| |
| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkRegionPriv.h" |
| #include "SkTemplates.h" |
| #include "SkThread.h" |
| #include "SkUtils.h" |
| |
| /* Region Layout |
| * |
| * TOP |
| * |
| * [ Bottom, X-Intervals, [Left, Right]..., X-Sentinel ] |
| * ... |
| * |
| * Y-Sentinel |
| */ |
| |
| SkDEBUGCODE(int32_t gRgnAllocCounter;) |
| |
| ///////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| /* Pass in the beginning with the intervals. |
| * We back up 1 to read the interval-count. |
| * Return the beginning of the next scanline (i.e. the next Y-value) |
| */ |
| static SkRegion::RunType* skip_intervals(const SkRegion::RunType runs[]) { |
| int intervals = runs[-1]; |
| #ifdef SK_DEBUG |
| if (intervals > 0) { |
| SkASSERT(runs[0] < runs[1]); |
| SkASSERT(runs[1] < SkRegion::kRunTypeSentinel); |
| } else { |
| SkASSERT(0 == intervals); |
| SkASSERT(SkRegion::kRunTypeSentinel == runs[0]); |
| } |
| #endif |
| runs += intervals * 2 + 1; |
| return const_cast<SkRegion::RunType*>(runs); |
| } |
| |
| bool SkRegion::RunsAreARect(const SkRegion::RunType runs[], int count, |
| SkIRect* bounds) { |
| assert_sentinel(runs[0], false); // top |
| SkASSERT(count >= kRectRegionRuns); |
| |
| if (count == kRectRegionRuns) { |
| assert_sentinel(runs[1], false); // bottom |
| SkASSERT(1 == runs[2]); |
| assert_sentinel(runs[3], false); // left |
| assert_sentinel(runs[4], false); // right |
| assert_sentinel(runs[5], true); |
| assert_sentinel(runs[6], true); |
| |
| SkASSERT(runs[0] < runs[1]); // valid height |
| SkASSERT(runs[3] < runs[4]); // valid width |
| |
| bounds->set(runs[3], runs[0], runs[4], runs[1]); |
| return true; |
| } |
| return false; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////// |
| |
| SkRegion::SkRegion() { |
| fBounds.set(0, 0, 0, 0); |
| fRunHead = SkRegion_gEmptyRunHeadPtr; |
| } |
| |
| SkRegion::SkRegion(const SkRegion& src) { |
| fRunHead = SkRegion_gEmptyRunHeadPtr; // just need a value that won't trigger sk_free(fRunHead) |
| this->setRegion(src); |
| } |
| |
| SkRegion::SkRegion(const SkIRect& rect) { |
| fRunHead = SkRegion_gEmptyRunHeadPtr; // just need a value that won't trigger sk_free(fRunHead) |
| this->setRect(rect); |
| } |
| |
| SkRegion::~SkRegion() { |
| this->freeRuns(); |
| } |
| |
| void SkRegion::freeRuns() { |
| if (this->isComplex()) { |
| SkASSERT(fRunHead->fRefCnt >= 1); |
| if (sk_atomic_dec(&fRunHead->fRefCnt) == 1) { |
| //SkASSERT(gRgnAllocCounter > 0); |
| //SkDEBUGCODE(sk_atomic_dec(&gRgnAllocCounter)); |
| //SkDEBUGF(("************** gRgnAllocCounter::free %d\n", gRgnAllocCounter)); |
| sk_free(fRunHead); |
| } |
| } |
| } |
| |
| void SkRegion::allocateRuns(int count, int ySpanCount, int intervalCount) { |
| fRunHead = RunHead::Alloc(count, ySpanCount, intervalCount); |
| } |
| |
| void SkRegion::allocateRuns(int count) { |
| fRunHead = RunHead::Alloc(count); |
| } |
| |
| void SkRegion::allocateRuns(const RunHead& head) { |
| fRunHead = RunHead::Alloc(head.fRunCount, |
| head.getYSpanCount(), |
| head.getIntervalCount()); |
| } |
| |
| SkRegion& SkRegion::operator=(const SkRegion& src) { |
| (void)this->setRegion(src); |
| return *this; |
| } |
| |
| void SkRegion::swap(SkRegion& other) { |
| SkTSwap<SkIRect>(fBounds, other.fBounds); |
| SkTSwap<RunHead*>(fRunHead, other.fRunHead); |
| } |
| |
| bool SkRegion::setEmpty() { |
| this->freeRuns(); |
| fBounds.set(0, 0, 0, 0); |
| fRunHead = SkRegion_gEmptyRunHeadPtr; |
| return false; |
| } |
| |
| bool SkRegion::setRect(int32_t left, int32_t top, |
| int32_t right, int32_t bottom) { |
| if (left >= right || top >= bottom) { |
| return this->setEmpty(); |
| } |
| this->freeRuns(); |
| fBounds.set(left, top, right, bottom); |
| fRunHead = SkRegion_gRectRunHeadPtr; |
| return true; |
| } |
| |
| bool SkRegion::setRect(const SkIRect& r) { |
| return this->setRect(r.fLeft, r.fTop, r.fRight, r.fBottom); |
| } |
| |
| bool SkRegion::setRegion(const SkRegion& src) { |
| if (this != &src) { |
| this->freeRuns(); |
| |
| fBounds = src.fBounds; |
| fRunHead = src.fRunHead; |
| if (this->isComplex()) { |
| sk_atomic_inc(&fRunHead->fRefCnt); |
| } |
| } |
| return fRunHead != SkRegion_gEmptyRunHeadPtr; |
| } |
| |
| bool SkRegion::op(const SkIRect& rect, const SkRegion& rgn, Op op) { |
| SkRegion tmp(rect); |
| |
| return this->op(tmp, rgn, op); |
| } |
| |
| bool SkRegion::op(const SkRegion& rgn, const SkIRect& rect, Op op) { |
| SkRegion tmp(rect); |
| |
| return this->op(rgn, tmp, op); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef SK_BUILD_FOR_ANDROID |
| char* SkRegion::toString() { |
| Iterator iter(*this); |
| int count = 0; |
| while (!iter.done()) { |
| count++; |
| iter.next(); |
| } |
| // 4 ints, up to 10 digits each plus sign, 3 commas, '(', ')', SkRegion() and '\0' |
| const int max = (count*((11*4)+5))+11+1; |
