, newPaint, &preMatrix, |
| (count-1) == i); |
| } else { |
| this->drawPath(path, newPaint, &preMatrix, |
| (count-1) == i); |
| } |
| } |
| } else { |
| SkRect r; |
| |
| for (size_t i = 0; i < count; i++) { |
| r.fLeft = pts[i].fX - radius; |
| r.fTop = pts[i].fY - radius; |
| r.fRight = r.fLeft + width; |
| r.fBottom = r.fTop + width; |
| if (fDevice) { |
| fDevice->drawRect(*this, r, newPaint); |
| } else { |
| this->drawRect(r, newPaint); |
| } |
| } |
| } |
| break; |
| } |
| case SkCanvas::kLines_PointMode: |
| #ifndef SK_DISABLE_DASHING_OPTIMIZATION |
| if (2 == count && NULL != paint.getPathEffect()) { |
| // most likely a dashed line - see if it is one of the ones |
| // we can accelerate |
| SkStrokeRec rec(paint); |
| SkPathEffect::PointData pointData; |
| |
| SkPath path; |
| path.moveTo(pts[0]); |
| path.lineTo(pts[1]); |
| |
| SkRect cullRect = SkRect::Make(fRC->getBounds()); |
| |
| if (paint.getPathEffect()->asPoints(&pointData, path, rec, |
| *fMatrix, &cullRect)) { |
| // 'asPoints' managed to find some fast path |
| |
| SkPaint newP(paint); |
| newP.setPathEffect(NULL); |
| newP.setStyle(SkPaint::kFill_Style); |
| |
| if (!pointData.fFirst.isEmpty()) { |
| if (fDevice) { |
| fDevice->drawPath(*this, pointData.fFirst, newP); |
| } else { |
| this->drawPath(pointData.fFirst, newP); |
| } |
| } |
| |
| if (!pointData.fLast.isEmpty()) { |
| if (fDevice) { |
| fDevice->drawPath(*this, pointData.fLast, newP); |
| } else { |
| this->drawPath(pointData.fLast, newP); |
| } |
| } |
| |
| if (pointData.fSize.fX == pointData.fSize.fY) { |
| // The rest of the dashed line can just be drawn as points |
| SkASSERT(pointData.fSize.fX == SkScalarHalf(newP.getStrokeWidth())); |
| |
| if (SkPathEffect::PointData::kCircles_PointFlag & pointData.fFlags) { |
| newP.setStrokeCap(SkPaint::kRound_Cap); |
| } else { |
| newP.setStrokeCap(SkPaint::kButt_Cap); |
| } |
| |
| if (fDevice) { |
| fDevice->drawPoints(*this, |
| SkCanvas::kPoints_PointMode, |
| pointData.fNumPoints, |
| pointData.fPoints, |
| newP); |
| } else { |
| this->drawPoints(SkCanvas::kPoints_PointMode, |
| pointData.fNumPoints, |
| pointData.fPoints, |
| newP, |
| forceUseDevice); |
| } |
| break; |
| } else { |
| // The rest of the dashed line must be drawn as rects |
| SkASSERT(!(SkPathEffect::PointData::kCircles_PointFlag & |
| pointData.fFlags)); |
| |
| SkRect r; |
| |
| for (int i = 0; i < pointData.fNumPoints; ++i) { |
| r.set(pointData.fPoints[i].fX - pointData.fSize.fX, |
| pointData.fPoints[i].fY - pointData.fSize.fY, |
| pointData.fPoints[i].fX + pointData.fSize.fX, |
| pointData.fPoints[i].fY + pointData.fSize.fY); |
| if (fDevice) { |
| fDevice->drawRect(*this, r, newP); |
| } else { |
| this->drawRect(r, newP); |
| } |
| } |
| } |
| |
| break; |
| } |
| } |
| #endif // DISABLE_DASHING_OPTIMIZATION |
| // couldn't take fast path so fall through! |
| case SkCanvas::kPolygon_PointMode: { |
| count -= 1; |
| SkPath path; |
| SkPaint p(paint); |
| p.setStyle(SkPaint::kStroke_Style); |
| size_t inc = (SkCanvas::kLines_PointMode == mode) ? 2 : 1; |
| for (size_t i = 0; i < count; i += inc) { |
| path.moveTo(pts[i]); |
| path.lineTo(pts[i+1]); |
| if (fDevice) { |
| fDevice->drawPath(*this, path, p, NULL, true); |
| } else { |
| this->drawPath(path, p, NULL, true); |
| } |
| path.rewind(); |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| static inline SkPoint* as_lefttop(SkRect* r) { |
| return (SkPoint*)(void*)r; |
| } |
| |
| static inline SkPoint* as_rightbottom(SkRect* r) { |
| return ((SkPoint*)(void*)r) + 1; |
| } |
| |
| static bool easy_rect_join(const SkPaint& paint, const SkMatrix& matrix, |
| SkPoint* strokeSize) { |
| if (SkPaint::kMiter_Join != paint.getStrokeJoin() || |
| paint.getStrokeMiter() < SK_ScalarSqrt2) { |
| return false; |
| } |
| |
| SkASSERT(matrix.rectStaysRect()); |
| SkPoint pt = { paint.getStrokeWidth(), paint.getStrokeWidth() }; |
| matrix.mapVectors(strokeSize, &pt, 1); |
| strokeSize->fX = SkScalarAbs(strokeSize->fX); |
| strokeSize->fY = SkScalarAbs(strokeSize->fY); |
| return true; |
| } |
| |
| SkDraw::RectType SkDraw::ComputeRectType(const SkPaint& paint, |
| const SkMatrix& matrix, |
| SkPoint* strokeSize) { |
| RectType rtype; |
| const SkScalar width = paint.getStrokeWidth(); |
| const bool zeroWidth = (0 == width); |
| SkPaint::Style style = paint.getStyle(); |
| |
| if ((SkPaint::kStrokeAndFill_Style == style) && zeroWidth) { |
| style = SkPaint::kFill_Style; |
| } |
| |
| if (paint.getPathEffect() || paint.getMaskFilter() || |
| paint.getRasterizer() || !matrix.rectStaysRect() || |
| SkPaint::kStrokeAndFill_Style == style) { |
| rtype = kPath_RectType; |
| } else if (SkPaint::kFill_Style == style) { |
| rtype = kFill_RectType; |
| } else if (zeroWidth) { |
| rtype = kHair_RectType; |
| } else if (easy_rect_join(paint, matrix, strokeSize)) { |
| rtype = kStroke_RectType; |
| } else { |
| rtype = kPath_RectType; |
| } |
| return rtype; |
| } |
| |
| static const SkPoint* rect_points(const SkRect& r) { |
| return (const SkPoint*)(void*)&r; |
| } |
| |
| static SkPoint* rect_points(SkRect& r) { |
| return (SkPoint*)(void*)&r; |
| } |
| |
| void SkDraw::drawRect(const SkRect& rect, const SkPaint& paint) const { |
| SkDEBUGCODE(this->validate();) |
| |
| // nothing to draw |
| if (fRC->isEmpty()) { |
| return; |
| } |
| |
| SkPoint strokeSize; |
| RectType rtype = ComputeRectType(paint, *fMatrix, &strokeSize); |
| |
| if (kPath_RectType == rtype) { |
| SkPath tmp; |
| tmp.addRect(rect); |
| tmp.setFillType(SkPath::kWinding_FillType); |
| this->drawPath(tmp, paint, NULL, true); |
| return; |
| } |
| |
| const SkMatrix& matrix = *fMatrix; |
| SkRect devRect; |
| |
| // transform rect into devRect |
| matrix.mapPoints(rect_points(devRect), rect_points(rect), 2); |
| devRect.sort(); |
| |
| if (fBounder && !fBounder->doRect(devRect, paint)) { |
| return; |
| } |
| |
| // look for the quick exit, before we build a blitter |
| if (true) { |
| SkIRect ir; |
| devRect.roundOut(&ir); |
| if (paint.getStyle() != SkPaint::kFill_Style) { |
| // extra space for hairlines |
| ir.inset(-1, -1); |
| } |
| if (fRC->quickReject(ir)) |
| return; |
| } |
| |
| SkAutoBlitterChoose blitterStorage(*fBitmap, matrix, paint); |
| const SkRasterClip& clip = *fRC; |
| SkBlitter* blitter = blitterStorage.get(); |
| |
| // we want to "fill" if we are kFill or kStrokeAndFill, since in the latter |
| // case we are also hairline (if we've gotten to here), which devolves to |
| // effectively just kFill |
| switch (rtype) { |
| case kFill_RectType: |
| if (paint.isAntiAlias()) { |
| SkScan::AntiFillRect(devRect, clip, blitter); |
| } else { |
| SkScan::FillRect(devRect, clip, blitter); |
| } |
| break; |
| case kStroke_RectType: |
| if (paint.isAntiAlias()) { |
| SkScan::AntiFrameRect(devRect, strokeSize, clip, blitter); |
| } else { |
| SkScan::FrameRect(devRect, strokeSize, clip, blitter); |
| } |
| break; |
| case kHair_RectType: |
| if (paint.isAntiAlias()) { |
| SkScan::AntiHairRect(devRect, clip, blitter); |
| } else { |
| SkScan::HairRect(devRect, clip, blitter); |
| } |
| break; |
| default: |
| SkDEBUGFAIL("bad rtype"); |
| } |
| } |
| |
| void SkDraw::drawDevMask(const SkMask& srcM, const SkPaint& paint) const { |
| if (srcM.fBounds.isEmpty()) { |
| return; |
| } |
| |
| const SkMask* mask = &srcM; |
| |
| SkMask dstM; |
| if (paint.getMaskFilter() && |
| paint.getMaskFilter()->filterMask(&dstM, srcM, *fMatrix, NULL)) { |
| mask = &dstM; |
| } else { |
| dstM.fImage = NULL; |
