| |
| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkRTree.h" |
| #include "SkTSort.h" |
| |
| static inline uint32_t get_area(const SkIRect& rect); |
| static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2); |
| static inline uint32_t get_margin(const SkIRect& rect); |
| static inline uint32_t get_overlap_increase(const SkIRect& rect1, const SkIRect& rect2, |
| SkIRect expandBy); |
| static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2); |
| static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out); |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SK_DEFINE_INST_COUNT(SkRTree) |
| |
| SkRTree* SkRTree::Create(int minChildren, int maxChildren, SkScalar aspectRatio) { |
| if (minChildren < maxChildren && (maxChildren + 1) / 2 >= minChildren && |
| minChildren > 0 && maxChildren < static_cast<int>(SK_MaxU16)) { |
| return new SkRTree(minChildren, maxChildren, aspectRatio); |
| } |
| return NULL; |
| } |
| |
| SkRTree::SkRTree(int minChildren, int maxChildren, SkScalar aspectRatio) |
| : fMinChildren(minChildren) |
| , fMaxChildren(maxChildren) |
| , fNodeSize(sizeof(Node) + sizeof(Branch) * maxChildren) |
| , fCount(0) |
| , fNodes(fNodeSize * 256) |
| , fAspectRatio(aspectRatio) { |
| SkASSERT(minChildren < maxChildren && minChildren > 0 && maxChildren < |
| static_cast<int>(SK_MaxU16)); |
| SkASSERT((maxChildren + 1) / 2 >= minChildren); |
| this->validate(); |
| } |
| |
| SkRTree::~SkRTree() { |
| this->clear(); |
| } |
| |
| void SkRTree::insert(void* data, const SkIRect& bounds, bool defer) { |
| this->validate(); |
| if (bounds.isEmpty()) { |
| SkASSERT(false); |
| return; |
| } |
| Branch newBranch; |
| newBranch.fBounds = bounds; |
| newBranch.fChild.data = data; |
| if (this->isEmpty()) { |
| // since a bulk-load into an existing tree is as of yet unimplemented (and arguably not |
| // of vital importance right now), we only batch up inserts if the tree is empty. |
| if (defer) { |
| fDeferredInserts.push(newBranch); |
| return; |
| } else { |
| fRoot.fChild.subtree = allocateNode(0); |
| fRoot.fChild.subtree->fNumChildren = 0; |
| } |
| } |
| |
| Branch* newSibling = insert(fRoot.fChild.subtree, &newBranch); |
| fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree); |
| |
| if (NULL != newSibling) { |
| Node* oldRoot = fRoot.fChild.subtree; |
| Node* newRoot = this->allocateNode(oldRoot->fLevel + 1); |
| newRoot->fNumChildren = 2; |
| *newRoot->child(0) = fRoot; |
| *newRoot->child(1) = *newSibling; |
| fRoot.fChild.subtree = newRoot; |
| fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree); |
| } |
| |
| ++fCount; |
| this->validate(); |
| } |
| |
| void SkRTree::flushDeferredInserts() { |
| this->validate(); |
| if (this->isEmpty() && fDeferredInserts.count() > 0) { |
| fCount = fDeferredInserts.count(); |
| if (1 == fCount) { |
| fRoot.fChild.subtree = allocateNode(0); |
| fRoot.fChild.subtree->fNumChildren = 0; |
| this->insert(fRoot.fChild.subtree, &fDeferredInserts[0]); |
| fRoot.fBounds = fDeferredInserts[0].fBounds; |
| } else { |
| fRoot = this->bulkLoad(&fDeferredInserts); |
| } |
| } else { |
| // TODO: some algorithm for bulk loading into an already populated tree |
| SkASSERT(0 == fDeferredInserts.count()); |
| } |
| fDeferredInserts.rewind(); |
| this->validate(); |
| } |
| |
| void SkRTree::search(const SkIRect& query, SkTDArray<void*>* results) { |
| this->validate(); |
| if (0 != fDeferredInserts.count()) { |
| this->flushDeferredInserts(); |
| } |
| if (!this->isEmpty() && SkIRect::IntersectsNoEmptyCheck(fRoot.fBounds, query)) { |
| this->search(fRoot.fChild.subtree, query, results); |
| } |
| this->validate(); |
| } |
| |
| void SkRTree::clear() { |
| this->validate(); |
| fNodes.reset(); |
| fDeferredInserts.rewind(); |
| fCount = 0; |
| this->validate(); |
| } |
| |
| SkRTree::Node* SkRTree::allocateNode(uint16_t level) { |
| Node* out = static_cast<Node*>(fNodes.allocThrow(fNodeSize)); |
| out->fNumChildren = 0; |
| out->fLevel = level; |