| char* result = (char*)malloc(max); |
| if (result == NULL) { |
| return NULL; |
| } |
| count = sprintf(result, "SkRegion("); |
| iter.reset(*this); |
| while (!iter.done()) { |
| const SkIRect& r = iter.rect(); |
| count += sprintf(result+count, "(%d,%d,%d,%d)", r.fLeft, r.fTop, r.fRight, r.fBottom); |
| iter.next(); |
| } |
| count += sprintf(result+count, ")"); |
| return result; |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| int SkRegion::count_runtype_values(int* itop, int* ibot) const { |
| if (this == NULL) { |
| *itop = SK_MinS32; |
| *ibot = SK_MaxS32; |
| return 0; |
| } |
| |
| int maxT; |
| |
| if (this->isRect()) { |
| maxT = 2; |
| } else { |
| SkASSERT(this->isComplex()); |
| maxT = fRunHead->getIntervalCount() * 2; |
| } |
| *itop = fBounds.fTop; |
| *ibot = fBounds.fBottom; |
| return maxT; |
| } |
| |
| static bool isRunCountEmpty(int count) { |
| return count <= 2; |
| } |
| |
| bool SkRegion::setRuns(RunType runs[], int count) { |
| SkDEBUGCODE(this->validate();) |
| SkASSERT(count > 0); |
| |
| if (isRunCountEmpty(count)) { |
| // SkDEBUGF(("setRuns: empty\n")); |
| assert_sentinel(runs[count-1], true); |
| return this->setEmpty(); |
| } |
| |
| // trim off any empty spans from the top and bottom |
| // weird I should need this, perhaps op() could be smarter... |
| if (count > kRectRegionRuns) { |
| RunType* stop = runs + count; |
| assert_sentinel(runs[0], false); // top |
| assert_sentinel(runs[1], false); // bottom |
| // runs[2] is uncomputed intervalCount |
| |
| if (runs[3] == SkRegion::kRunTypeSentinel) { // should be first left... |
| runs += 3; // skip empty initial span |
| runs[0] = runs[-2]; // set new top to prev bottom |
| assert_sentinel(runs[1], false); // bot: a sentinal would mean two in a row |
| assert_sentinel(runs[2], false); // intervalcount |
| assert_sentinel(runs[3], false); // left |
| assert_sentinel(runs[4], false); // right |
| } |
| |
| assert_sentinel(stop[-1], true); |
| assert_sentinel(stop[-2], true); |
| |
| // now check for a trailing empty span |
| if (stop[-5] == SkRegion::kRunTypeSentinel) { // eek, stop[-4] was a bottom with no x-runs |
| stop[-4] = SkRegion::kRunTypeSentinel; // kill empty last span |
| stop -= 3; |
| assert_sentinel(stop[-1], true); // last y-sentinel |
| assert_sentinel(stop[-2], true); // last x-sentinel |
| assert_sentinel(stop[-3], false); // last right |
| assert_sentinel(stop[-4], false); // last left |
| assert_sentinel(stop[-5], false); // last interval-count |
| assert_sentinel(stop[-6], false); // last bottom |
| } |
| count = (int)(stop - runs); |
| } |
| |
| SkASSERT(count >= kRectRegionRuns); |
| |
| if (SkRegion::RunsAreARect(runs, count, &fBounds)) { |
| return this->setRect(fBounds); |
| } |
| |
| // if we get here, we need to become a complex region |
| |
| if (!this->isComplex() || fRunHead->fRunCount != count) { |
| this->freeRuns(); |
| this->allocateRuns(count); |
| } |
| |
| // must call this before we can write directly into runs() |
| // in case we are sharing the buffer with another region (copy on write) |
| fRunHead = fRunHead->ensureWritable(); |
| memcpy(fRunHead->writable_runs(), runs, count * sizeof(RunType)); |
| fRunHead->computeRunBounds(&fBounds); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| return true; |
| } |
| |
| void SkRegion::BuildRectRuns(const SkIRect& bounds, |
| RunType runs[kRectRegionRuns]) { |
| runs[0] = bounds.fTop; |
| runs[1] = bounds.fBottom; |
| runs[2] = 1; // 1 interval for this scanline |
| runs[3] = bounds.fLeft; |
| runs[4] = bounds.fRight; |
| runs[5] = kRunTypeSentinel; |
| runs[6] = kRunTypeSentinel; |
| } |
| |
| bool SkRegion::contains(int32_t x, int32_t y) const { |
| SkDEBUGCODE(this->validate();) |
| |
| if (!fBounds.contains(x, y)) { |
| return false; |
| } |
| if (this->isRect()) { |
| return true; |
| } |
| SkASSERT(this->isComplex()); |
| |
| const RunType* runs = fRunHead->findScanline(y); |
| |
| // Skip the Bottom and IntervalCount |
| runs += 2; |
| |
| // Just walk this scanline, checking each interval. The X-sentinel will |
| // appear as a left-inteval (runs[0]) and should abort the search. |
| // |
| // We could do a bsearch, using interval-count (runs[1]), but need to time |
| // when that would be worthwhile. |
| // |
| for (;;) { |
| if (x < runs[0]) { |
| break; |
| } |
| if (x < runs[1]) { |
| return true; |
| } |
| runs += 2; |
| } |
| return false; |
| } |
| |
| static SkRegion::RunType scanline_bottom(const SkRegion::RunType runs[]) { |
| return runs[0]; |
| } |
| |
| static const SkRegion::RunType* scanline_next(const SkRegion::RunType runs[]) { |
| // skip [B N [L R]... S] |
| return runs + 2 + runs[1] * 2 + 1; |
| } |
| |
| static bool scanline_contains(const SkRegion::RunType runs[], |
| SkRegion::RunType L, SkRegion::RunType R) { |