| } |
| SkAutoMaskFreeImage ami(dstM.fImage); |
| |
| if (fBounder && !fBounder->doIRect(mask->fBounds)) { |
| return; |
| } |
| |
| SkAutoBlitterChoose blitterChooser(*fBitmap, *fMatrix, paint); |
| SkBlitter* blitter = blitterChooser.get(); |
| |
| SkAAClipBlitterWrapper wrapper; |
| const SkRegion* clipRgn; |
| |
| if (fRC->isBW()) { |
| clipRgn = &fRC->bwRgn(); |
| } else { |
| wrapper.init(*fRC, blitter); |
| clipRgn = &wrapper.getRgn(); |
| blitter = wrapper.getBlitter(); |
| } |
| blitter->blitMaskRegion(*mask, *clipRgn); |
| } |
| |
| static SkScalar fast_len(const SkVector& vec) { |
| SkScalar x = SkScalarAbs(vec.fX); |
| SkScalar y = SkScalarAbs(vec.fY); |
| if (x < y) { |
| SkTSwap(x, y); |
| } |
| return x + SkScalarHalf(y); |
| } |
| |
| static bool xfermodeSupportsCoverageAsAlpha(SkXfermode* xfer) { |
| SkXfermode::Coeff dc; |
| if (!SkXfermode::AsCoeff(xfer, NULL, &dc)) { |
| return false; |
| } |
| |
| switch (dc) { |
| case SkXfermode::kOne_Coeff: |
| case SkXfermode::kISA_Coeff: |
| case SkXfermode::kISC_Coeff: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool SkDrawTreatAsHairline(const SkPaint& paint, const SkMatrix& matrix, |
| SkScalar* coverage) { |
| SkASSERT(coverage); |
| if (SkPaint::kStroke_Style != paint.getStyle()) { |
| return false; |
| } |
| SkScalar strokeWidth = paint.getStrokeWidth(); |
| if (0 == strokeWidth) { |
| *coverage = SK_Scalar1; |
| return true; |
| } |
| |
| // if we get here, we need to try to fake a thick-stroke with a modulated |
| // hairline |
| |
| if (!paint.isAntiAlias()) { |
| return false; |
| } |
| if (matrix.hasPerspective()) { |
| return false; |
| } |
| |
| SkVector src[2], dst[2]; |
| src[0].set(strokeWidth, 0); |
| src[1].set(0, strokeWidth); |
| matrix.mapVectors(dst, src, 2); |
| SkScalar len0 = fast_len(dst[0]); |
| SkScalar len1 = fast_len(dst[1]); |
| if (len0 <= SK_Scalar1 && len1 <= SK_Scalar1) { |
| *coverage = SkScalarAve(len0, len1); |
| return true; |
| } |
| return false; |
| } |
| |
| void SkDraw::drawPath(const SkPath& origSrcPath, const SkPaint& origPaint, |
| const SkMatrix* prePathMatrix, bool pathIsMutable) const { |
| SkDEBUGCODE(this->validate();) |
| |
| // nothing to draw |
| if (fRC->isEmpty()) { |
| return; |
| } |
| |
| SkPath* pathPtr = (SkPath*)&origSrcPath; |
| bool doFill = true; |
| SkPath tmpPath; |
| SkMatrix tmpMatrix; |
| const SkMatrix* matrix = fMatrix; |
| |
| if (prePathMatrix) { |
| if (origPaint.getPathEffect() || origPaint.getStyle() != SkPaint::kFill_Style || |
| origPaint.getRasterizer()) { |
| SkPath* result = pathPtr; |
| |
| if (!pathIsMutable) { |
| result = &tmpPath; |
| pathIsMutable = true; |
| } |
| pathPtr->transform(*prePathMatrix, result); |
| pathPtr = result; |
| } else { |
| if (!tmpMatrix.setConcat(*matrix, *prePathMatrix)) { |
| // overflow |
| return; |
| } |
| matrix = &tmpMatrix; |
| } |
| } |
| // at this point we're done with prePathMatrix |
| SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) |
| |
| SkTCopyOnFirstWrite<SkPaint> paint(origPaint); |
| |
| { |
| SkScalar coverage; |
| if (SkDrawTreatAsHairline(origPaint, *matrix, &coverage)) { |
| if (SK_Scalar1 == coverage) { |
| paint.writable()->setStrokeWidth(0); |
| } else if (xfermodeSupportsCoverageAsAlpha(origPaint.getXfermode())) { |
| U8CPU newAlpha; |
| #if 0 |
| newAlpha = SkToU8(SkScalarRoundToInt(coverage * |
| origPaint.getAlpha())); |
| #else |
| // this is the old technique, which we preserve for now so |
| // we don't change previous results (testing) |
| // the new way seems fine, its just (a tiny bit) different |
| int scale = (int)SkScalarMul(coverage, 256); |
| newAlpha = origPaint.getAlpha() * scale >> 8; |
| #endif |
| SkPaint* writablePaint = paint.writable(); |
| writablePaint->setStrokeWidth(0); |
| writablePaint->setAlpha(newAlpha); |
| } |
| } |
| } |
| |
| if (paint->getPathEffect() || paint->getStyle() != SkPaint::kFill_Style) { |
| SkRect cullRect; |
| const SkRect* cullRectPtr = NULL; |
| if (this->computeConservativeLocalClipBounds(&cullRect)) { |
| cullRectPtr = &cullRect; |
| } |
| doFill = paint->getFillPath(*pathPtr, &tmpPath, cullRectPtr); |
| pathPtr = &tmpPath; |
| } |
| |
| if (paint->getRasterizer()) { |
| SkMask mask; |
| if (paint->getRasterizer()->rasterize(*pathPtr, *matrix, |
| &fRC->getBounds(), paint->getMaskFilter(), &mask, |
| SkMask::kComputeBoundsAndRenderImage_CreateMode)) { |
| this->drawDevMask(mask, *paint); |
| SkMask::FreeImage(mask.fImage); |
| } |
| return; |
| } |
| |
| // avoid possibly allocating a new path in transform if we can |
| SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath; |
| |
| // transform the path into device space |
| pathPtr->transform(*matrix, devPathPtr); |
| |
| SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, *paint); |
| |
| if (paint->getMaskFilter()) { |
| SkPaint::Style style = doFill ? SkPaint::kFill_Style : |
| SkPaint::kStroke_Style; |
| if (paint->getMaskFilter()->filterPath(*devPathPtr, *fMatrix, *fRC, |
| fBounder, blitter.get(), |
| style)) { |
| return; // filterPath() called the blitter, so we're done |
| } |
| } |
| |
| if (fBounder && !fBounder->doPath(*devPathPtr, *paint, doFill)) { |
| return; |
| } |
| |
| void (*proc)(const SkPath&, const SkRasterClip&, SkBlitter*); |
| if (doFill) { |
| if (paint->isAntiAlias()) { |
| proc = SkScan::AntiFillPath; |
| } else { |
| proc = SkScan::FillPath; |
| } |
| } else { // hairline |
| if (paint->isAntiAlias()) { |
| proc = SkScan::AntiHairPath; |
| } else { |
| proc = SkScan::HairPath; |
| } |
| } |
| proc(*devPathPtr, *fRC, blitter.get()); |
| } |
| |
| /** For the purposes of drawing bitmaps, if a matrix is "almost" translate |
| go ahead and treat it as if it were, so that subsequent code can go fast. |
| */ |
| static bool just_translate(const SkMatrix& matrix, const SkBitmap& bitmap) { |
| #ifdef SK_IGNORE_TRANS_CLAMP_FIX |
| SkMatrix::TypeMask mask = matrix.getType(); |
| |
| if (mask & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)) { |
| return false; |
| } |
| if (mask & SkMatrix::kScale_Mask) { |
| SkScalar sx = matrix[SkMatrix::kMScaleX]; |
| SkScalar sy = matrix[SkMatrix::kMScaleY]; |
| int w = bitmap.width(); |
| int h = bitmap.height(); |
| int sw = SkScalarRound(SkScalarMul(sx, SkIntToScalar(w))); |
| int sh = SkScalarRound(SkScalarMul(sy, SkIntToScalar(h))); |
| return sw == w && sh == h; |
| } |
| // if we got here, we're either kTranslate_Mask or identity |
| return true; |
| #else |
| unsigned bits = 0; // TODO: find a way to allow the caller to tell us to |
| // respect filtering. |
| return SkTreatAsSprite(matrix, bitmap.width(), bitmap.height(), bits); |
| #endif |
| } |
| |
| void SkDraw::drawBitmapAsMask(const SkBitmap& bitmap, |
| const SkPaint& paint) const { |
| SkASSERT(bitmap.getConfig() == SkBitmap::kA8_Config); |
| |
| if (just_translate(*fMatrix, bitmap)) { |
| int ix = SkScalarRound(fMatrix->getTranslateX()); |
| int iy = SkScalarRound(fMatrix->getTranslateY()); |
| |
| SkAutoLockPixels alp(bitmap); |
| if (!bitmap.readyToDraw()) { |
| return; |
| } |
| |
| SkMask mask; |
| mask.fBounds.set(ix, iy, ix + bitmap.width(), iy + bitmap.height()); |
| mask.fFormat = SkMask::kA8_Format; |
| mask.fRowBytes = bitmap.rowBytes(); |
| mask.fImage = bitmap.getAddr8(0, 0); |
| |
| this->drawDevMask(mask, paint); |
| } else { // need to xform the bitmap first |
| SkRect r; |
| SkMask mask; |
| |
| r.set(0, 0, |
| SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); |