| return out; |
| } |
| |
| SkRTree::Branch* SkRTree::insert(Node* root, Branch* branch, uint16_t level) { |
| Branch* toInsert = branch; |
| if (root->fLevel != level) { |
| int childIndex = this->chooseSubtree(root, branch); |
| toInsert = this->insert(root->child(childIndex)->fChild.subtree, branch, level); |
| root->child(childIndex)->fBounds = this->computeBounds( |
| root->child(childIndex)->fChild.subtree); |
| } |
| if (NULL != toInsert) { |
| if (root->fNumChildren == fMaxChildren) { |
| // handle overflow by splitting. TODO: opportunistic reinsertion |
| |
| // decide on a distribution to divide with |
| Node* newSibling = this->allocateNode(root->fLevel); |
| Branch* toDivide = SkNEW_ARRAY(Branch, fMaxChildren + 1); |
| for (int i = 0; i < fMaxChildren; ++i) { |
| toDivide[i] = *root->child(i); |
| } |
| toDivide[fMaxChildren] = *toInsert; |
| int splitIndex = this->distributeChildren(toDivide); |
| |
| // divide up the branches |
| root->fNumChildren = splitIndex; |
| newSibling->fNumChildren = fMaxChildren + 1 - splitIndex; |
| for (int i = 0; i < splitIndex; ++i) { |
| *root->child(i) = toDivide[i]; |
| } |
| for (int i = splitIndex; i < fMaxChildren + 1; ++i) { |
| *newSibling->child(i - splitIndex) = toDivide[i]; |
| } |
| SkDELETE_ARRAY(toDivide); |
| |
| // pass the new sibling branch up to the parent |
| branch->fChild.subtree = newSibling; |
| branch->fBounds = this->computeBounds(newSibling); |
| return branch; |
| } else { |
| *root->child(root->fNumChildren) = *toInsert; |
| ++root->fNumChildren; |
| return NULL; |
| } |
| } |
| return NULL; |
| } |
| |
| int SkRTree::chooseSubtree(Node* root, Branch* branch) { |
| SkASSERT(!root->isLeaf()); |
| if (1 < root->fLevel) { |
| // root's child pointers do not point to leaves, so minimize area increase |
| int32_t minAreaIncrease = SK_MaxS32; |
| int32_t minArea = SK_MaxS32; |
| int32_t bestSubtree = -1; |
| for (int i = 0; i < root->fNumChildren; ++i) { |
| const SkIRect& subtreeBounds = root->child(i)->fBounds; |
| int32_t areaIncrease = get_area_increase(subtreeBounds, branch->fBounds); |
| // break ties in favor of subtree with smallest area |
| if (areaIncrease < minAreaIncrease || (areaIncrease == minAreaIncrease && |
| static_cast<int32_t>(get_area(subtreeBounds)) < minArea)) { |
| minAreaIncrease = areaIncrease; |
| minArea = get_area(subtreeBounds); |
| bestSubtree = i; |
| } |
| } |
| SkASSERT(-1 != bestSubtree); |
| return bestSubtree; |
| } else if (1 == root->fLevel) { |
| // root's child pointers do point to leaves, so minimize overlap increase |
| int32_t minOverlapIncrease = SK_MaxS32; |
| int32_t minAreaIncrease = SK_MaxS32; |
| int32_t bestSubtree = -1; |
| for (int32_t i = 0; i < root->fNumChildren; ++i) { |
| const SkIRect& subtreeBounds = root->child(i)->fBounds; |
| SkIRect expandedBounds = subtreeBounds; |
| join_no_empty_check(branch->fBounds, &expandedBounds); |
| int32_t overlap = 0; |
| for (int32_t j = 0; j < root->fNumChildren; ++j) { |
| if (j == i) continue; |
| // Note: this would be more correct if we subtracted the original pre-expanded |
| // overlap, but computing overlaps is expensive and omitting it doesn't seem to |
| // hurt query performance. See get_overlap_increase() |
| overlap += get_overlap(expandedBounds, root->child(j)->fBounds); |
| } |
| // break ties with lowest area increase |
| if (overlap < minOverlapIncrease || (overlap == minOverlapIncrease && |
| static_cast<int32_t>(get_area_increase(branch->fBounds, subtreeBounds)) < |
| minAreaIncrease)) { |
| minOverlapIncrease = overlap; |
| minAreaIncrease = get_area_increase(branch->fBounds, subtreeBounds); |
| bestSubtree = i; |
| } |
| } |
| return bestSubtree; |
| } else { |
| SkASSERT(false); |
| return 0; |
| } |
| } |
| |
| SkIRect SkRTree::computeBounds(Node* n) { |
| SkIRect r = n->child(0)->fBounds; |
| for (int i = 1; i < n->fNumChildren; ++i) { |
| join_no_empty_check(n->child(i)->fBounds, &r); |
| } |
| return r; |
| } |
| |