| runs += 2; // skip Bottom and IntervalCount |
| for (;;) { |
| if (L < runs[0]) { |
| break; |
| } |
| if (R <= runs[1]) { |
| return true; |
| } |
| runs += 2; |
| } |
| return false; |
| } |
| |
| bool SkRegion::contains(const SkIRect& r) const { |
| SkDEBUGCODE(this->validate();) |
| |
| if (!fBounds.contains(r)) { |
| return false; |
| } |
| if (this->isRect()) { |
| return true; |
| } |
| SkASSERT(this->isComplex()); |
| |
| const RunType* scanline = fRunHead->findScanline(r.fTop); |
| for (;;) { |
| if (!scanline_contains(scanline, r.fLeft, r.fRight)) { |
| return false; |
| } |
| if (r.fBottom <= scanline_bottom(scanline)) { |
| break; |
| } |
| scanline = scanline_next(scanline); |
| } |
| return true; |
| } |
| |
| bool SkRegion::contains(const SkRegion& rgn) const { |
| SkDEBUGCODE(this->validate();) |
| SkDEBUGCODE(rgn.validate();) |
| |
| if (this->isEmpty() || rgn.isEmpty() || !fBounds.contains(rgn.fBounds)) { |
| return false; |
| } |
| if (this->isRect()) { |
| return true; |
| } |
| if (rgn.isRect()) { |
| return this->contains(rgn.getBounds()); |
| } |
| |
| /* |
| * A contains B is equivalent to |
| * B - A == 0 |
| */ |
| return !Oper(rgn, *this, kDifference_Op, NULL); |
| } |
| |
| const SkRegion::RunType* SkRegion::getRuns(RunType tmpStorage[], |
| int* intervals) const { |
| SkASSERT(tmpStorage && intervals); |
| const RunType* runs = tmpStorage; |
| |
| if (this->isEmpty()) { |
| tmpStorage[0] = kRunTypeSentinel; |
| *intervals = 0; |
| } else if (this->isRect()) { |
| BuildRectRuns(fBounds, tmpStorage); |
| *intervals = 1; |
| } else { |
| runs = fRunHead->readonly_runs(); |
| *intervals = fRunHead->getIntervalCount(); |
| } |
| return runs; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static bool scanline_intersects(const SkRegion::RunType runs[], |
| SkRegion::RunType L, SkRegion::RunType R) { |
| runs += 2; // skip Bottom and IntervalCount |
| for (;;) { |
| if (R <= runs[0]) { |
| break; |
| } |
| if (L < runs[1]) { |
| return true; |
| } |
| runs += 2; |
| } |
| return false; |
| } |
| |
| bool SkRegion::intersects(const SkIRect& r) const { |
| SkDEBUGCODE(this->validate();) |
| |
| if (this->isEmpty() || r.isEmpty()) { |
| return false; |
| } |
| |
| SkIRect sect; |
| if (!sect.intersect(fBounds, r)) { |
| return false; |
| } |
| if (this->isRect()) { |
| return true; |
| } |
| SkASSERT(this->isComplex()); |
| |
| const RunType* scanline = fRunHead->findScanline(sect.fTop); |
| for (;;) { |
| if (scanline_intersects(scanline, sect.fLeft, sect.fRight)) { |
| return true; |
| } |
| if (sect.fBottom <= scanline_bottom(scanline)) { |
| break; |
| } |
| scanline = scanline_next(scanline); |
| } |
| return false; |
| } |
| |
| bool SkRegion::intersects(const SkRegion& rgn) const { |
| if (this->isEmpty() || rgn.isEmpty()) { |
| return false; |
| } |
| |
| if (!SkIRect::Intersects(fBounds, rgn.fBounds)) { |
| return false; |
| } |
| |
| bool weAreARect = this->isRect(); |
| bool theyAreARect = rgn.isRect(); |
| |
| if (weAreARect && theyAreARect) { |
| return true; |
| } |
| if (weAreARect) { |
| return rgn.intersects(this->getBounds()); |
| } |
| if (theyAreARect) { |
| return this->intersects(rgn.getBounds()); |
| } |
| |
| // both of us are complex |
| return Oper(*this, rgn, kIntersect_Op, NULL); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkRegion::operator==(const SkRegion& b) const { |
| SkDEBUGCODE(validate();) |
| SkDEBUGCODE(b.validate();) |
| |
| if (this == &b) { |
| return true; |
| } |
| if (fBounds != b.fBounds) { |
| return false; |
| } |
| |
| const SkRegion::RunHead* ah = fRunHead; |
| const SkRegion::RunHead* bh = b.fRunHead; |
| |
| // this catches empties and rects being equal |
| if (ah == bh) { |
| return true; |
| } |
| // now we insist that both are complex (but different ptrs) |
| if (!this->isComplex() || !b.isComplex()) { |
| return false; |
| } |
| return ah->fRunCount == bh->fRunCount && |
| !memcmp(ah->readonly_runs(), bh->readonly_runs(), |
| ah->fRunCount * sizeof(SkRegion::RunType)); |
| } |
| |
| void SkRegion::translate(int dx, int dy, SkRegion* dst) const { |
| SkDEBUGCODE(this->validate();) |
| |
| if (NULL == dst) { |
| return; |
| } |
| if (this->isEmpty()) { |
| dst->setEmpty(); |
| } else if (this->isRect()) { |
| dst->setRect(fBounds.fLeft + dx, fBounds.fTop + dy, |
| fBounds.fRight + dx, fBounds.fBottom + dy); |
| } else { |
| if (this == dst) { |
| dst->fRunHead = dst->fRunHead->ensureWritable(); |
| } else { |
| SkRegion tmp; |
| tmp.allocateRuns(*fRunHead); |
| tmp.fBounds = fBounds; |
| dst->swap(tmp); |
| } |
| |
| dst->fBounds.offset(dx, dy); |
| |
| const RunType* sruns = fRunHead->readonly_runs(); |
| RunType* druns = dst->fRunHead->writable_runs(); |
| |
| *druns++ = (SkRegion::RunType)(*sruns++ + dy); // top |
| for (;;) { |
| int bottom = *sruns++; |