| fMatrix->mapRect(&r); |
| r.round(&mask.fBounds); |
| |
| // set the mask's bounds to the transformed bitmap-bounds, |
| // clipped to the actual device |
| { |
| SkIRect devBounds; |
| devBounds.set(0, 0, fBitmap->width(), fBitmap->height()); |
| // need intersect(l, t, r, b) on irect |
| if (!mask.fBounds.intersect(devBounds)) { |
| return; |
| } |
| } |
| |
| mask.fFormat = SkMask::kA8_Format; |
| mask.fRowBytes = SkAlign4(mask.fBounds.width()); |
| size_t size = mask.computeImageSize(); |
| if (0 == size) { |
| // the mask is too big to allocated, draw nothing |
| return; |
| } |
| |
| // allocate (and clear) our temp buffer to hold the transformed bitmap |
| SkAutoMalloc storage(size); |
| mask.fImage = (uint8_t*)storage.get(); |
| memset(mask.fImage, 0, size); |
| |
| // now draw our bitmap(src) into mask(dst), transformed by the matrix |
| { |
| SkBitmap device; |
| device.setConfig(SkBitmap::kA8_Config, mask.fBounds.width(), |
| mask.fBounds.height(), mask.fRowBytes); |
| device.setPixels(mask.fImage); |
| |
| SkCanvas c(device); |
| // need the unclipped top/left for the translate |
| c.translate(-SkIntToScalar(mask.fBounds.fLeft), |
| -SkIntToScalar(mask.fBounds.fTop)); |
| c.concat(*fMatrix); |
| |
| // We can't call drawBitmap, or we'll infinitely recurse. Instead |
| // we manually build a shader and draw that into our new mask |
| SkPaint tmpPaint; |
| tmpPaint.setFlags(paint.getFlags()); |
| SkAutoBitmapShaderInstall install(bitmap, tmpPaint); |
| SkRect rr; |
| rr.set(0, 0, SkIntToScalar(bitmap.width()), |
| SkIntToScalar(bitmap.height())); |
| c.drawRect(rr, install.paintWithShader()); |
| } |
| this->drawDevMask(mask, paint); |
| } |
| } |
| |
| static bool clipped_out(const SkMatrix& m, const SkRasterClip& c, |
| const SkRect& srcR) { |
| SkRect dstR; |
| SkIRect devIR; |
| |
| m.mapRect(&dstR, srcR); |
| dstR.roundOut(&devIR); |
| return c.quickReject(devIR); |
| } |
| |
| static bool clipped_out(const SkMatrix& matrix, const SkRasterClip& clip, |
| int width, int height) { |
| SkRect r; |
| r.set(0, 0, SkIntToScalar(width), SkIntToScalar(height)); |
| return clipped_out(matrix, clip, r); |
| } |
| |
| static bool clipHandlesSprite(const SkRasterClip& clip, int x, int y, |
| const SkBitmap& bitmap) { |
| return clip.isBW() || |
| clip.quickContains(x, y, x + bitmap.width(), y + bitmap.height()); |
| } |
| |
| void SkDraw::drawBitmap(const SkBitmap& bitmap, const SkMatrix& prematrix, |
| const SkPaint& origPaint) const { |
| SkDEBUGCODE(this->validate();) |
| |
| // nothing to draw |
| if (fRC->isEmpty() || |
| bitmap.width() == 0 || bitmap.height() == 0 || |
| bitmap.getConfig() == SkBitmap::kNo_Config) { |
| return; |
| } |
| |
| #ifndef SK_ALLOW_OVER_32K_BITMAPS |
| // run away on too-big bitmaps for now (exceed 16.16) |
| if (bitmap.width() > 32767 || bitmap.height() > 32767) { |
| return; |
| } |
| #endif |
| |
| SkPaint paint(origPaint); |
| paint.setStyle(SkPaint::kFill_Style); |
| |
| SkMatrix matrix; |
| if (!matrix.setConcat(*fMatrix, prematrix)) { |
| return; |
| } |
| |
| if (clipped_out(matrix, *fRC, bitmap.width(), bitmap.height())) { |
| return; |
| } |
| |
| if (fBounder && just_translate(matrix, bitmap)) { |
| SkIRect ir; |
| int32_t ix = SkScalarRound(matrix.getTranslateX()); |
| int32_t iy = SkScalarRound(matrix.getTranslateY()); |
| ir.set(ix, iy, ix + bitmap.width(), iy + bitmap.height()); |
| if (!fBounder->doIRect(ir)) { |
| return; |
| } |
| } |
| |
| if (bitmap.getConfig() != SkBitmap::kA8_Config && |
| just_translate(matrix, bitmap)) { |
| // |
| // It is safe to call lock pixels now, since we know the matrix is |
| // (more or less) identity. |
| // |
| SkAutoLockPixels alp(bitmap); |
| if (!bitmap.readyToDraw()) { |
| return; |
| } |
| int ix = SkScalarRound(matrix.getTranslateX()); |
| int iy = SkScalarRound(matrix.getTranslateY()); |
| if (clipHandlesSprite(*fRC, ix, iy, bitmap)) { |
| uint32_t storage[kBlitterStorageLongCount]; |
| SkBlitter* blitter = SkBlitter::ChooseSprite(*fBitmap, paint, bitmap, |
| ix, iy, storage, sizeof(storage)); |
| if (blitter) { |
| SkAutoTPlacementDelete<SkBlitter> ad(blitter, storage); |
| |
| SkIRect ir; |
| ir.set(ix, iy, ix + bitmap.width(), iy + bitmap.height()); |
| |
| SkScan::FillIRect(ir, *fRC, blitter); |
| return; |
| } |
| } |
| } |
| |
| // now make a temp draw on the stack, and use it |
| // |
| SkDraw draw(*this); |
| draw.fMatrix = &matrix; |
| |
| if (bitmap.getConfig() == SkBitmap::kA8_Config) { |
| draw.drawBitmapAsMask(bitmap, paint); |
| } else { |
| SkAutoBitmapShaderInstall install(bitmap, paint); |
| |
| SkRect r; |
| r.set(0, 0, SkIntToScalar(bitmap.width()), |
| SkIntToScalar(bitmap.height())); |
| // is this ok if paint has a rasterizer? |
| draw.drawRect(r, install.paintWithShader()); |
| } |
| } |
| |
| void SkDraw::drawSprite(const SkBitmap& bitmap, int x, int y, |
| const SkPaint& origPaint) const { |
| SkDEBUGCODE(this->validate();) |
| |
| // nothing to draw |
| if (fRC->isEmpty() || |
| bitmap.width() == 0 || bitmap.height() == 0 || |
| bitmap.getConfig() == SkBitmap::kNo_Config) { |
| return; |
| } |
| |
| SkIRect bounds; |
| bounds.set(x, y, x + bitmap.width(), y + bitmap.height()); |
| |
| if (fRC->quickReject(bounds)) { |
| return; // nothing to draw |
| } |
| |
| SkPaint paint(origPaint); |
| paint.setStyle(SkPaint::kFill_Style); |
| |
| if (NULL == paint.getColorFilter() && clipHandlesSprite(*fRC, x, y, bitmap)) { |
| uint32_t storage[kBlitterStorageLongCount]; |
| SkBlitter* blitter = SkBlitter::ChooseSprite(*fBitmap, paint, bitmap, |
| x, y, storage, sizeof(storage)); |
| |
| if (blitter) { |
| SkAutoTPlacementDelete<SkBlitter> ad(blitter, storage); |
| |
| if (fBounder && !fBounder->doIRect(bounds)) { |
| return; |
| } |
| |
| SkScan::FillIRect(bounds, *fRC, blitter); |
| return; |
| } |
| } |
| |
| SkAutoBitmapShaderInstall install(bitmap, paint); |
| const SkPaint& shaderPaint = install.paintWithShader(); |
| |
| SkMatrix matrix; |
| SkRect r; |
| |
| // get a scalar version of our rect |
| r.set(bounds); |
| |
| // tell the shader our offset |
| matrix.setTranslate(r.fLeft, r.fTop); |
| shaderPaint.getShader()->setLocalMatrix(matrix); |
| |
| SkDraw draw(*this); |
| matrix.reset(); |
| draw.fMatrix = &matrix; |
| // call ourself with a rect |
| // is this OK if paint has a rasterizer? |
| draw.drawRect(r, shaderPaint); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "SkScalerContext.h" |
| #include "SkGlyphCache.h" |
| #include "SkTextToPathIter.h" |
| #include "SkUtils.h" |
| |
| static void measure_text(SkGlyphCache* cache, SkDrawCacheProc glyphCacheProc, |
| const char text[], size_t byteLength, SkVector* stopVector) { |
| SkFixed x = 0, y = 0; |
| const char* stop = text + byteLength; |
| |
| SkAutoKern autokern; |
| |
| while (text < stop) { |
| // don't need x, y here, since all subpixel variants will have the |
| // same advance |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); |
| |
| x += autokern.adjust(glyph) + glyph.fAdvanceX; |
| y += glyph.fAdvanceY; |
| } |
| stopVector->set(SkFixedToScalar(x), SkFixedToScalar(y)); |
| |
| SkASSERT(text == stop); |
| } |
| |
| void SkDraw::drawText_asPaths(const char text[], size_t byteLength, |
| SkScalar x, SkScalar y, |
| const SkPaint& paint) const { |
| SkDEBUGCODE(this->validate();) |
| |
| SkTextToPathIter iter(text, byteLength, paint, true); |
| |
| SkMatrix matrix; |
| matrix.setScale(iter.getPathScale(), iter.getPathScale()); |
| matrix.postTranslate(x, y); |
| |