| int SkRTree::distributeChildren(Branch* children) { |
| // We have two sides to sort by on each of two axes: |
| const static SortSide sorts[2][2] = { |
| {&SkIRect::fLeft, &SkIRect::fRight}, |
| {&SkIRect::fTop, &SkIRect::fBottom} |
| }; |
| |
| // We want to choose an axis to split on, then a distribution along that axis; we'll need |
| // three pieces of info: the split axis, the side to sort by on that axis, and the index |
| // to split the sorted array on. |
| int32_t sortSide = -1; |
| int32_t k = -1; |
| int32_t axis = -1; |
| int32_t bestS = SK_MaxS32; |
| |
| // Evaluate each axis, we want the min summed margin-value (s) over all distributions |
| for (int i = 0; i < 2; ++i) { |
| int32_t minOverlap = SK_MaxS32; |
| int32_t minArea = SK_MaxS32; |
| int32_t axisBestK = 0; |
| int32_t axisBestSide = 0; |
| int32_t s = 0; |
| |
| // Evaluate each sort |
| for (int j = 0; j < 2; ++j) { |
| SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[i][j])); |
| |
| // Evaluate each split index |
| for (int32_t k = 1; k <= fMaxChildren - 2 * fMinChildren + 2; ++k) { |
| SkIRect r1 = children[0].fBounds; |
| SkIRect r2 = children[fMinChildren + k - 1].fBounds; |
| for (int32_t l = 1; l < fMinChildren - 1 + k; ++l) { |
| join_no_empty_check(children[l].fBounds, &r1); |
| } |
| for (int32_t l = fMinChildren + k; l < fMaxChildren + 1; ++l) { |
| join_no_empty_check(children[l].fBounds, &r2); |
| } |
| |
| int32_t area = get_area(r1) + get_area(r2); |
| int32_t overlap = get_overlap(r1, r2); |
| s += get_margin(r1) + get_margin(r2); |
| |
| if (overlap < minOverlap || (overlap == minOverlap && area < minArea)) { |
| minOverlap = overlap; |
| minArea = area; |
| axisBestSide = j; |
| axisBestK = k; |
| } |
| } |
| } |
| |
| if (s < bestS) { |
| bestS = s; |
| axis = i; |
| sortSide = axisBestSide; |
| k = axisBestK; |
| } |
| } |
| |
| // replicate the sort of the winning distribution, (we can skip this if the last |
| // sort ended up being best) |
| if (!(axis == 1 && sortSide == 1)) { |
| SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[axis][sortSide])); |
| } |
| |
| return fMinChildren - 1 + k; |
| } |
| |
| void SkRTree::search(Node* root, const SkIRect query, SkTDArray<void*>* results) const { |
| for (int i = 0; i < root->fNumChildren; ++i) { |
| if (SkIRect::IntersectsNoEmptyCheck(root->child(i)->fBounds, query)) { |
| if (root->isLeaf()) { |
| results->push(root->child(i)->fChild.data); |
| } else { |
| this->search(root->child(i)->fChild.subtree, query, results); |
| } |
| } |
| } |
| } |
| |
| SkRTree::Branch SkRTree::bulkLoad(SkTDArray<Branch>* branches, int level) { |
| if (branches->count() == 1) { |
| // Only one branch: it will be the root |
| Branch out = (*branches)[0]; |
| branches->rewind(); |
| return out; |
| } else { |
| // First we sort the whole list by y coordinates |
| SkTQSort(branches->begin(), branches->end() - 1, RectLessY()); |
| |
| int numBranches = branches->count() / fMaxChildren; |
| int remainder = branches->count() % fMaxChildren; |
| int newBranches = 0; |
| |
| if (0 != remainder) { |
| ++numBranches; |
| // If the remainder isn't enough to fill a node, we'll need to add fewer nodes to |
| // some other branches to make up for it |
| if (remainder >= fMinChildren) { |
| remainder = 0; |
| } else { |
| remainder = fMinChildren - remainder; |
| } |
| } |
| |
| int numStrips = SkScalarCeil(SkScalarSqrt(SkIntToScalar(numBranches) * |
| SkScalarInvert(fAspectRatio))); |
| int numTiles = SkScalarCeil(SkIntToScalar(numBranches) / |
| SkIntToScalar(numStrips)); |
| int currentBranch = 0; |
| |
| for (int i = 0; i < numStrips; ++i) { |
| int begin = currentBranch; |
| int end = currentBranch + numTiles * fMaxChildren - SkMin32(remainder, |
| (fMaxChildren - fMinChildren) * numTiles); |
| if (end > branches->count()) { |
| end = branches->count(); |
| } |
| |
| // Now we sort horizontal strips of rectangles by their x coords |
| SkTQSort(branches->begin() + begin, branches->begin() + end - 1, RectLessX()); |