| if (bottom == kRunTypeSentinel) { |
| break; |
| } |
| *druns++ = (SkRegion::RunType)(bottom + dy); // bottom; |
| *druns++ = *sruns++; // copy intervalCount; |
| for (;;) { |
| int x = *sruns++; |
| if (x == kRunTypeSentinel) { |
| break; |
| } |
| *druns++ = (SkRegion::RunType)(x + dx); |
| *druns++ = (SkRegion::RunType)(*sruns++ + dx); |
| } |
| *druns++ = kRunTypeSentinel; // x sentinel |
| } |
| *druns++ = kRunTypeSentinel; // y sentinel |
| |
| SkASSERT(sruns - fRunHead->readonly_runs() == fRunHead->fRunCount); |
| SkASSERT(druns - dst->fRunHead->readonly_runs() == dst->fRunHead->fRunCount); |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkRegion::setRects(const SkIRect rects[], int count) { |
| if (0 == count) { |
| this->setEmpty(); |
| } else { |
| this->setRect(rects[0]); |
| for (int i = 1; i < count; i++) { |
| this->op(rects[i], kUnion_Op); |
| } |
| } |
| return !this->isEmpty(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #if defined _WIN32 && _MSC_VER >= 1300 // disable warning : local variable used without having been initialized |
| #pragma warning ( push ) |
| #pragma warning ( disable : 4701 ) |
| #endif |
| |
| #ifdef SK_DEBUG |
| static void assert_valid_pair(int left, int rite) |
| { |
| SkASSERT(left == SkRegion::kRunTypeSentinel || left < rite); |
| } |
| #else |
| #define assert_valid_pair(left, rite) |
| #endif |
| |
| struct spanRec { |
| const SkRegion::RunType* fA_runs; |
| const SkRegion::RunType* fB_runs; |
| int fA_left, fA_rite, fB_left, fB_rite; |
| int fLeft, fRite, fInside; |
| |
| void init(const SkRegion::RunType a_runs[], |
| const SkRegion::RunType b_runs[]) { |
| fA_left = *a_runs++; |
| fA_rite = *a_runs++; |
| fB_left = *b_runs++; |
| fB_rite = *b_runs++; |
| |
| fA_runs = a_runs; |
| fB_runs = b_runs; |
| } |
| |
| bool done() const { |
| SkASSERT(fA_left <= SkRegion::kRunTypeSentinel); |
| SkASSERT(fB_left <= SkRegion::kRunTypeSentinel); |
| return fA_left == SkRegion::kRunTypeSentinel && |
| fB_left == SkRegion::kRunTypeSentinel; |
| } |
| |
| void next() { |
| assert_valid_pair(fA_left, fA_rite); |
| assert_valid_pair(fB_left, fB_rite); |
| |
| int inside, left, rite SK_INIT_TO_AVOID_WARNING; |
| bool a_flush = false; |
| bool b_flush = false; |
| |
| int a_left = fA_left; |
| int a_rite = fA_rite; |
| int b_left = fB_left; |
| int b_rite = fB_rite; |
| |
| if (a_left < b_left) { |
| inside = 1; |
| left = a_left; |
| if (a_rite <= b_left) { // [...] <...> |
| rite = a_rite; |
| a_flush = true; |
| } else { // [...<..]...> or [...<...>...] |
| rite = a_left = b_left; |
| } |
| } else if (b_left < a_left) { |
| inside = 2; |
| left = b_left; |
| if (b_rite <= a_left) { // [...] <...> |
| rite = b_rite; |
| b_flush = true; |
| } else { // [...<..]...> or [...<...>...] |
| rite = b_left = a_left; |
| } |
| } else { // a_left == b_left |
| inside = 3; |
| left = a_left; // or b_left |
| if (a_rite <= b_rite) { |
| rite = b_left = a_rite; |
| a_flush = true; |
| } |
| if (b_rite <= a_rite) { |
| rite = a_left = b_rite; |
| b_flush = true; |
| } |
| } |
| |
| if (a_flush) { |
| a_left = *fA_runs++; |
| a_rite = *fA_runs++; |
| } |
| if (b_flush) { |
| b_left = *fB_runs++; |
| b_rite = *fB_runs++; |
| } |
| |
| SkASSERT(left <= rite); |
| |
| // now update our state |
| fA_left = a_left; |
| fA_rite = a_rite; |
| fB_left = b_left; |
| fB_rite = b_rite; |
| |
| fLeft = left; |
| fRite = rite; |
| fInside = inside; |
| } |
| }; |
| |
| static SkRegion::RunType* operate_on_span(const SkRegion::RunType a_runs[], |
| const SkRegion::RunType b_runs[], |
| SkRegion::RunType dst[], |
| int min, int max) { |
| spanRec rec; |
| bool firstInterval = true; |
| |
| rec.init(a_runs, b_runs); |
| |
| while (!rec.done()) { |
| rec.next(); |
| |
| int left = rec.fLeft; |
| int rite = rec.fRite; |
| |
| // add left,rite to our dst buffer (checking for coincidence |
| if ((unsigned)(rec.fInside - min) <= (unsigned)(max - min) && |
| left < rite) { // skip if equal |
| if (firstInterval || dst[-1] < left) { |
| *dst++ = (SkRegion::RunType)(left); |
| *dst++ = (SkRegion::RunType)(rite); |
| firstInterval = false; |
| } else { |
| // update the right edge |
| dst[-1] = (SkRegion::RunType)(rite); |
| } |
| } |
| } |
| |
| *dst++ = SkRegion::kRunTypeSentinel; |
| return dst; |
| } |
| |
| #if defined _WIN32 && _MSC_VER >= 1300 |
| #pragma warning ( pop ) |
| #endif |
| |
| static const struct { |
| uint8_t fMin; |
| uint8_t fMax; |
| } gOpMinMax[] = { |
| { 1, 1 }, // Difference |
| { 3, 3 }, // Intersection |
| { 1, 3 }, // Union |
| { 1, 2 } // XOR |
| }; |
| |
| class RgnOper { |
| public: |
| RgnOper(int top, SkRegion::RunType dst[], SkRegion::Op op) { |
| // need to ensure that the op enum lines up with our minmax array |
| SkASSERT(SkRegion::kDifference_Op == 0); |
| SkASSERT(SkRegion::kIntersect_Op == 1); |