| const SkPath* iterPath; |
| SkScalar xpos, prevXPos = 0; |
| |
| while (iter.next(&iterPath, &xpos)) { |
| matrix.postTranslate(xpos - prevXPos, 0); |
| if (iterPath) { |
| const SkPaint& pnt = iter.getPaint(); |
| if (fDevice) { |
| fDevice->drawPath(*this, *iterPath, pnt, &matrix, false); |
| } else { |
| this->drawPath(*iterPath, pnt, &matrix, false); |
| } |
| } |
| prevXPos = xpos; |
| } |
| } |
| |
| // disable warning : local variable used without having been initialized |
| #if defined _WIN32 && _MSC_VER >= 1300 |
| #pragma warning ( push ) |
| #pragma warning ( disable : 4701 ) |
| #endif |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| static void D1G_NoBounder_RectClip(const SkDraw1Glyph& state, |
| SkFixed fx, SkFixed fy, |
| const SkGlyph& glyph) { |
| int left = SkFixedFloor(fx); |
| int top = SkFixedFloor(fy); |
| SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); |
| SkASSERT(NULL == state.fBounder); |
| SkASSERT((NULL == state.fClip && state.fAAClip) || |
| (state.fClip && NULL == state.fAAClip && state.fClip->isRect())); |
| |
| left += glyph.fLeft; |
| top += glyph.fTop; |
| |
| int right = left + glyph.fWidth; |
| int bottom = top + glyph.fHeight; |
| |
| SkMask mask; |
| SkIRect storage; |
| SkIRect* bounds = &mask.fBounds; |
| |
| mask.fBounds.set(left, top, right, bottom); |
| |
| // this extra test is worth it, assuming that most of the time it succeeds |
| // since we can avoid writing to storage |
| if (!state.fClipBounds.containsNoEmptyCheck(left, top, right, bottom)) { |
| if (!storage.intersectNoEmptyCheck(mask.fBounds, state.fClipBounds)) |
| return; |
| bounds = &storage; |
| } |
| |
| uint8_t* aa = (uint8_t*)glyph.fImage; |
| if (NULL == aa) { |
| aa = (uint8_t*)state.fCache->findImage(glyph); |
| if (NULL == aa) { |
| return; // can't rasterize glyph |
| } |
| } |
| |
| mask.fRowBytes = glyph.rowBytes(); |
| mask.fFormat = static_cast<SkMask::Format>(glyph.fMaskFormat); |
| mask.fImage = aa; |
| state.fBlitter->blitMask(mask, *bounds); |
| } |
| |
| static void D1G_NoBounder_RgnClip(const SkDraw1Glyph& state, |
| SkFixed fx, SkFixed fy, |
| const SkGlyph& glyph) { |
| int left = SkFixedFloor(fx); |
| int top = SkFixedFloor(fy); |
| SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); |
| SkASSERT(!state.fClip->isRect()); |
| SkASSERT(NULL == state.fBounder); |
| |
| SkMask mask; |
| |
| left += glyph.fLeft; |
| top += glyph.fTop; |
| |
| mask.fBounds.set(left, top, left + glyph.fWidth, top + glyph.fHeight); |
| SkRegion::Cliperator clipper(*state.fClip, mask.fBounds); |
| |
| if (!clipper.done()) { |
| const SkIRect& cr = clipper.rect(); |
| const uint8_t* aa = (const uint8_t*)glyph.fImage; |
| if (NULL == aa) { |
| aa = (uint8_t*)state.fCache->findImage(glyph); |
| if (NULL == aa) { |
| return; |
| } |
| } |
| |
| mask.fRowBytes = glyph.rowBytes(); |
| mask.fFormat = static_cast<SkMask::Format>(glyph.fMaskFormat); |
| mask.fImage = (uint8_t*)aa; |
| do { |
| state.fBlitter->blitMask(mask, cr); |
| clipper.next(); |
| } while (!clipper.done()); |
| } |
| } |
| |
| static void D1G_Bounder(const SkDraw1Glyph& state, |
| SkFixed fx, SkFixed fy, |
| const SkGlyph& glyph) { |
| int left = SkFixedFloor(fx); |
| int top = SkFixedFloor(fy); |
| SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); |
| |
| SkMask mask; |
| |
| left += glyph.fLeft; |
| top += glyph.fTop; |
| |
| mask.fBounds.set(left, top, left + glyph.fWidth, top + glyph.fHeight); |
| SkRegion::Cliperator clipper(*state.fClip, mask.fBounds); |
| |
| if (!clipper.done()) { |
| const SkIRect& cr = clipper.rect(); |
| const uint8_t* aa = (const uint8_t*)glyph.fImage; |
| if (NULL == aa) { |
| aa = (uint8_t*)state.fCache->findImage(glyph); |
| if (NULL == aa) { |
| return; |
| } |
| } |
| |
| // we need to pass the origin, which we approximate with our |
| // (unadjusted) left,top coordinates (the caller called fixedfloor) |
| if (state.fBounder->doIRectGlyph(cr, |
| left - glyph.fLeft, |
| top - glyph.fTop, glyph)) { |
| mask.fRowBytes = glyph.rowBytes(); |
| mask.fFormat = static_cast<SkMask::Format>(glyph.fMaskFormat); |
| mask.fImage = (uint8_t*)aa; |
| do { |
| state.fBlitter->blitMask(mask, cr); |
| clipper.next(); |
| } while (!clipper.done()); |
| } |
| } |
| } |
| |
| static void D1G_Bounder_AAClip(const SkDraw1Glyph& state, |
| SkFixed fx, SkFixed fy, |
| const SkGlyph& glyph) { |
| int left = SkFixedFloor(fx); |
| int top = SkFixedFloor(fy); |
| SkIRect bounds; |
| bounds.set(left, top, left + glyph.fWidth, top + glyph.fHeight); |
| |
| if (state.fBounder->doIRectGlyph(bounds, left, top, glyph)) { |
| D1G_NoBounder_RectClip(state, fx, fy, glyph); |
| } |
| } |
| |
| static bool hasCustomD1GProc(const SkDraw& draw) { |
| return draw.fProcs && draw.fProcs->fD1GProc; |
| } |
| |
| static bool needsRasterTextBlit(const SkDraw& draw) { |
| return !hasCustomD1GProc(draw); |
| } |
| |
| SkDraw1Glyph::Proc SkDraw1Glyph::init(const SkDraw* draw, SkBlitter* blitter, |
| SkGlyphCache* cache) { |
| fDraw = draw; |
| fBounder = draw->fBounder; |
| fBlitter = blitter; |
| fCache = cache; |
| |
| if (hasCustomD1GProc(*draw)) { |
| // todo: fix this assumption about clips w/ custom |
| fClip = draw->fClip; |
| fClipBounds = fClip->getBounds(); |
| return draw->fProcs->fD1GProc; |
| } |
| |
| if (draw->fRC->isBW()) { |
| fAAClip = NULL; |
| fClip = &draw->fRC->bwRgn(); |
| fClipBounds = fClip->getBounds(); |
| if (NULL == fBounder) { |
| if (fClip->isRect()) { |
| return D1G_NoBounder_RectClip; |
| } else { |
| return D1G_NoBounder_RgnClip; |
| } |
| } else { |
| return D1G_Bounder; |
| } |
| } else { // aaclip |
| fAAClip = &draw->fRC->aaRgn(); |
| fClip = NULL; |
| fClipBounds = fAAClip->getBounds(); |
| if (NULL == fBounder) { |
| return D1G_NoBounder_RectClip; |
| } else { |
| return D1G_Bounder_AAClip; |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkDraw::drawText(const char text[], size_t byteLength, |
| SkScalar x, SkScalar y, const SkPaint& paint) const { |
| SkASSERT(byteLength == 0 || text != NULL); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| // nothing to draw |
| if (text == NULL || byteLength == 0 || fRC->isEmpty()) { |
| return; |
| } |
| |
| // SkScalarRec doesn't currently have a way of representing hairline stroke and |
| // will fill if its frame-width is 0. |
| if (/*paint.isLinearText() ||*/ |
| (fMatrix->hasPerspective()) || |
| (0 == paint.getStrokeWidth() && SkPaint::kStroke_Style == paint.getStyle())) { |
| this->drawText_asPaths(text, byteLength, x, y, paint); |
| return; |
| } |
| |
| SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc(); |
| |
| const SkMatrix* matrix = fMatrix; |
| |
| SkAutoGlyphCache autoCache(paint, &fDevice->fLeakyProperties, matrix); |
| SkGlyphCache* cache = autoCache.getCache(); |
| |
| // transform our starting point |
| { |
| SkPoint loc; |
| matrix->mapXY(x, y, &loc); |
| x = loc.fX; |
| y = loc.fY; |
| } |
| |
| // need to measure first |
| if (paint.getTextAlign() != SkPaint::kLeft_Align) { |
| SkVector stop; |
| |
| measure_text(cache, glyphCacheProc, text, byteLength, &stop); |
| |
| SkScalar stopX = stop.fX; |
| SkScalar stopY = stop.fY; |
| |
| if (paint.getTextAlign() == SkPaint::kCenter_Align) { |
| stopX = SkScalarHalf(stopX); |
| stopY = SkScalarHalf(stopY); |
| } |
| x -= stopX; |
| y -= stopY; |
| } |
| |
| SkFixed fx = SkScalarToFixed(x); |
| SkFixed fy = SkScalarToFixed(y); |
| const char* stop = text + byteLength; |
| |
| SkFixed fxMask = ~0; |
| SkFixed fyMask = ~0; |