| |
| for (int j = 0; j < numTiles && currentBranch < branches->count(); ++j) { |
| int incrementBy = fMaxChildren; |
| if (remainder != 0) { |
| // if need be, omit some nodes to make up for remainder |
| if (remainder <= fMaxChildren - fMinChildren) { |
| incrementBy -= remainder; |
| remainder = 0; |
| } else { |
| incrementBy = fMinChildren; |
| remainder -= fMaxChildren - fMinChildren; |
| } |
| } |
| Node* n = allocateNode(level); |
| n->fNumChildren = 1; |
| *n->child(0) = (*branches)[currentBranch]; |
| Branch b; |
| b.fBounds = (*branches)[currentBranch].fBounds; |
| b.fChild.subtree = n; |
| ++currentBranch; |
| for (int k = 1; k < incrementBy && currentBranch < branches->count(); ++k) { |
| b.fBounds.join((*branches)[currentBranch].fBounds); |
| *n->child(k) = (*branches)[currentBranch]; |
| ++n->fNumChildren; |
| ++currentBranch; |
| } |
| (*branches)[newBranches] = b; |
| ++newBranches; |
| } |
| } |
| branches->setCount(newBranches); |
| return this->bulkLoad(branches, level + 1); |
| } |
| } |
| |
| void SkRTree::validate() { |
| #ifdef SK_DEBUG |
| if (this->isEmpty()) { |
| return; |
| } |
| SkASSERT(fCount == (size_t)this->validateSubtree(fRoot.fChild.subtree, fRoot.fBounds, true)); |
| #endif |
| } |
| |
| int SkRTree::validateSubtree(Node* root, SkIRect bounds, bool isRoot) { |
| // make sure the pointer is pointing to a valid place |
| SkASSERT(fNodes.contains(static_cast<void*>(root))); |
| |
| if (isRoot) { |
| // If the root of this subtree is the overall root, we have looser standards: |
| if (root->isLeaf()) { |
| SkASSERT(root->fNumChildren >= 1 && root->fNumChildren <= fMaxChildren); |
| } else { |
| SkASSERT(root->fNumChildren >= 2 && root->fNumChildren <= fMaxChildren); |
| } |
| } else { |
| SkASSERT(root->fNumChildren >= fMinChildren && root->fNumChildren <= fMaxChildren); |
| } |
| |
| for (int i = 0; i < root->fNumChildren; ++i) { |
| SkASSERT(bounds.contains(root->child(i)->fBounds)); |
| } |
| |
| if (root->isLeaf()) { |
| SkASSERT(0 == root->fLevel); |
| return root->fNumChildren; |
| } else { |
| int childCount = 0; |
| for (int i = 0; i < root->fNumChildren; ++i) { |
| SkASSERT(root->child(i)->fChild.subtree->fLevel == root->fLevel - 1); |
| childCount += this->validateSubtree(root->child(i)->fChild.subtree, |
| root->child(i)->fBounds); |
| } |
| return childCount; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static inline uint32_t get_area(const SkIRect& rect) { |
| return rect.width() * rect.height(); |
| } |
| |
| static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2) { |
| // I suspect there's a more efficient way of computing this... |
| return SkMax32(0, SkMin32(rect1.fRight, rect2.fRight) - SkMax32(rect1.fLeft, rect2.fLeft)) * |
| SkMax32(0, SkMin32(rect1.fBottom, rect2.fBottom) - SkMax32(rect1.fTop, rect2.fTop)); |
| } |
| |
| // Get the margin (aka perimeter) |
| static inline uint32_t get_margin(const SkIRect& rect) { |
| return 2 * (rect.width() + rect.height()); |
| } |
| |
| static inline uint32_t get_overlap_increase(const SkIRect& rect1, const SkIRect& rect2, |
| SkIRect expandBy) { |
| join_no_empty_check(rect1, &expandBy); |
| return get_overlap(expandBy, rect2) - get_overlap(rect1, rect2); |
| } |
| |
| static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2) { |
| join_no_empty_check(rect1, &rect2); |
| return get_area(rect2) - get_area(rect1); |
| } |
| |
| // Expand 'out' to include 'joinWith' |
| static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out) { |
| // since we check for empty bounds on insert, we know we'll never have empty rects |
| // and we can save the empty check that SkIRect::join requires |
| if (joinWith.fLeft < out->fLeft) { out->fLeft = joinWith.fLeft; } |
| if (joinWith.fTop < out->fTop) { out->fTop = joinWith.fTop; } |
| if (joinWith.fRight > out->fRight) { out->fRight = joinWith.fRight; } |
| if (joinWith.fBottom > out->fBottom) { out->fBottom = joinWith.fBottom; } |
| } |