| SkASSERT(SkRegion::kUnion_Op == 2); |
| SkASSERT(SkRegion::kXOR_Op == 3); |
| SkASSERT((unsigned)op <= 3); |
| |
| fStartDst = dst; |
| fPrevDst = dst + 1; |
| fPrevLen = 0; // will never match a length from operate_on_span |
| fTop = (SkRegion::RunType)(top); // just a first guess, we might update this |
| |
| fMin = gOpMinMax[op].fMin; |
| fMax = gOpMinMax[op].fMax; |
| } |
| |
| void addSpan(int bottom, const SkRegion::RunType a_runs[], |
| const SkRegion::RunType b_runs[]) { |
| // skip X values and slots for the next Y+intervalCount |
| SkRegion::RunType* start = fPrevDst + fPrevLen + 2; |
| // start points to beginning of dst interval |
| SkRegion::RunType* stop = operate_on_span(a_runs, b_runs, start, fMin, fMax); |
| size_t len = stop - start; |
| SkASSERT(len >= 1 && (len & 1) == 1); |
| SkASSERT(SkRegion::kRunTypeSentinel == stop[-1]); |
| |
| if (fPrevLen == len && |
| (1 == len || !memcmp(fPrevDst, start, |
| (len - 1) * sizeof(SkRegion::RunType)))) { |
| // update Y value |
| fPrevDst[-2] = (SkRegion::RunType)(bottom); |
| } else { // accept the new span |
| if (len == 1 && fPrevLen == 0) { |
| fTop = (SkRegion::RunType)(bottom); // just update our bottom |
| } else { |
| start[-2] = (SkRegion::RunType)(bottom); |
| start[-1] = len >> 1; |
| fPrevDst = start; |
| fPrevLen = len; |
| } |
| } |
| } |
| |
| int flush() { |
| fStartDst[0] = fTop; |
| fPrevDst[fPrevLen] = SkRegion::kRunTypeSentinel; |
| return (int)(fPrevDst - fStartDst + fPrevLen + 1); |
| } |
| |
| bool isEmpty() const { return 0 == fPrevLen; } |
| |
| uint8_t fMin, fMax; |
| |
| private: |
| SkRegion::RunType* fStartDst; |
| SkRegion::RunType* fPrevDst; |
| size_t fPrevLen; |
| SkRegion::RunType fTop; |
| }; |
| |
| // want a unique value to signal that we exited due to quickExit |
| #define QUICK_EXIT_TRUE_COUNT (-1) |
| |
| static int operate(const SkRegion::RunType a_runs[], |
| const SkRegion::RunType b_runs[], |
| SkRegion::RunType dst[], |
| SkRegion::Op op, |
| bool quickExit) { |
| const SkRegion::RunType gEmptyScanline[] = { |
| 0, // dummy bottom value |
| 0, // zero intervals |
| SkRegion::kRunTypeSentinel, |
| // just need a 2nd value, since spanRec.init() reads 2 values, even |
| // though if the first value is the sentinel, it ignores the 2nd value. |
| // w/o the 2nd value here, we might read uninitialized memory. |
| // This happens when we are using gSentinel, which is pointing at |
| // our sentinel value. |
| 0 |
| }; |
| const SkRegion::RunType* const gSentinel = &gEmptyScanline[2]; |
| |
| int a_top = *a_runs++; |
| int a_bot = *a_runs++; |
| int b_top = *b_runs++; |
| int b_bot = *b_runs++; |
| |
| a_runs += 1; // skip the intervalCount; |
| b_runs += 1; // skip the intervalCount; |
| |
| // Now a_runs and b_runs to their intervals (or sentinel) |
| |
| assert_sentinel(a_top, false); |
| assert_sentinel(a_bot, false); |
| assert_sentinel(b_top, false); |
| assert_sentinel(b_bot, false); |
| |
| RgnOper oper(SkMin32(a_top, b_top), dst, op); |
| |
| int prevBot = SkRegion::kRunTypeSentinel; // so we fail the first test |
| |
| while (a_bot < SkRegion::kRunTypeSentinel || |
| b_bot < SkRegion::kRunTypeSentinel) { |
| int top, bot SK_INIT_TO_AVOID_WARNING; |
| const SkRegion::RunType* run0 = gSentinel; |
| const SkRegion::RunType* run1 = gSentinel; |
| bool a_flush = false; |
| bool b_flush = false; |
| |
| if (a_top < b_top) { |
| top = a_top; |
| run0 = a_runs; |
| if (a_bot <= b_top) { // [...] <...> |
| bot = a_bot; |
| a_flush = true; |
| } else { // [...<..]...> or [...<...>...] |
| bot = a_top = b_top; |
| } |
| } else if (b_top < a_top) { |
| top = b_top; |
| run1 = b_runs; |
| if (b_bot <= a_top) { // [...] <...> |
| bot = b_bot; |
| b_flush = true; |
| } else { // [...<..]...> or [...<...>...] |
| bot = b_top = a_top; |
| } |
| } else { // a_top == b_top |
| top = a_top; // or b_top |
| run0 = a_runs; |
| run1 = b_runs; |
| if (a_bot <= b_bot) { |
| bot = b_top = a_bot; |
| a_flush = true; |
| } |
| if (b_bot <= a_bot) { |
| bot = a_top = b_bot; |
| b_flush = true; |
| } |
| } |
| |
| if (top > prevBot) { |
| oper.addSpan(top, gSentinel, gSentinel); |
| } |
| oper.addSpan(bot, run0, run1); |
| |
| if (quickExit && !oper.isEmpty()) { |
| return QUICK_EXIT_TRUE_COUNT; |
| } |
| |
| if (a_flush) { |
| a_runs = skip_intervals(a_runs); |
| a_top = a_bot; |
| a_bot = *a_runs++; |
| a_runs += 1; // skip uninitialized intervalCount |
| if (a_bot == SkRegion::kRunTypeSentinel) { |
| a_top = a_bot; |
| } |
| } |
| if (b_flush) { |
| b_runs = skip_intervals(b_runs); |
| b_top = b_bot; |
| b_bot = *b_runs++; |
| b_runs += 1; // skip uninitialized intervalCount |
| if (b_bot == SkRegion::kRunTypeSentinel) { |
| b_top = b_bot; |
| } |
| } |
| |
| prevBot = bot; |
| } |