| if (cache->isSubpixel()) { |
| SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(*matrix); |
| if (kX_SkAxisAlignment == baseline) { |
| fyMask = 0; |
| } else if (kY_SkAxisAlignment == baseline) { |
| fxMask = 0; |
| } |
| |
| // apply bias here to avoid adding 1/2 the sampling frequency in the loop |
| fx += SK_FixedHalf >> SkGlyph::kSubBits; |
| fy += SK_FixedHalf >> SkGlyph::kSubBits; |
| } else { |
| fx += SK_FixedHalf; |
| fy += SK_FixedHalf; |
| } |
| |
| SkAAClipBlitter aaBlitter; |
| SkAutoBlitterChoose blitterChooser; |
| SkBlitter* blitter = NULL; |
| if (needsRasterTextBlit(*this)) { |
| blitterChooser.choose(*fBitmap, *matrix, paint); |
| blitter = blitterChooser.get(); |
| if (fRC->isAA()) { |
| aaBlitter.init(blitter, &fRC->aaRgn()); |
| blitter = &aaBlitter; |
| } |
| } |
| |
| SkAutoKern autokern; |
| SkDraw1Glyph d1g; |
| SkDraw1Glyph::Proc proc = d1g.init(this, blitter, cache); |
| |
| while (text < stop) { |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, fx & fxMask, fy & fyMask); |
| |
| fx += autokern.adjust(glyph); |
| |
| if (glyph.fWidth) { |
| proc(d1g, fx, fy, glyph); |
| } |
| fx += glyph.fAdvanceX; |
| fy += glyph.fAdvanceY; |
| } |
| } |
| |
| // last parameter is interpreted as SkFixed [x, y] |
| // return the fixed position, which may be rounded or not by the caller |
| // e.g. subpixel doesn't round |
| typedef void (*AlignProc)(const SkPoint&, const SkGlyph&, SkIPoint*); |
| |
| static void leftAlignProc(const SkPoint& loc, const SkGlyph& glyph, |
| SkIPoint* dst) { |
| dst->set(SkScalarToFixed(loc.fX), SkScalarToFixed(loc.fY)); |
| } |
| |
| static void centerAlignProc(const SkPoint& loc, const SkGlyph& glyph, |
| SkIPoint* dst) { |
| dst->set(SkScalarToFixed(loc.fX) - (glyph.fAdvanceX >> 1), |
| SkScalarToFixed(loc.fY) - (glyph.fAdvanceY >> 1)); |
| } |
| |
| static void rightAlignProc(const SkPoint& loc, const SkGlyph& glyph, |
| SkIPoint* dst) { |
| dst->set(SkScalarToFixed(loc.fX) - glyph.fAdvanceX, |
| SkScalarToFixed(loc.fY) - glyph.fAdvanceY); |
| } |
| |
| static AlignProc pick_align_proc(SkPaint::Align align) { |
| static const AlignProc gProcs[] = { |
| leftAlignProc, centerAlignProc, rightAlignProc |
| }; |
| |
| SkASSERT((unsigned)align < SK_ARRAY_COUNT(gProcs)); |
| |
| return gProcs[align]; |
| } |
| |
| class TextMapState { |
| public: |
| mutable SkPoint fLoc; |
| |
| TextMapState(const SkMatrix& matrix, SkScalar y) |
| : fMatrix(matrix), fProc(matrix.getMapXYProc()), fY(y) {} |
| |
| typedef void (*Proc)(const TextMapState&, const SkScalar pos[]); |
| |
| Proc pickProc(int scalarsPerPosition); |
| |
| private: |
| const SkMatrix& fMatrix; |
| SkMatrix::MapXYProc fProc; |
| SkScalar fY; // ignored by MapXYProc |
| // these are only used by Only... procs |
| SkScalar fScaleX, fTransX, fTransformedY; |
| |
| static void MapXProc(const TextMapState& state, const SkScalar pos[]) { |
| state.fProc(state.fMatrix, *pos, state.fY, &state.fLoc); |
| } |
| |
| static void MapXYProc(const TextMapState& state, const SkScalar pos[]) { |
| state.fProc(state.fMatrix, pos[0], pos[1], &state.fLoc); |
| } |
| |
| static void MapOnlyScaleXProc(const TextMapState& state, |
| const SkScalar pos[]) { |
| state.fLoc.set(SkScalarMul(state.fScaleX, *pos) + state.fTransX, |
| state.fTransformedY); |
| } |
| |
| static void MapOnlyTransXProc(const TextMapState& state, |
| const SkScalar pos[]) { |
| state.fLoc.set(*pos + state.fTransX, state.fTransformedY); |
| } |
| }; |
| |
| TextMapState::Proc TextMapState::pickProc(int scalarsPerPosition) { |
| SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); |
| |
| if (1 == scalarsPerPosition) { |
| unsigned mtype = fMatrix.getType(); |
| if (mtype & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)) { |
| return MapXProc; |
| } else { |
| fScaleX = fMatrix.getScaleX(); |
| fTransX = fMatrix.getTranslateX(); |
| fTransformedY = SkScalarMul(fY, fMatrix.getScaleY()) + |
| fMatrix.getTranslateY(); |
| return (mtype & SkMatrix::kScale_Mask) ? |
| MapOnlyScaleXProc : MapOnlyTransXProc; |
| } |
| } else { |
| return MapXYProc; |
| } |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| void SkDraw::drawPosText(const char text[], size_t byteLength, |
| const SkScalar pos[], SkScalar constY, |
| int scalarsPerPosition, const SkPaint& paint) const { |
| SkASSERT(byteLength == 0 || text != NULL); |
| SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| // nothing to draw |
| if (text == NULL || byteLength == 0 || fRC->isEmpty()) { |
| return; |
| } |
| |
| if (/*paint.isLinearText() ||*/ |
| (fMatrix->hasPerspective())) { |
| // TODO !!!! |
| // this->drawText_asPaths(text, byteLength, x, y, paint); |
| return; |
| } |
| |
| const SkMatrix* matrix = fMatrix; |
| |
| SkDrawCacheProc glyphCacheProc = paint.getDrawCacheProc(); |
| SkAutoGlyphCache autoCache(paint, &fDevice->fLeakyProperties, matrix); |
| SkGlyphCache* cache = autoCache.getCache(); |
| |
| SkAAClipBlitterWrapper wrapper; |
| SkAutoBlitterChoose blitterChooser; |
| SkBlitter* blitter = NULL; |
| if (needsRasterTextBlit(*this)) { |
| blitterChooser.choose(*fBitmap, *matrix, paint); |
| blitter = blitterChooser.get(); |
| if (fRC->isAA()) { |
| wrapper.init(*fRC, blitter); |
| blitter = wrapper.getBlitter(); |
| } |
| } |
| |
| const char* stop = text + byteLength; |
| AlignProc alignProc = pick_align_proc(paint.getTextAlign()); |
| SkDraw1Glyph d1g; |
| SkDraw1Glyph::Proc proc = d1g.init(this, blitter, cache); |
| TextMapState tms(*matrix, constY); |
| TextMapState::Proc tmsProc = tms.pickProc(scalarsPerPosition); |
| |
| if (cache->isSubpixel()) { |
| // maybe we should skip the rounding if linearText is set |
| SkAxisAlignment roundBaseline = SkComputeAxisAlignmentForHText(*matrix); |
| |
| if (SkPaint::kLeft_Align == paint.getTextAlign()) { |
| while (text < stop) { |
| |
| tmsProc(tms, pos); |
| |
| SkFixed fx = SkScalarToFixed(tms.fLoc.fX) + (SK_FixedHalf >> SkGlyph::kSubBits); |
| SkFixed fy = SkScalarToFixed(tms.fLoc.fY) + (SK_FixedHalf >> SkGlyph::kSubBits); |
| |
| SkFixed fxMask = ~0; |
| SkFixed fyMask = ~0; |
| |
| if (kX_SkAxisAlignment == roundBaseline) { |
| fyMask = 0; |
| } else if (kY_SkAxisAlignment == roundBaseline) { |
| fxMask = 0; |
| } |
| |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, |
| fx & fxMask, fy & fyMask); |
| |
| if (glyph.fWidth) { |
| proc(d1g, fx, fy, glyph); |
| } |
| pos += scalarsPerPosition; |
| } |
| } else { |
| while (text < stop) { |
| const char* currentText = text; |
| const SkGlyph* glyph = &glyphCacheProc(cache, &text, 0, 0); |
| |
| if (glyph->fWidth) { |
| SkDEBUGCODE(SkFixed prevAdvX = glyph->fAdvanceX;) |
| SkDEBUGCODE(SkFixed prevAdvY = glyph->fAdvanceY;) |
| |
| SkFixed fx, fy; |
| SkFixed fxMask = ~0; |
| SkFixed fyMask = ~0; |
| tmsProc(tms, pos); |
| |
| { |
| SkIPoint fixedLoc; |
| alignProc(tms.fLoc, *glyph, &fixedLoc); |
| fx = fixedLoc.fX + (SK_FixedHalf >> SkGlyph::kSubBits); |
| fy = fixedLoc.fY + (SK_FixedHalf >> SkGlyph::kSubBits); |
| |
| if (kX_SkAxisAlignment == roundBaseline) { |
| fyMask = 0; |
| } else if (kY_SkAxisAlignment == roundBaseline) { |
| fxMask = 0; |
| } |
| } |
| |
| // have to call again, now that we've been "aligned" |
| glyph = &glyphCacheProc(cache, ¤tText, |
| fx & fxMask, fy & fyMask); |
| // the assumption is that the advance hasn't changed |
| SkASSERT(prevAdvX == glyph->fAdvanceX); |
| SkASSERT(prevAdvY == glyph->fAdvanceY); |
| |
| proc(d1g, fx, fy, *glyph); |
| } |
| pos += scalarsPerPosition; |
| } |
| } |