| return oper.flush(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /* Given count RunTypes in a complex region, return the worst case number of |
| logical intervals that represents (i.e. number of rects that would be |
| returned from the iterator). |
| |
| We could just return count/2, since there must be at least 2 values per |
| interval, but we can first trim off the const overhead of the initial TOP |
| value, plus the final BOTTOM + 2 sentinels. |
| */ |
| #if 0 // UNUSED |
| static int count_to_intervals(int count) { |
| SkASSERT(count >= 6); // a single rect is 6 values |
| return (count - 4) >> 1; |
| } |
| #endif |
| |
| /* Given a number of intervals, what is the worst case representation of that |
| many intervals? |
| |
| Worst case (from a storage perspective), is a vertical stack of single |
| intervals: TOP + N * (BOTTOM INTERVALCOUNT LEFT RIGHT SENTINEL) + SENTINEL |
| */ |
| static int intervals_to_count(int intervals) { |
| return 1 + intervals * 5 + 1; |
| } |
| |
| /* Given the intervalCounts of RunTypes in two regions, return the worst-case number |
| of RunTypes need to store the result after a region-op. |
| */ |
| static int compute_worst_case_count(int a_intervals, int b_intervals) { |
| // Our heuristic worst case is ai * (bi + 1) + bi * (ai + 1) |
| int intervals = 2 * a_intervals * b_intervals + a_intervals + b_intervals; |
| // convert back to number of RunType values |
| return intervals_to_count(intervals); |
| } |
| |
| static bool setEmptyCheck(SkRegion* result) { |
| return result ? result->setEmpty() : false; |
| } |
| |
| static bool setRectCheck(SkRegion* result, const SkIRect& rect) { |
| return result ? result->setRect(rect) : !rect.isEmpty(); |
| } |
| |
| static bool setRegionCheck(SkRegion* result, const SkRegion& rgn) { |
| return result ? result->setRegion(rgn) : !rgn.isEmpty(); |
| } |
| |
| bool SkRegion::Oper(const SkRegion& rgnaOrig, const SkRegion& rgnbOrig, Op op, |
| SkRegion* result) { |
| SkASSERT((unsigned)op < kOpCount); |
| |
| if (kReplace_Op == op) { |
| return setRegionCheck(result, rgnbOrig); |
| } |
| |
| // swith to using pointers, so we can swap them as needed |
| const SkRegion* rgna = &rgnaOrig; |
| const SkRegion* rgnb = &rgnbOrig; |
| // after this point, do not refer to rgnaOrig or rgnbOrig!!! |
| |
| // collaps difference and reverse-difference into just difference |
| if (kReverseDifference_Op == op) { |
| SkTSwap<const SkRegion*>(rgna, rgnb); |
| op = kDifference_Op; |
| } |
| |
| SkIRect bounds; |
| bool a_empty = rgna->isEmpty(); |
| bool b_empty = rgnb->isEmpty(); |
| bool a_rect = rgna->isRect(); |
| bool b_rect = rgnb->isRect(); |
| |
| switch (op) { |
| case kDifference_Op: |
| if (a_empty) { |
| return setEmptyCheck(result); |
| } |
| if (b_empty || !SkIRect::IntersectsNoEmptyCheck(rgna->fBounds, |
| rgnb->fBounds)) { |
| return setRegionCheck(result, *rgna); |
| } |
| if (b_rect && rgnb->fBounds.containsNoEmptyCheck(rgna->fBounds)) { |
| return setEmptyCheck(result); |
| } |
| break; |
| |
| case kIntersect_Op: |
| if ((a_empty | b_empty) |
| || !bounds.intersect(rgna->fBounds, rgnb->fBounds)) { |
| return setEmptyCheck(result); |
| } |
| if (a_rect & b_rect) { |
| return setRectCheck(result, bounds); |
| } |
| if (a_rect && rgna->fBounds.contains(rgnb->fBounds)) { |
| return setRegionCheck(result, *rgnb); |
| } |
| if (b_rect && rgnb->fBounds.contains(rgna->fBounds)) { |
| return setRegionCheck(result, *rgna); |
| } |
| break; |
| |
| case kUnion_Op: |
| if (a_empty) { |
| return setRegionCheck(result, *rgnb); |
| } |
| if (b_empty) { |
| return setRegionCheck(result, *rgna); |
| } |
| if (a_rect && rgna->fBounds.contains(rgnb->fBounds)) { |
| return setRegionCheck(result, *rgna); |
| } |
| if (b_rect && rgnb->fBounds.contains(rgna->fBounds)) { |
| return setRegionCheck(result, *rgnb); |
| } |
| break; |
| |
| case kXOR_Op: |
| if (a_empty) { |
| return setRegionCheck(result, *rgnb); |
| } |
| if (b_empty) { |
| return setRegionCheck(result, *rgna); |
| } |
| break; |
| default: |
| SkDEBUGFAIL("unknown region op"); |
| return false; |
| } |
| |
| RunType tmpA[kRectRegionRuns]; |
| RunType tmpB[kRectRegionRuns]; |
| |
| int a_intervals, b_intervals; |
| const RunType* a_runs = rgna->getRuns(tmpA, &a_intervals); |
| const RunType* b_runs = rgnb->getRuns(tmpB, &b_intervals); |
| |
| int dstCount = compute_worst_case_count(a_intervals, b_intervals); |
| SkAutoSTMalloc<256, RunType> array(dstCount); |
| |
| #ifdef SK_DEBUG |
| // Sometimes helpful to seed everything with a known value when debugging |
| // sk_memset32((uint32_t*)array.get(), 0x7FFFFFFF, dstCount); |
| #endif |
| |
| int count = operate(a_runs, b_runs, array.get(), op, NULL == result); |
| SkASSERT(count <= dstCount); |
| |
| if (result) { |
| SkASSERT(count >= 0); |
| return result->setRuns(array.get(), count); |
| } else { |