| } else { // not subpixel |
| if (SkPaint::kLeft_Align == paint.getTextAlign()) { |
| while (text < stop) { |
| // the last 2 parameters are ignored |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); |
| |
| if (glyph.fWidth) { |
| tmsProc(tms, pos); |
| |
| proc(d1g, |
| SkScalarToFixed(tms.fLoc.fX) + SK_FixedHalf, |
| SkScalarToFixed(tms.fLoc.fY) + SK_FixedHalf, |
| glyph); |
| } |
| pos += scalarsPerPosition; |
| } |
| } else { |
| while (text < stop) { |
| // the last 2 parameters are ignored |
| const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); |
| |
| if (glyph.fWidth) { |
| tmsProc(tms, pos); |
| |
| SkIPoint fixedLoc; |
| alignProc(tms.fLoc, glyph, &fixedLoc); |
| |
| proc(d1g, |
| fixedLoc.fX + SK_FixedHalf, |
| fixedLoc.fY + SK_FixedHalf, |
| glyph); |
| } |
| pos += scalarsPerPosition; |
| } |
| } |
| } |
| } |
| |
| #if defined _WIN32 && _MSC_VER >= 1300 |
| #pragma warning ( pop ) |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "SkPathMeasure.h" |
| |
| static void morphpoints(SkPoint dst[], const SkPoint src[], int count, |
| SkPathMeasure& meas, const SkMatrix& matrix) { |
| SkMatrix::MapXYProc proc = matrix.getMapXYProc(); |
| |
| for (int i = 0; i < count; i++) { |
| SkPoint pos; |
| SkVector tangent; |
| |
| proc(matrix, src[i].fX, src[i].fY, &pos); |
| SkScalar sx = pos.fX; |
| SkScalar sy = pos.fY; |
| |
| if (!meas.getPosTan(sx, &pos, &tangent)) { |
| // set to 0 if the measure failed, so that we just set dst == pos |
| tangent.set(0, 0); |
| } |
| |
| /* This is the old way (that explains our approach but is way too slow |
| SkMatrix matrix; |
| SkPoint pt; |
| |
| pt.set(sx, sy); |
| matrix.setSinCos(tangent.fY, tangent.fX); |
| matrix.preTranslate(-sx, 0); |
| matrix.postTranslate(pos.fX, pos.fY); |
| matrix.mapPoints(&dst[i], &pt, 1); |
| */ |
| dst[i].set(pos.fX - SkScalarMul(tangent.fY, sy), |
| pos.fY + SkScalarMul(tangent.fX, sy)); |
| } |
| } |
| |
| /* TODO |
| |
| Need differentially more subdivisions when the follow-path is curvy. Not sure how to |
| determine that, but we need it. I guess a cheap answer is let the caller tell us, |
| but that seems like a cop-out. Another answer is to get Rob Johnson to figure it out. |
| */ |
| static void morphpath(SkPath* dst, const SkPath& src, SkPathMeasure& meas, |
| const SkMatrix& matrix) { |
| SkPath::Iter iter(src, false); |
| SkPoint srcP[4], dstP[3]; |
| SkPath::Verb verb; |
| |
| while ((verb = iter.next(srcP)) != SkPath::kDone_Verb) { |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| morphpoints(dstP, srcP, 1, meas, matrix); |
| dst->moveTo(dstP[0]); |
| break; |
| case SkPath::kLine_Verb: |
| // turn lines into quads to look bendy |
| srcP[0].fX = SkScalarAve(srcP[0].fX, srcP[1].fX); |
| srcP[0].fY = SkScalarAve(srcP[0].fY, srcP[1].fY); |
| morphpoints(dstP, srcP, 2, meas, matrix); |
| dst->quadTo(dstP[0], dstP[1]); |
| break; |
| case SkPath::kQuad_Verb: |
| morphpoints(dstP, &srcP[1], 2, meas, matrix); |
| dst->quadTo(dstP[0], dstP[1]); |
| break; |
| case SkPath::kCubic_Verb: |
| morphpoints(dstP, &srcP[1], 3, meas, matrix); |
| dst->cubicTo(dstP[0], dstP[1], dstP[2]); |
| break; |
| case SkPath::kClose_Verb: |
| dst->close(); |
| break; |
| default: |
| SkDEBUGFAIL("unknown verb"); |
| break; |
| } |
| } |
| } |
| |
| void SkDraw::drawTextOnPath(const char text[], size_t byteLength, |
| const SkPath& follow, const SkMatrix* matrix, |
| const SkPaint& paint) const { |
| SkASSERT(byteLength == 0 || text != NULL); |
| |
| // nothing to draw |
| if (text == NULL || byteLength == 0 || fRC->isEmpty()) { |
| return; |
| } |
| |
| SkTextToPathIter iter(text, byteLength, paint, true); |
| SkPathMeasure meas(follow, false); |
| SkScalar hOffset = 0; |
| |
| // need to measure first |
| if (paint.getTextAlign() != SkPaint::kLeft_Align) { |
| SkScalar pathLen = meas.getLength(); |
| if (paint.getTextAlign() == SkPaint::kCenter_Align) { |
| pathLen = SkScalarHalf(pathLen); |
| } |
| hOffset += pathLen; |
| } |
| |
| const SkPath* iterPath; |
| SkScalar xpos; |
| SkMatrix scaledMatrix; |
| SkScalar scale = iter.getPathScale(); |
| |
| scaledMatrix.setScale(scale, scale); |
| |
| while (iter.next(&iterPath, &xpos)) { |
| if (iterPath) { |
| SkPath tmp; |
| SkMatrix m(scaledMatrix); |
| |
| m.postTranslate(xpos + hOffset, 0); |
| if (matrix) { |
| m.postConcat(*matrix); |
| } |
| morphpath(&tmp, *iterPath, meas, m); |
| if (fDevice) { |
| fDevice->drawPath(*this, tmp, iter.getPaint(), NULL, true); |
| } else { |
| this->drawPath(tmp, iter.getPaint(), NULL, true); |
| } |
| } |
| } |
| } |
| |
| #ifdef SK_BUILD_FOR_ANDROID |
| void SkDraw::drawPosTextOnPath(const char text[], size_t byteLength, |
| const SkPoint pos[], const SkPaint& paint, |
| const SkPath& path, const SkMatrix* matrix) const { |
| // nothing to draw |
| if (text == NULL || byteLength == 0 || fRC->isEmpty()) { |
| return; |
| } |
| |
| SkMatrix scaledMatrix; |
| SkPathMeasure meas(path, false); |
| |
| SkMeasureCacheProc glyphCacheProc = paint.getMeasureCacheProc( |
| SkPaint::kForward_TextBufferDirection, true); |
| |
| // Copied (modified) from SkTextToPathIter constructor to setup paint |
| SkPaint tempPaint(paint); |
| |
| tempPaint.setLinearText(true); |
| tempPaint.setMaskFilter(NULL); // don't want this affecting our path-cache lookup |
| |
| if (tempPaint.getPathEffect() == NULL && !(tempPaint.getStrokeWidth() > 0 |
| && tempPaint.getStyle() != SkPaint::kFill_Style)) { |
| tempPaint.setStyle(SkPaint::kFill_Style); |
| tempPaint.setPathEffect(NULL); |
| } |
| // End copied from SkTextToPathIter constructor |
| |
| // detach cache |
| SkGlyphCache* cache = tempPaint.detachCache(NULL, NULL); |
| |
| // Must set scale, even if 1 |
| SkScalar scale = SK_Scalar1; |
| scaledMatrix.setScale(scale, scale); |
| |
| // Loop over all glyph ids |
| for (const char* stop = text + byteLength; text < stop; pos++) { |
| |
| const SkGlyph& glyph = glyphCacheProc(cache, &text); |
| SkPath tmp; |
| |
| const SkPath* glyphPath = cache->findPath(glyph); |
| if (glyphPath == NULL) { |
| continue; |
| } |
| |
| SkMatrix m(scaledMatrix); |
| m.postTranslate(pos->fX, 0); |
| |
| if (matrix) { |
| m.postConcat(*matrix); |
| } |
| |
| morphpath(&tmp, *glyphPath, meas, m); |
| this->drawPath(tmp, tempPaint); |
| |
| } |
| |
| // re-attach cache |
| SkGlyphCache::AttachCache(cache); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct VertState { |
| int f0, f1, f2; |
| |
| VertState(int vCount, const uint16_t indices[], int indexCount) |
| : fIndices(indices) { |
| fCurrIndex = 0; |
| if (indices) { |
| fCount = indexCount; |
| } else { |
| fCount = vCount; |
| } |
| } |
| |
| typedef bool (*Proc)(VertState*); |
| Proc chooseProc(SkCanvas::VertexMode mode); |
| |
| private: |
| int fCount; |
| int fCurrIndex; |
| const uint16_t* fIndices; |
| |
| static bool Triangles(VertState*); |
| static bool TrianglesX(VertState*); |
| static bool TriangleStrip(VertState*); |
| static bool TriangleStripX(VertState*); |
| static bool TriangleFan(VertState*); |
| static bool TriangleFanX(VertState*); |
| }; |
| |
| bool VertState::Triangles(VertState* state) { |
| int index = state->fCurrIndex; |
| if (index + 3 > state->fCount) { |
| return false; |
| } |
| state->f0 = index + 0; |
| state->f1 = index + 1; |
| state->f2 = index + 2; |
| state->fCurrIndex = index + 3; |
| return true; |
| } |
| |
| bool VertState::TrianglesX(VertState* state) { |
| const uint16_t* indices = state->fIndices; |
| int index = state->fCurrIndex; |
| if (index + 3 > state->fCount) { |
| return false; |
| } |
| state->f0 = indices[index + 0]; |
| state->f1 = indices[index + 1]; |
| state->f2 = indices[index + 2]; |
| state->fCurrIndex = index + 3; |
| return true; |
| } |
| |
| bool VertState::TriangleStrip(VertState* state) { |
| int index = state->fCurrIndex; |
| if (index + 3 > state->fCount) { |
| return false; |
| } |
| state->f2 = index + 2; |
| if (index & 1) { |
| state->f0 = index + 1; |
| state->f1 = index + 0; |
| } else { |
| state->f0 = index + 0; |
| state->f1 = index + 1; |
| } |
| state->fCurrIndex = index + 1; |
| return true; |
| } |
| |
| bool VertState::TriangleStripX(VertState* state) { |
| const uint16_t* indices = state->fIndices; |
| int index = state->fCurrIndex; |
| if (index + 3 > state->fCount) { |
| return false; |
| } |
| state->f2 = indices[index + 2]; |
| if (index & 1) { |
| state->f0 = indices[index + 1]; |
| state->f1 = indices[index + 0]; |
| } else { |
| state->f0 = indices[index + 0]; |
| state->f1 = indices[index + 1]; |
| } |
| state->fCurrIndex = index + 1; |
| return true; |
| } |
| |
| bool VertState::TriangleFan(VertState* state) { |
| int index = state->fCurrIndex; |
| if (index + 3 > state->fCount) { |
| return false; |
| } |
| state->f0 = 0; |
| state->f1 = index + 1; |
| state->f2 = index + 2; |
| state->fCurrIndex = index + 1; |
| return true; |
| } |
| |
| bool VertState::TriangleFanX(VertState* state) { |
| const uint16_t* indices = state->fIndices; |
| int index = state->fCurrIndex; |
| if (index + 3 > state->fCount) { |
| return false; |
| } |
| state->f0 = indices[0]; |
| state->f1 = indices[index + 1]; |
| state->f2 = indices[index + 2]; |
| state->fCurrIndex = index + 1; |
| return true; |
| } |
| |
| VertState::Proc VertState::chooseProc(SkCanvas::VertexMode mode) { |
| switch (mode) { |
| case SkCanvas::kTriangles_VertexMode: |
| return fIndices ? TrianglesX : Triangles; |
| case SkCanvas::kTriangleStrip_VertexMode: |
| return fIndices ? TriangleStripX : TriangleStrip; |
| case SkCanvas::kTriangleFan_VertexMode: |
| return fIndices ? TriangleFanX : TriangleFan; |
| default: |
| return NULL; |
| } |
| } |
| |
| typedef void (*HairProc)(const SkPoint&, const SkPoint&, const SkRasterClip&, |
| SkBlitter*); |
| |
| static HairProc ChooseHairProc(bool doAntiAlias) { |
| return doAntiAlias ? SkScan::AntiHairLine : SkScan::HairLine; |
| } |
| |
| static bool texture_to_matrix(const VertState& state, const SkPoint verts[], |
| const SkPoint texs[], SkMatrix* matrix) { |
| SkPoint src[3], dst[3]; |
| |
| src[0] = texs[state.f0]; |
| src[1] = texs[state.f1]; |
| src[2] = texs[state.f2]; |
| dst[0] = verts[state.f0]; |
| dst[1] = verts[state.f1]; |
| dst[2] = verts[state.f2]; |
| return matrix->setPolyToPoly(src, dst, 3); |
| } |
| |
| class SkTriColorShader : public SkShader { |
| public: |
| SkTriColorShader() {} |
| |
| bool setup(const SkPoint pts[], const SkColor colors[], int, int, int); |
| |
| virtual void shadeSpan(int x, int y, SkPMColor dstC[], int count) SK_OVERRIDE; |
| |
| SK_DEVELOPER_TO_STRING() |
| SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkTriColorShader) |
| |
| protected: |
| SkTriColorShader(SkFlattenableReadBuffer& buffer) : SkShader(buffer) {} |
| |
| private: |
| SkMatrix fDstToUnit; |
| SkPMColor fColors[3]; |
| |
| typedef SkShader INHERITED; |
| }; |
| |
| bool SkTriColorShader::setup(const SkPoint pts[], const SkColor colors[], |
| int index0, int index1, int index2) { |
| |
| fColors[0] = SkPreMultiplyColor(colors[index0]); |
| fColors[1] = SkPreMultiplyColor(colors[index1]); |
| fColors[2] = SkPreMultiplyColor(colors[index2]); |
| |
| SkMatrix m, im; |
| m.reset(); |
| m.set(0, pts[index1].fX - pts[index0].fX); |
| m.set(1, pts[index2].fX - pts[index0].fX); |
| m.set(2, pts[index0].fX); |
| m.set(3, pts[index1].fY - pts[index0].fY); |
| m.set(4, pts[index2].fY - pts[index0].fY); |
| m.set(5, pts[index0].fY); |
| if (!m.invert(&im)) { |
| return false; |
| } |
| return fDstToUnit.setConcat(im, this->getTotalInverse()); |
| } |
| |
| #include "SkColorPriv.h" |
| #include "SkComposeShader.h" |
| |
| static int ScalarTo256(SkScalar v) { |
| int scale = SkScalarToFixed(v) >> 8; |
| if (scale < 0) { |
| scale = 0; |
| } |
| if (scale > 255) { |
| scale = 255; |
| } |
| return SkAlpha255To256(scale); |
| } |
| |
| void SkTriColorShader::shadeSpan(int x, int y, SkPMColor dstC[], int count) { |
| SkPoint src; |
| |
| for (int i = 0; i < count; i++) { |
| fDstToUnit.mapXY(SkIntToScalar(x), SkIntToScalar(y), &src); |
| x += 1; |
| |
| int scale1 = ScalarTo256(src.fX); |
| int scale2 = ScalarTo256(src.fY); |
| int scale0 = 256 - scale1 - scale2; |
| if (scale0 < 0) { |
| if (scale1 > scale2) { |
| scale2 = 256 - scale1; |
| } else { |
| scale1 = 256 - scale2; |
| } |
| scale0 = 0; |
| } |
| |
| dstC[i] = SkAlphaMulQ(fColors[0], scale0) + |
| SkAlphaMulQ(fColors[1], scale1) + |
| SkAlphaMulQ(fColors[2], scale2); |
| } |
| } |
| |
| #ifdef SK_DEVELOPER |
| void SkTriColorShader::toString(SkString* str) const { |
| str->append("SkTriColorShader: ("); |
| |
| this->INHERITED::toString(str); |
| |
| str->append(")"); |
| } |
| #endif |
| |
| void SkDraw::drawVertices(SkCanvas::VertexMode vmode, int count, |
| const SkPoint vertices[], const SkPoint textures[], |
| const SkColor colors[], SkXfermode* xmode, |
| const uint16_t indices[], int indexCount, |
| const SkPaint& paint) const { |
| SkASSERT(0 == count || NULL != vertices); |
| |
| // abort early if there is nothing to draw |
| if (count < 3 || (indices && indexCount < 3) || fRC->isEmpty()) { |
| return; |
| } |
| |
| // transform out vertices into device coordinates |
| SkAutoSTMalloc<16, SkPoint> storage(count); |
| SkPoint* devVerts = storage.get(); |
| fMatrix->mapPoints(devVerts, vertices, count); |
| |
| if (fBounder) { |
| SkRect bounds; |
| bounds.set(devVerts, count); |
| if (!fBounder->doRect(bounds, paint)) { |
| return; |
| } |
| } |
| |
| /* |
| We can draw the vertices in 1 of 4 ways: |
| |
| - solid color (no shader/texture[], no colors[]) |
| - just colors (no shader/texture[], has colors[]) |
| - just texture (has shader/texture[], no colors[]) |
| - colors * texture (has shader/texture[], has colors[]) |
| |
| Thus for texture drawing, we need both texture[] and a shader. |
| */ |
| |
| SkTriColorShader triShader; // must be above declaration of p |
| SkPaint p(paint); |
| |
| SkShader* shader = p.getShader(); |
| if (NULL == shader) { |
| // if we have no shader, we ignore the texture coordinates |
| textures = NULL; |
| } else if (NULL == textures) { |
| // if we don't have texture coordinates, ignore the shader |
| p.setShader(NULL); |
| shader = NULL; |
| } |
| |
| // setup the custom shader (if needed) |
| if (NULL != colors) { |
| if (NULL == textures) { |
| // just colors (no texture) |
| shader = p.setShader(&triShader); |
| } else { |
| // colors * texture |
| SkASSERT(shader); |
| bool releaseMode = false; |
| if (NULL == xmode) { |
| xmode = SkXfermode::Create(SkXfermode::kModulate_Mode); |
| releaseMode = true; |
| } |
| SkShader* compose = SkNEW_ARGS(SkComposeShader, |
| (&triShader, shader, xmode)); |
| p.setShader(compose)->unref(); |
| if (releaseMode) { |
| xmode->unref(); |
| } |
| shader = compose; |
| } |
| } |
| |
| SkAutoBlitterChoose blitter(*fBitmap, *fMatrix, p); |
| // important that we abort early, as below we may manipulate the shader |
| // and that is only valid if the shader returned true from setContext. |