| return (QUICK_EXIT_TRUE_COUNT == count) || !isRunCountEmpty(count); |
| } |
| } |
| |
| bool SkRegion::op(const SkRegion& rgna, const SkRegion& rgnb, Op op) { |
| SkDEBUGCODE(this->validate();) |
| return SkRegion::Oper(rgna, rgnb, op, this); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "SkBuffer.h" |
| |
| uint32_t SkRegion::writeToMemory(void* storage) const { |
| if (NULL == storage) { |
| uint32_t size = sizeof(int32_t); // -1 (empty), 0 (rect), runCount |
| if (!this->isEmpty()) { |
| size += sizeof(fBounds); |
| if (this->isComplex()) { |
| size += 2 * sizeof(int32_t); // ySpanCount + intervalCount |
| size += fRunHead->fRunCount * sizeof(RunType); |
| } |
| } |
| return size; |
| } |
| |
| SkWBuffer buffer(storage); |
| |
| if (this->isEmpty()) { |
| buffer.write32(-1); |
| } else { |
| bool isRect = this->isRect(); |
| |
| buffer.write32(isRect ? 0 : fRunHead->fRunCount); |
| buffer.write(&fBounds, sizeof(fBounds)); |
| |
| if (!isRect) { |
| buffer.write32(fRunHead->getYSpanCount()); |
| buffer.write32(fRunHead->getIntervalCount()); |
| buffer.write(fRunHead->readonly_runs(), |
| fRunHead->fRunCount * sizeof(RunType)); |
| } |
| } |
| return buffer.pos(); |
| } |
| |
| uint32_t SkRegion::readFromMemory(const void* storage) { |
| SkRBuffer buffer(storage); |
| SkRegion tmp; |
| int32_t count; |
| |
| count = buffer.readS32(); |
| if (count >= 0) { |
| buffer.read(&tmp.fBounds, sizeof(tmp.fBounds)); |
| if (count == 0) { |
| tmp.fRunHead = SkRegion_gRectRunHeadPtr; |
| } else { |
| int32_t ySpanCount = buffer.readS32(); |
| int32_t intervalCount = buffer.readS32(); |
| tmp.allocateRuns(count, ySpanCount, intervalCount); |
| buffer.read(tmp.fRunHead->writable_runs(), count * sizeof(RunType)); |
| } |
| } |
| this->swap(tmp); |
| return buffer.pos(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| const SkRegion& SkRegion::GetEmptyRegion() { |
| static SkRegion gEmpty; |
| return gEmpty; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef SK_DEBUG |
| |
| // Starts with first X-interval, and returns a ptr to the X-sentinel |
| static const SkRegion::RunType* skip_intervals_slow(const SkRegion::RunType runs[]) { |
| // want to track that our intevals are all disjoint, such that |
| // prev-right < next-left. We rely on this optimization in places such as |
| // contains(). |
| // |
| SkRegion::RunType prevR = -SkRegion::kRunTypeSentinel; |
| |
| while (runs[0] < SkRegion::kRunTypeSentinel) { |
| SkASSERT(prevR < runs[0]); |
| SkASSERT(runs[0] < runs[1]); |
| SkASSERT(runs[1] < SkRegion::kRunTypeSentinel); |
| prevR = runs[1]; |
| runs += 2; |
| } |
| return runs; |
| } |
| |
| static void compute_bounds(const SkRegion::RunType runs[], int count, |
| SkIRect* bounds, int* ySpanCountPtr, |
| int* intervalCountPtr) { |
| assert_sentinel(runs[0], false); // top |
| |
| int left = SK_MaxS32; |
| int rite = SK_MinS32; |
| int bot; |
| int ySpanCount = 0; |
| int intervalCount = 0; |
| |
| bounds->fTop = *runs++; |
| do { |
| bot = *runs++; |
| SkASSERT(SkRegion::kRunTypeSentinel > bot); |
| |
| ySpanCount += 1; |
| |
| runs += 1; // skip intervalCount for now |
| if (*runs < SkRegion::kRunTypeSentinel) { |
| if (left > *runs) { |
| left = *runs; |
| } |
| |
| const SkRegion::RunType* prev = runs; |
| runs = skip_intervals_slow(runs); |
| int intervals = (runs - prev) >> 1; |
| SkASSERT(prev[-1] == intervals); |
| intervalCount += intervals; |
| |
| if (rite < runs[-1]) { |
| rite = runs[-1]; |
| } |
| } else { |
| SkASSERT(0 == runs[-1]); // no intervals |
| } |
| SkASSERT(SkRegion::kRunTypeSentinel == *runs); |
| runs += 1; |
| } while (SkRegion::kRunTypeSentinel != *runs); |
| |
| bounds->fLeft = left; |
| bounds->fRight = rite; |
| bounds->fBottom = bot; |
| *ySpanCountPtr = ySpanCount; |
| *intervalCountPtr = intervalCount; |
| } |
| |
| void SkRegion::validate() const { |
| if (this->isEmpty()) { |
| // check for explicit empty (the zero rect), so we can compare rects to know when |
| // two regions are equal (i.e. emptyRectA == emptyRectB) |
| // this is stricter than just asserting fBounds.isEmpty() |
| SkASSERT(fBounds.fLeft == 0 && fBounds.fTop == 0 && fBounds.fRight == 0 && fBounds.fBottom == 0); |
| } else { |
| SkASSERT(!fBounds.isEmpty()); |
| if (!this->isRect()) { |
| SkASSERT(fRunHead->fRefCnt >= 1); |
| SkASSERT(fRunHead->fRunCount > kRectRegionRuns); |
| |
| const RunType* run = fRunHead->readonly_runs(); |
| const RunType* stop = run + fRunHead->fRunCount; |
| |
| // check that our bounds match our runs |
| { |
| SkIRect bounds; |
| int ySpanCount, intervalCount; |
| compute_bounds(run, stop - run, &bounds, &ySpanCount, &intervalCount); |
| |
| SkASSERT(bounds == fBounds); |
| SkASSERT(ySpanCount > 0); |
| SkASSERT(fRunHead->getYSpanCount() == ySpanCount); |
| // SkASSERT(intervalCount > 1); |
| SkASSERT(fRunHead->getIntervalCount() == intervalCount); |