| // If it returned false, then our blitter will be the NullBlitter. |
| if (blitter->isNullBlitter()) { |
| return; |
| } |
| |
| // setup our state and function pointer for iterating triangles |
| VertState state(count, indices, indexCount); |
| VertState::Proc vertProc = state.chooseProc(vmode); |
| |
| if (NULL != textures || NULL != colors) { |
| SkMatrix tempM; |
| SkMatrix savedLocalM; |
| if (shader) { |
| savedLocalM = shader->getLocalMatrix(); |
| } |
| |
| while (vertProc(&state)) { |
| if (NULL != textures) { |
| if (texture_to_matrix(state, vertices, textures, &tempM)) { |
| tempM.postConcat(savedLocalM); |
| shader->setLocalMatrix(tempM); |
| // need to recal setContext since we changed the local matrix |
| shader->endContext(); |
| if (!shader->setContext(*fBitmap, p, *fMatrix)) { |
| continue; |
| } |
| } |
| } |
| if (NULL != colors) { |
| if (!triShader.setup(vertices, colors, |
| state.f0, state.f1, state.f2)) { |
| continue; |
| } |
| } |
| |
| SkPoint tmp[] = { |
| devVerts[state.f0], devVerts[state.f1], devVerts[state.f2] |
| }; |
| SkScan::FillTriangle(tmp, *fRC, blitter.get()); |
| } |
| // now restore the shader's original local matrix |
| if (NULL != shader) { |
| shader->setLocalMatrix(savedLocalM); |
| } |
| } else { |
| // no colors[] and no texture |
| HairProc hairProc = ChooseHairProc(paint.isAntiAlias()); |
| const SkRasterClip& clip = *fRC; |
| while (vertProc(&state)) { |
| hairProc(devVerts[state.f0], devVerts[state.f1], clip, blitter.get()); |
| hairProc(devVerts[state.f1], devVerts[state.f2], clip, blitter.get()); |
| hairProc(devVerts[state.f2], devVerts[state.f0], clip, blitter.get()); |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef SK_DEBUG |
| |
| void SkDraw::validate() const { |
| SkASSERT(fBitmap != NULL); |
| SkASSERT(fMatrix != NULL); |
| SkASSERT(fClip != NULL); |
| SkASSERT(fRC != NULL); |
| |
| const SkIRect& cr = fRC->getBounds(); |
| SkIRect br; |
| |
| br.set(0, 0, fBitmap->width(), fBitmap->height()); |
| SkASSERT(cr.isEmpty() || br.contains(cr)); |
| } |
| |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkBounder::SkBounder() { |
| // initialize up front. This gets reset by SkCanvas before each draw call. |
| fClip = &SkRegion::GetEmptyRegion(); |
| } |
| |
| bool SkBounder::doIRect(const SkIRect& r) { |
| SkIRect rr; |
| return rr.intersect(fClip->getBounds(), r) && this->onIRect(rr); |
| } |
| |
| // TODO: change the prototype to take fixed, and update the callers |
| bool SkBounder::doIRectGlyph(const SkIRect& r, int x, int y, |
| const SkGlyph& glyph) { |
| SkIRect rr; |
| if (!rr.intersect(fClip->getBounds(), r)) { |
| return false; |
| } |
| GlyphRec rec; |
| rec.fLSB.set(SkIntToFixed(x), SkIntToFixed(y)); |
| rec.fRSB.set(rec.fLSB.fX + glyph.fAdvanceX, |
| rec.fLSB.fY + glyph.fAdvanceY); |
| rec.fGlyphID = glyph.getGlyphID(); |
| rec.fFlags = 0; |
| return this->onIRectGlyph(rr, rec); |
| } |
| |
| bool SkBounder::doHairline(const SkPoint& pt0, const SkPoint& pt1, |
| const SkPaint& paint) { |
| SkIRect r; |
| SkScalar v0, v1; |
| |
| v0 = pt0.fX; |
| v1 = pt1.fX; |
| if (v0 > v1) { |
| SkTSwap<SkScalar>(v0, v1); |
| } |
| r.fLeft = SkScalarFloor(v0); |
| r.fRight = SkScalarCeil(v1); |
| |
| v0 = pt0.fY; |
| v1 = pt1.fY; |
| if (v0 > v1) { |
| SkTSwap<SkScalar>(v0, v1); |
| } |
| r.fTop = SkScalarFloor(v0); |
| r.fBottom = SkScalarCeil(v1); |
| |
| if (paint.isAntiAlias()) { |
| r.inset(-1, -1); |
| } |
| return this->doIRect(r); |
| } |
| |
| bool SkBounder::doRect(const SkRect& rect, const SkPaint& paint) { |
| SkIRect r; |
| |
| if (paint.getStyle() == SkPaint::kFill_Style) { |
| rect.round(&r); |
| } else { |
| int rad = -1; |
| rect.roundOut(&r); |
| if (paint.isAntiAlias()) { |
| rad = -2; |
| } |
| r.inset(rad, rad); |
| } |
| return this->doIRect(r); |
| } |
| |
| bool SkBounder::doPath(const SkPath& path, const SkPaint& paint, bool doFill) { |
| SkIRect r; |
| const SkRect& bounds = path.getBounds(); |
| |
| if (doFill) { |
| bounds.round(&r); |
| } else { // hairline |
| bounds.roundOut(&r); |
| } |
| |
| if (paint.isAntiAlias()) { |
| r.inset(-1, -1); |
| } |
| return this->doIRect(r); |
| } |
| |
| void SkBounder::commit() { |
| // override in subclass |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #include "SkPath.h" |
| #include "SkDraw.h" |
| #include "SkRegion.h" |
| #include "SkBlitter.h" |
| |
| static bool compute_bounds(const SkPath& devPath, const SkIRect* clipBounds, |
| const SkMaskFilter* filter, const SkMatrix* filterMatrix, |
| SkIRect* bounds) { |
| if (devPath.isEmpty()) { |
| return false; |
| } |
| |
| // init our bounds from the path |
| { |
| SkRect pathBounds = devPath.getBounds(); |
| pathBounds.inset(-SK_ScalarHalf, -SK_ScalarHalf); |
| pathBounds.roundOut(bounds); |
| } |
| |
| SkIPoint margin = SkIPoint::Make(0, 0); |
| if (filter) { |
| SkASSERT(filterMatrix); |
| |
| SkMask srcM, dstM; |
| |
| srcM.fBounds = *bounds; |
| srcM.fFormat = SkMask::kA8_Format; |
| srcM.fImage = NULL; |
| if (!filter->filterMask(&dstM, srcM, *filterMatrix, &margin)) { |
| return false; |
| } |
| } |
| |
| // (possibly) trim the bounds to reflect the clip |
| // (plus whatever slop the filter needs) |
| if (clipBounds) { |
| SkIRect tmp = *clipBounds; |
| // Ugh. Guard against gigantic margins from wacky filters. Without this |
| // check we can request arbitrary amounts of slop beyond our visible |
| // clip, and bring down the renderer (at least on finite RAM machines |
| // like handsets, etc.). Need to balance this invented value between |
| // quality of large filters like blurs, and the corresponding memory |
| // requests. |
| static const int MAX_MARGIN = 128; |
| tmp.inset(-SkMin32(margin.fX, MAX_MARGIN), |
| -SkMin32(margin.fY, MAX_MARGIN)); |
| if (!bounds->intersect(tmp)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static void draw_into_mask(const SkMask& mask, const SkPath& devPath, |
| SkPaint::Style style) { |
| SkBitmap bm; |
| SkDraw draw; |
| SkRasterClip clip; |
| SkMatrix matrix; |
| SkPaint paint; |
| |
| bm.setConfig(SkBitmap::kA8_Config, mask.fBounds.width(), mask.fBounds.height(), mask.fRowBytes); |
| bm.setPixels(mask.fImage); |
| |
| clip.setRect(SkIRect::MakeWH(mask.fBounds.width(), mask.fBounds.height())); |
| matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft), |
| -SkIntToScalar(mask.fBounds.fTop)); |
| |
| draw.fBitmap = &bm; |
| draw.fRC = &clip; |
| draw.fClip = &clip.bwRgn(); |
| draw.fMatrix = &matrix; |
| draw.fBounder = NULL; |
| paint.setAntiAlias(true); |
| paint.setStyle(style); |
| draw.drawPath(devPath, paint); |
| } |
| |
| bool SkDraw::DrawToMask(const SkPath& devPath, const SkIRect* clipBounds, |
| const SkMaskFilter* filter, const SkMatrix* filterMatrix, |
| SkMask* mask, SkMask::CreateMode mode, |
| SkPaint::Style style) { |
| if (SkMask::kJustRenderImage_CreateMode != mode) { |
| if (!compute_bounds(devPath, clipBounds, filter, filterMatrix, &mask->fBounds)) |
| return false; |
| } |
| |
| if (SkMask::kComputeBoundsAndRenderImage_CreateMode == mode) { |
| mask->fFormat = SkMask::kA8_Format; |
| mask->fRowBytes = mask->fBounds.width(); |
| size_t size = mask->computeImageSize(); |
| if (0 == size) { |
| // we're too big to allocate the mask, abort |
| return false; |
| } |
| mask->fImage = SkMask::AllocImage(size); |
| memset(mask->fImage, 0, mask->computeImageSize()); |
| } |
| |
| if (SkMask::kJustComputeBounds_CreateMode != mode) { |
| draw_into_mask(*mask, devPath, style); |
| } |
| |
| return true; |
| } |