| } |
| } |
| } |
| } |
| |
| void SkRegion::dump() const { |
| if (this->isEmpty()) { |
| SkDebugf(" rgn: empty\n"); |
| } else { |
| SkDebugf(" rgn: [%d %d %d %d]", fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); |
| if (this->isComplex()) { |
| const RunType* runs = fRunHead->readonly_runs(); |
| for (int i = 0; i < fRunHead->fRunCount; i++) |
| SkDebugf(" %d", runs[i]); |
| } |
| SkDebugf("\n"); |
| } |
| } |
| |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkRegion::Iterator::Iterator(const SkRegion& rgn) { |
| this->reset(rgn); |
| } |
| |
| bool SkRegion::Iterator::rewind() { |
| if (fRgn) { |
| this->reset(*fRgn); |
| return true; |
| } |
| return false; |
| } |
| |
| void SkRegion::Iterator::reset(const SkRegion& rgn) { |
| fRgn = &rgn; |
| if (rgn.isEmpty()) { |
| fDone = true; |
| } else { |
| fDone = false; |
| if (rgn.isRect()) { |
| fRect = rgn.fBounds; |
| fRuns = NULL; |
| } else { |
| fRuns = rgn.fRunHead->readonly_runs(); |
| fRect.set(fRuns[3], fRuns[0], fRuns[4], fRuns[1]); |
| fRuns += 5; |
| // Now fRuns points to the 2nd interval (or x-sentinel) |
| } |
| } |
| } |
| |
| void SkRegion::Iterator::next() { |
| if (fDone) { |
| return; |
| } |
| |
| if (fRuns == NULL) { // rect case |
| fDone = true; |
| return; |
| } |
| |
| const RunType* runs = fRuns; |
| |
| if (runs[0] < kRunTypeSentinel) { // valid X value |
| fRect.fLeft = runs[0]; |
| fRect.fRight = runs[1]; |
| runs += 2; |
| } else { // we're at the end of a line |
| runs += 1; |
| if (runs[0] < kRunTypeSentinel) { // valid Y value |
| int intervals = runs[1]; |
| if (0 == intervals) { // empty line |
| fRect.fTop = runs[0]; |
| runs += 3; |
| } else { |
| fRect.fTop = fRect.fBottom; |
| } |
| |
| fRect.fBottom = runs[0]; |
| assert_sentinel(runs[2], false); |
| assert_sentinel(runs[3], false); |
| fRect.fLeft = runs[2]; |
| fRect.fRight = runs[3]; |
| runs += 4; |
| } else { // end of rgn |
| fDone = true; |
| } |
| } |
| fRuns = runs; |
| } |
| |
| SkRegion::Cliperator::Cliperator(const SkRegion& rgn, const SkIRect& clip) |
| : fIter(rgn), fClip(clip), fDone(true) { |
| const SkIRect& r = fIter.rect(); |
| |
| while (!fIter.done()) { |
| if (r.fTop >= clip.fBottom) { |
| break; |
| } |
| if (fRect.intersect(clip, r)) { |
| fDone = false; |
| break; |
| } |
| fIter.next(); |
| } |
| } |
| |
| void SkRegion::Cliperator::next() { |
| if (fDone) { |
| return; |
| } |
| |
| const SkIRect& r = fIter.rect(); |
| |
| fDone = true; |
| fIter.next(); |
| while (!fIter.done()) { |
| if (r.fTop >= fClip.fBottom) { |
| break; |
| } |
| if (fRect.intersect(fClip, r)) { |
| fDone = false; |
| break; |
| } |
| fIter.next(); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkRegion::Spanerator::Spanerator(const SkRegion& rgn, int y, int left, |
| int right) { |
| SkDEBUGCODE(rgn.validate();) |
| |
| const SkIRect& r = rgn.getBounds(); |
| |
| fDone = true; |
| if (!rgn.isEmpty() && y >= r.fTop && y < r.fBottom && |
| right > r.fLeft && left < r.fRight) { |
| if (rgn.isRect()) { |
| if (left < r.fLeft) { |
| left = r.fLeft; |
| } |
| if (right > r.fRight) { |
| right = r.fRight; |
| } |
| fLeft = left; |
| fRight = right; |
| fRuns = NULL; // means we're a rect, not a rgn |
| fDone = false; |
| } else { |
| const SkRegion::RunType* runs = rgn.fRunHead->findScanline(y); |
| runs += 2; // skip Bottom and IntervalCount |
| for (;;) { |
| // runs[0..1] is to the right of the span, so we're done |
| if (runs[0] >= right) { |
| break; |
| } |
| // runs[0..1] is to the left of the span, so continue |
| if (runs[1] <= left) { |
| runs += 2; |
| continue; |
| } |
| // runs[0..1] intersects the span |
| fRuns = runs; |
| fLeft = left; |
| fRight = right; |
| fDone = false; |
| break; |
| } |
| } |
| } |
| } |
| |
| bool SkRegion::Spanerator::next(int* left, int* right) { |
| if (fDone) { |
| return false; |
| } |
| |
| if (fRuns == NULL) { // we're a rect |
| fDone = true; // ok, now we're done |
| if (left) { |
| *left = fLeft; |
| } |
| if (right) { |
| *right = fRight; |
| } |
| return true; // this interval is legal |
| } |
| |
| const SkRegion::RunType* runs = fRuns; |
| |
| if (runs[0] >= fRight) { |
| fDone = true; |
| return false; |
| } |
| |
| SkASSERT(runs[1] > fLeft); |
| |
| if (left) { |
| *left = SkMax32(fLeft, runs[0]); |
| } |
| if (right) { |
| *right = SkMin32(fRight, runs[1]); |
| } |
| fRuns = runs + 2; |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef SK_DEBUG |
| |
| bool SkRegion::debugSetRuns(const RunType runs[], int count) { |
| // we need to make a copy, since the real method may modify the array, and |
| // so it cannot be const. |
| |
| SkAutoTArray<RunType> storage(count); |
| memcpy(storage.get(), runs, count * sizeof(RunType)); |
| return this->setRuns(storage.get(), count); |
| } |
| |
| #endif |